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Introduction. Categorical probability gives a categorical analysis of the fundamental principles and structures of clas-
sical probability theory. In this extended abstract and tool demonstration, we show that developments in categorical
probability are relevant to practical Bayesian statistics and probabilistic programming. We present LazyPPL (Lazy Prob-
abilistic Programming Library), a new library for statistical programming, which inherits key features of the theory, and
facilitates the exchange of ideas between practical Bayesian modelling and categorical probability.

1 Categorical probability theory versus probabilistic programming

Various authors ([6, 18, 11]) have proposed semi-cartesian monoidal categories (monoidal categories whose unit object
is terminal) as a good setting for categorical probability theory. The idea is that objects represent spaces, and morphisms
represent parameterized probability distributions. The tensor models product spaces, used to reason about independence.

We connect this with a successful line of work using probabilistic programming for practical statistical modelling
(e.g. [3, 19, 13, 25, 1]). An informal principle is that probabilistic programming can be seen as an internal language for
categorical probability [24, 23], or as a ‘practical’ synthetic measure theory.

If morphisms correspond to probabilistic programs, the interchange law for monoidal categories means that we can
re-order program lines without affecting the computational behaviour. Semi-cartesian structure means that, additionally,
we can safely ignore any program instruction whose result is not used. In particular, it is safe to delay the execution of a
program instruction until just before it is needed. This type of behaviour is called lazy (e.g. [15, Ch. 36]). In summary,
we have the following dictionary.

Traditional probability Categorical probability Probabilistic programming in LazyPPL
Spaces Objects Types
Parameterized distributions Morphisms Programs
Fubini’s theorem Monoidal interchange law Reordering lines of programs
Normalized probabilities (sum to 1) Semi-cartesian / terminal unit Laziness

2 Overview of probabilistic programming in LazyPPL

The basic idea of LazyPPL is that types represent spaces, and probabilistic programs represent measures on those spaces.
We take advantage of the type infrastructure in Haskell to explore a range of spaces, using basic type constructors. We
have the usual types R, Bool of real numbers and booleans. Then we can form finite product types, e.g. (R, R). For
every type a, there is a type (Prob a) of probability distributions on a, and a type (Meas a) of unnormalized measures on
a. We obtain random distributions as (Prob (Prob a)), and so on. For all types a and b there is a function type (a → b),
so we get parameterized distributions, e.g. (R → Prob R), and random functions, e.g. (Prob (a → b)).

In categorical probability, the focus is typically on the monoidal category of probability kernels. These are the pro-
grams of type (a → Prob b) or (a → Meas b), depending on whether we are working with normalized distributions
(as in Markov categories, [11]) or unnormalized distributions (as in CD-categories [6], or GS-categories [7], or ‘synthetic
measure theory’ [18, 21]). Composition of these morphisms is dealt with by the fact that Prob and Meas are monads in
Haskell, and Haskell has very convenient syntax for Kleisli composition.
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2 Statistical programming with categorical measure theory and LazyPPL

We can then write statistical models in the style of categorical probability, but formally in Haskell syntax, using special
operations provided by LazyPPL. For example, (uniform :: Prob R) represents the uniform distribution on [0,1].

We view unnormalized measures as probability distributions weighted by a likelihood function. These are built out of
operations (sample :: Prob a → Meas a), for sampling from a normalized distribution, and (score :: R → Meas ()),
for reweighting the measure. The crux of Monte Carlo simulation for Bayesian inference is in sampling from an unnor-
malized measure (e.g. [12]). In LazyPPL we provide three alternative routines to do this (mh, mh1, lwis).

3 Laziness, terminal units and non-parametric statistics

There are other implementations of categorical aspects of probability, including MonadBayes [20] and EfProb [5]; moving
beyond probability see also e.g. [8, 10, 14, 4, 2, 26]. The key novelty of LazyPPL is to take full advantage of laziness in
program evaluation, which amounts to a monoidal category having a terminal unit. This allows us to immediately compose
complex distributions from non-parametric statistics, which refer to sample spaces that are infinite or unbounded.

For example, in Figure 1 we display several instances of Bayesian regression in LazyPPL. The first is parametric linear
regression. The second is piecewise linear regression: here the positions of jump points come from an infinite dimensional
Poisson process; this is easily written in two lines of code, and composed with linear regression in three lines of code.
Although the actual dimension is infinite, the inference concludes and we get the graphs. This is where laziness comes
in: the execution engine only looks at the dimensions that are needed to plot the graph, and the bounds on the viewport
cause many of the dimensions to be implicitly discarded, essentially using the terminal unit. All of this is automatic and
taken care of by the library. For the code and further examples, including non-parametric clustering and non-parametric
feature extraction, see https://lazyppl.bitbucket.io/. Our implementation requires several innovations, including
a lazy probability monad that is inspired by quasi-Borel spaces [16] and the Para construction [22], and a new Metropolis-
Hastings kernel. See [9] for details. In summary, LazyPPL facilitates connections between categorical probability and
practical statistics, as follows:

LazyPPL Statistical ModellingCategorical Probability

New directions for categorical probability: LazyPPL naturally suggests objects that are easy to program with but which
are motivating challenges for traditional/categorical probability, such as good function spaces and commutative
monads of measures.

New lessons for theory and practice of statistics: Laziness as a means of automatic truncation in non-parametric statis-
tics; Compositional model building allows new abstractions (e.g. [17]).

...

Figure 1: Bayesian regression in LazyPPL for the data set indicated by the dots. Samples from the posteriors starting
from different priors on the function space: (a) linear, (b) piecewise linear, (c) program induction, and (d) Wiener process.
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