
Regular Monoidal Languages
arXiv:2207.00526, to appear at MFCS 2022

Matthew Earnshaw and Paweł Sobociński
Department of Software Science, Tallinn University of Technology, Estonia

Language theory studies finite means for generating and recognizing infinite sets. It extends to sets of various structures: words, trees, infinite words,
graphs of bounded tree width, etc. In this paper we make a first step in extending language theory to higher-dimensional algebraic structures, moving
from monoids (words) to monoidal categories: our languages are sets of morphisms in free pros. The algebra of monoidal and cartesian restriction
categories is used to investigate the theoretical properties of such languages including closure properties and deterministic recognizability.

Regular Monoidal Grammars and Languages
Classically, a language L over an alphabet Σ is a subset of the free monoid L ⊆ Σ∗. A monoidal language is defined similarly, replacing free monoids
with free pros, and considering subsets of the hom-set of scalars, L ⊆ FΓ(0, 0). The regular monoidal languages are defined by finite, labelled
monoidal graphs (signatures): these are regular monoidal grammars. For example, consider the following regular monoidal grammar (left below),
and an element in the language of this grammar (right below):

A (A
A
B

) A
A
B

A (
()

)

Intuitively, the language defined by a grammar consists of the untyped scalar string diagrams that can be built from the typed building blocks of
the grammar. The grammar above defines a language of balanced parentheses and illustrates how regular monoidal grammars permit unbounded
concurrency. As one scans from left to right, the size of the internal boundary of a string diagram keeps track of the number of open left parentheses.

Classical regular word and tree languages are regular monoidal languages over grammars of a particular shape. For example, consider the
following regular monoidal grammar, having only generators of coarity 1, plus one “root” generator (right). The elements of this language are trees
corresponding to terms of the inductive type of lists of boolean values:

::
ft [] L LVV

L
V

L

Regular monoidal languages can also be found implicitly in DNA computing, where self-assembly of DNA tiles has been used to realize the
computation of Sierpiński fractals. Such tiles are represented in the following regular monoidal grammar (left below), and the elements of the
language are Sierpiński triangles of arbitrary iteration depth (example right below):

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1

Regular monoidal languages enjoy several closure properties: under union, intersection, monoidal product and factors, homomorphic images, and
homomorphic preimages. They are not however closed under complement, since every regular monoidal language contains the empty diagram.

Monoidal Automata
Regular monoidal grammars can also be seen as transition graphs of
monoidal automata. Formally, a (non-deterministic) monoidal automa-
ton is an assignment of monoidal generators γ ∈ Γ to transition functions
∆γ : Qar(γ) −→ P(Qcoar(γ)). Such assignments extend to morphisms of
pros FΓ → RelQ, where a morphism n → m in RelQ is a function
Qn → P(Qm). Deterministic monoidal automata may be defined simi-
larly, replacing the powerset monad with the maybe monad. The induc-
tive extensions are then morphisms of pros FΓ → ParQ.

Convex Automata and Determinization
Since root-to-leaf tree languages cannot be deterministically recognized,
neither can all monoidal languages. However, monoidal automata fac-
toring through the sub-pro of convex relations admit a generalization
of powerset construction (a determinization algorithm). A relation ∆ is
convex if there is a morphism ∆∗ making the following square commute:

where ∆# is the Kleisli lift of ∆, and ∇ is the monoidal multiplication
of the powerset monad.

Deterministic Implies Causally Closed
Since ParQ is a cartesian restriction prop, deterministic monoidal au-
tomata also have inductive extensions to cartesian restriction functors
F↓Γ → ParQ, where F↓ denotes the free cartesian restriction prop. This
“automaton” accepts an extended language including tree-like subdia-
grams that we call causal histories. For example, the diagrams below
are causal histories of the rightmost one (formally, A ⊗ h = A for all h):

γ δγ γ δ
β β

γ δ
α

γ δ
α

The equational theory of cartesian restriction categories implies that
some (monoidal products of) causal histories are also string diagrams in
FΓ, for example:

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

By splitting a language into its causal histories and recombining these,
we obtain its causal closure. We show that all languages recognized by
deterministic monoidal automata are equal to their causal closure.

The Syntactic Pro
The syntactic monoid is an invariant of classical languages, isomorphic
to the transition monoid of the minimal automaton. It identifies words
up to contextual equivalence. We extend this to monoidal languages
using string diagram contexts. A context is a diagram with a hole:

...

......α β}n m{

...

Given a context C of capacity (n, m), we obtain a scalar string diagram
C[α] by plugging in a string diagram α : n → m. Contexts define an
equivalence relation on the morphisms of a pro: morphisms α, β : n → m
are equivalent if C[α] ∈ L ⇐⇒ C[β] ∈ L, for all contexts C of capacity
(n, m). The corresponding quotient pro is the syntactic pro.

We show that if L is a regular monoidal language then its syntactic
pro has finite homsets, and that if the syntactic pro has the structure
of a cartesian restriction prop, then the language is deterministically
recognizable.

