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Context and objectives
A descriptive model is model whose structure — equipped with input and output interaction points
— encodes the main (abstract) structure of the thing to be modelled or studied.
• Systems Engineering is different from System Design
• Clarity and precision are essential for model reuse, but not sufficient
•Architecture of descriptive models influences their definition and utilization
• Category Theory can be considered as a good architectural framework
•What is the fundamental organisation of a descriptive model ?
•How to fully take advantage of this organisation in practice ?

This work is not concerned with a modelling language, tool or methodology, but it is concerned with
a federated architecture FA (unifying models on their structure and distinguishing them by interpre-
tations of this structure) aimed to facilitating the utilization (specification, analysis, share, reuse, etc.)
of models without sacrificing clarity and precision.
We study, not the "real" systems, but the system: a descriptive model.

Considering metamodels, data formats, interfaces, mappings etc.: to what extent can descriptive
models be decoupled from the logic of their implementation by a particular tool (or source) while
retaining their full meaning and being reusable in another tool (or place) by different actors.
•How to ensure that the implementation reflects the (modelling) formalism or the mathematical

object ?
•Different implementations coexist
• The only solution might be to use the same implementation – like software libraries, yet...
•Mappings can help connect models, but managing mappings can raise the same issues as with

models

Main idea: encapsulation-differentiation
The parts of the architecture of a descriptive model can be:
• Structure of a model This structure consists of boxes linked with incoming and outgoing wires.

Input and output interaction points are ports associated to boxes ensuring connection with their
surrounding environment. A representation of a tricky system can be managed using hierarchical
decompositions and re-compositions.
• Interpretations of the structure Many systems are usually studied from different perspectives,

namely: human, physical, structure, behaviour, cost, safety, etc., then different interpretations of
their structure(s) are possible and necessary. At the level of models, these interpretations yield
domain-specific languages or semantics.
• Instances of the structure Utilizing a structure involves data relating to an actual (or candidate)

system that is modelled. These data should also relate to an interpretation of the structure, meaning
that their precise meaning can be known and that they can be utilized.

Why Cateory Theory ? This framework enables us to
- naturally define the notion of composite-box with its constituent-boxes via an arrow in a category
- abstract away details relating to a particular interpretation of the structure of models
- define a formal link to be specified between the structure of models and various targets like In-

stances and Interpretations. This formal link is ideally defined as a functor.
- consider possible canonical extensions of FA with the enrichment of objects and category structure
We define the structure of these models as a symmetric multicategory. In particular, we rely on ma-

trices over a semiring to define morphisms and their composition. The choice of matrices is intended
to facilitate the application in practice.

Components of FA

Structure of a descriptive model
A (directed) Wiring Diagram WD [4] [7] looks like Figure 1, but in fact it differs from a WD in the
following respects. We allow:
•Unconnected ports (ports without incoming or outgoing wires)
• Converging wires (separate wires with the same target port)
• Several links between a source port and a target port

Figure 1: A box Y composed of 2 boxes X1 and X2

The point of allowing these various things is to encompass as many wiring patterns as possible that
may occur in practice. For instance, it might be the case, structurally, that an actual component is not
plugged into its surrounding environment via any of its interfaces. See for instance a simple Ptolemy
model [6, Figure 9], similarly permissive.

Let K be the power set of the set of strings of finite lengths. (K,∪, ·, ∅, {ε}) is a semiring [1] where
× := · is the product induced by the string concatenation operator, + := ∪ is the addition given by
union of sets of strings of finite lengths, 0 := ∅ is the zero given by the empty set, and 1 := {ε} is the
unit given by the singleton set containing the empty string.
Definition 0.1. MatMscK is an underlying symmetric multicategory of (Mscm,⊗) defined in the full
companion paper.
• Its objects are the same objects as Mscm. An object X is rewritten as (Xin, Xout).
• Its arrows MatMsc(a1, ...., an; a). An arrow a1, ...., an → a is rewritten as follows. Let
b = a1 ⊗ · · · ⊗ an, Xin = in(b), Xout = out(b), Y in = in(a) and Y out = out(a), the arrow
b→ a in Mscm, noted X → Y is given by the couple of matrices (M in,Mout) where M inand Mout

are given by the functions Xin × (Y in ∪Xout) → K and Y out ×Xout → K respectively. Objects
and arrows are subject to R1, R2 and R3 as in Mscm.

• Identities MatMsc(a; a). For any object (Xin, Xout), the identity arrow
1X := (1inX : Xin × (Xin ∪Xout)→ K, 1outX : Xout ×Xout→ K), rewritten as follows. 1inX and

1outX yield
Xin Xout( )

Xin IM ∅M and
Xout

( )Xout IM

• The composition formula is the same as for Mscm, but rewritten as follows. Consider the objects
X , Y , Z and arrows n : X → Y and m : Y → Z given by matrices (N in, Nout) and (M in,Mout)
respectively. The arrow m ◦ n : X → Z is given by (Oin, Oout):

Oin = N in ×M ′in ×N ′out
Oout = Mout ×Nout
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Composition and associativity laws follow from matrix multiplication. It is worth noting that with
only MatMsc (or Mscm), no meaning (related to a domain of interest or business domain) is assumed
for an object (or interface), its ports and, if applicable, its internal links.

Formal link with Wiring Diagrams An arrow b
θ−→ a in Mscm(b; a) indicates how a box a is

internally built from the box b. It consists of a tuple (θin, θout)

θin : Lin→ in(b) × (out(b) ∪ in(a))
θout : Lout→ out(a) × out(b)

(1)

where Lin and Lout are the abstract finite sets of links coming respectively into an input port and an
output port of one of the boxes b and a. We also demand R1, R2, R3 available in the full paper.

A WD is basically given by

(Xin +Xout) −→ (Y in +Xout)←− (Y in + Y out) (2)

which can be decomposed into two functions

φin : Xin→ Y in +Xout

φout : Y out→ Xout (3)

To obtain (1) – our definition – from (3), the elements of φin and φout must be associated to the
abstract sets of links or wires Lin and Lout. To get (3) from (1) it is necessary to have θin and θout of
(1) that are injective. The elements of Lin and Lout can be seen as the labels of wires.

Interpretations and Instances of the structure
Interpretations Using the structure of models, it is possible to specify an interpretation of boxes such
that the associated semantics can be recovered. An actual interpretation could therefore be indepen-
dently developed by using the structure of models. Ideally, the specification of the interpretation is
given by a functor F : MatMsc → Msin, Msin being the category in which the structure is inter-
preted. The caveat ’ideally’ is necessary, because it may not always be straightforward to define a
functorial semantics. The concepts defined in Msin must be exposed by F , irrespective of how these
concepts are defined in Msin and irrespective of the implementation. These data must be machine-
accessible. Functorial semantics of wiring diagrams (i.e. special cases of MatMsc) are given in [3],
[4], [7], ...

Instances If the structure of a model is to be automatically exchangeable, then in the same way that
the definition of an interpretation of the structure needs to be machine-accessible, the related data
must also be machine-accessible.

The data relating to an actual (or candidate) system modelled is defined by a Set-valued functor
I : MatMsc→ Set.

It can be argued that the effective data related to MatMsc should instead be given by a pushout over

Msin F←−MatMsc I−→ Set (4)

Conclusion
See the full paper for more details on related work and technical details. One perspective is to address
how models evolve (structurally) over time [2].
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