

We study <i>correlations</i> , conditional probability densities
$p(y_A, y_B \mid x_A, x_B)$ where $x_A, x_B \in X$ and $y_A, y_B \in X$
A local, or hidden variables, or simply classical, correlation
$p(y_A, y_B \mid x_A, x_B) = \sum_{\omega \in \Omega} \mu(\omega) \Pr_A(y_A \mid x_A, \omega) \Pr_B(y_A \mid x_B, \omega) \Pr_B(y_B \mid x_B, \omega)$
A quantum correlation takes the form
$p(y_A, y_B \mid x_A, x_B) = \operatorname{tr}(\rho(E_{y_A}^{x_A} \otimes F_{y_B}^{x_B}))$
In general, a <i>nonsignaling</i> correlation satisfies the condition
$\sum_{y_B} p(y_A, y_B \mid x_A, x_B) = \sum_{y_B} p(y_A, y_B \mid x_A, x'_B) \text{ for all} \\\sum_{y_A} p(y_A, y_B \mid x_A, x_B) = \sum_{y_A} p(y_A, y_B \mid x'_A, x_B) \text{ for all}$
A correlation is <i>synchronous</i> if it satisfies:
$p(y_A, y_B \mid x, x) = 0$ whenever $x \in X$ and $y_A \neq$

Sections and Monomorphisms

A morphism $\alpha \in \text{Hom}_{\mathsf{C}}(A, B)$ is a section if there is a $\beta \in \text{Hom}_{\mathsf{C}}(B, A)$ with $\beta \circ \alpha = \operatorname{id}_A$. It is a monomorphism if whenever $\gamma_1, \gamma_2 \in \operatorname{Hom}_{\mathsf{C}}(Z, A)$ have $\alpha \circ \gamma_1 = \alpha \circ \gamma_2$ then $\gamma_1 = \gamma_2$. In FinSet both mean α is one-to-one.

Theorem 1. In FinSet^S the sections are precisely the correlations

 $p(y_A, y_B | x_A, x_B) = \mathbb{1}_{\{y_A = f_A(x_A, x_B)\}} \mathbb{1}_{\{y_B = f_B(x_A, x_B)\}}$

such that (i) $(f_A, f_B) : X^2 \to Y^2$ is one-to-one and (ii) $f_A(x_A, x_B) = f_B(x_A, x_B)$ if and only if $x_A = x_B$.

Corollary. The sections in FinSet^S_{HV}, FinSet^S_O, and FinSet^S_{NS} are precisely the sections in FinSet (i.e. deterministic correlations from one-to-one functions).

Theorem 2. In each of these categories, the monomorphisms are precisely those correlations whose stochastic matrices have zero right nullspace.

Theorem 1 is easy to prove. Theorem 2 is more challenging:

- it is straightforward to prove for FinSet^S;
- for FinSet^S_{NS} on needs Lemma 1 and the following lemma;

Lemma. Let *p* be a nonsignaling synchronous correlation, *P* its stochastic matrix, and suppose $P\mathbf{u} = \mathbf{0}$. Define $w_1(x_A, x_B) = \mathbb{1}_{\{x_A = x_B\}} \sum_z u(x_A, z)$ and $w_2(x_A, x_B) = \mathbb{1}_{\{x_A = x_B\}} \sum_z u(z, x_B)$. Then we have $P \mathbf{w}_1 = P \mathbf{w}_2 = \mathbf{0}$.

• for FinSet^S_{HV} and FinSet^S_O on uses Lemma 2 and the following result.

Lemma. Let $p \in \text{Hom}^{S}(X, Y)$ be a symmetric with associated stochastic matrix P. Suppose $P\mathbf{u} = \mathbf{0}$. Then $v(x_A, x_B) = u(x_B, x_A)$ also has $P\mathbf{v} = \mathbf{0}$.

Morphisms in categories of nonlocal games

Brad Lackey^{1,2,3,4,5} Nishant Rodrigues^{1,3}

¹Joint Center for Quantum Information and Computer Science ²University of Maryland Institute for Advanced Computer Studies ³Department of Computer Science, University of Maryland, College Park ⁴Department of Mathematics, University of Maryland, College Park ⁵Quantum Architectures and Computation Group, Microsoft, Redmond

Ovei	view
on <i>finite</i> sets $y_B \in Y$. In takes the form $y_B \mid x_B, \omega$).	 Lemma. Under natural composition of probability densities the composition of synchronous correlations is synchrono the composition of nonsignaling correlations is nonsignal the composition of quantum correlations is quantum; the composition of classical correlations is classical.
tions:	Consequence . We can construct categories each of whose of sets, and whose <i>morphisms</i> are the nonlocal games with syn correlations (FinSet ^S), or synchronous classical (FinSet ^S _{HV}), sy quantum (FinSet ^S _Q), or synchronous nonsignalling (FinSet ^S _{NS})
$y_A, x_A, x_B, x'_B, y_B, x_A, x_B, x'_A.$ y_B in Y .	Main result. We classify the categorical notions of one-to-or monomorphism) and onto (retraction and epimorphism) in Unfortunately these conditions cannot be used to separate l variables from quantum (or general nonsignalling) correlat
	Retractions and Epimorphisms

A morphism $\alpha \in \operatorname{Hom}_{\mathsf{C}}(A, B)$ is a *retraction* if there is a $\beta \in \operatorname{Hom}_{\mathsf{C}}(B, A)$ with $\alpha \circ \beta = id_B$. It is an *epimorphism* if whenever $\gamma_1, \gamma_2 \in Hom_{\mathsf{C}}(B, C)$ have $\gamma_1 \circ \alpha = \gamma_2 \circ \alpha$ then $\gamma_1 = \gamma_2$. In FinSet both mean α is onto.

Theorem 3. In FinSet^S the retractions are precisely the correlations

 $p(y_A, y_B | x_A, x_B) = \mathbb{1}_{\{y_A = f_A(x_A, x_B)\}} \mathbb{1}_{\{y_B = f_B(x_A, x_B)\}}$ such that (i) $F = (f_A, f_B) : X^2 \to Y^2$ is onto, (ii) $f_A(x, x) = f_B(x, x)$, and (iii) for each $y \in Y$ we have $f_A(x, x) = y = f_B(x, x)$ for some $x \in X$.

Corollary. The retractions in FinSet^S_{HV}, FinSet^S_O, and FinSet_{NS} are precisely the retractions in FinSet (i.e. deterministic correlations from onto functions).

Theorem 4. In each category, the epimorphisms are precisely those correlations whose stochastic matrices have zero left nullspace.

Theorem 3 is dual to Theorem 1, however Theorem 4 needs a new proof:

- again the proof is simple for FinSet^S;
- the proof for FinSet^S_{NS} is more challenging but still direct;
- the proofs for $FinSet_{HV}^S$ and $FinSet_O^S$ rely on
- 1. synchronous classical and quantum correlations are symmetric [1, Corollary 11],
- 2. applying the lemma below to reduce to the symmetric and antisymmetric kernels,
- 3. directly proving an analoguous result for each of these.

Lemma. Let *p* be a symmetric synchronous correlation with associated stochastic matrix P. Suppose wP = 0. Then $v(y_A, y_B) = w(y_B, y_A)$ also has vP = 0. In particular, if we decompose into its symmetric and antisymmetric parts of w have $w^{(\pm)}P = 0$.

Isomorphism versus Bimorphism

An *isomorphism* is a both a section and a retractions, so in FinSet^S_{HV}, FinSet^S_Q, and FinSet^S_{NS} these are just bijective functions. A *bimorphism*, which is morphism that is both epic and monic, is strictly weaker: a correlation in any of these categories is a bimorphism when its stochastic matrix is nonsingular.

Consequently, finite sets equivalent under quantum bimorphism still have the same cardinality, and so are isomorphic in the usual sense.

Technical Lemmas

probability distributions on Y^2 such that for all $y \in Y$:

$$\sum_{y'} u(y, y') = \sum_{y'} v(y', y) =: \theta(y', y) =: \theta(y', y') =: \theta(y',$$

 $p(y_A, y_B \mid 0, 0) = \mathbb{1}_{\{y_A = y_B\}} \theta(y_A)$ $p(y_A, y_B \mid 1, 0) = v(y_A, y_B)$

Also, every synchronous nonsignaling correlation from $\{0,1\}$ to Y arises this way.

Lemma 2. ([1]) Let Y be a finite set and $u = u(y_A, y_B)$ be a probability distribution on Y^2 . Write $\theta(y) = \sum_{y'} u(y, y')$ and $\phi(y) = \sum_{y'} u(y', y)$. Define $p(y_A, y_B \mid 0, 1) = u(y_A, y_B)$ $p(y_A, y_B \mid 1, 1) = \mathbb{1}_{\{y_A = y_B\}} \phi(y_A).$

$$p(y_A, y_B \mid 0, 0) = \mathbb{1}_{\{y_A = y_B\}} \theta(y_A, y_B \mid 1, 0) = u(y_B, y_A)$$

sical correlation from $\{0, 1\}$ to Y arises this way.

Corollary. Every symmetric synchronous nonsignaling correlation with domain $\{0, 1\}$ is classical. In particular, any synchronous quantum correlation with two measurement settings is classical.

Lemma 3. ([1]) Suppose $|X| \ge 2$ and let $w = w(x_A, x_B)$ be a nonnegative function on X^2 such that for every $x_A, x_B \in X$: $w(x_A, x_B) \le w(x_A, x_A), \ w(x_A, x_B) \le w(x_B, x_B), \ \text{and}$ $w(x_A, x_A) + w(x_B, x_B) \le 1 + w(x_A, x_B).$

Then the following defines a synchronous nonsignaling correlation:

 $p(0,0 \mid x_A, x_B) = 1 + w(x_A, x_B) - w(x_A, x_A) - w(x_B, x_B)$ $p(0,1 \mid x_A, x_B) = w(x_B, x_B) - w(x_A, x_B)$ $(x_A) - w(x_A, x_B)$ $p(1, 1 \mid x_A, x_B) = w(x_A, x_B).$

$$p(1, 0 \mid x_A, x_B) = w(x_A, x_B)$$

Also, every synchronous nonsignaling correlation from X to $\{0, 1\}$ arises in this way.

y densities:

- synchronous;
- nonsignaling;
- ntum;
- sical.

of whose *objects* are finite s with synchronous inSet^S_{HV}), synchronous (FinSet $_{NS}^{S}$) correlations.

f one-to-one (section and rphism) in each category. separate hidden g) correlations.

- **Lemma 1.** ([1]) Let Y be a finite set and $u = u(y_A, y_B)$ and $v = v(y_A, y_B)$ be $v(y) \text{ and } \sum_{y'} u(y', y) = \sum_{y'} v(y, y') =: \phi(y).$
- Then the following defines a synchronous nonsignaling correlation:
 - $p(y_A, y_B \mid 0, 1) = u(y_A, y_B)$ $p(y_A, y_B \mid 1, 1) = \mathbb{1}_{\{y_A = y_B\}} \phi(y_A).$

Then *p* is a synchronous classical correlation. Also, every synchronous clas-