GET : Request — Response

S e rve rS POST: Request — Body — Response \

Lens X S y r =
view : X & S
update X = r

Hom(Cont) = V c1, c2 : Cont .
mapS : cl.shp — c2.shp
. (x : cl.shp)

I_e n Ses Hali c.:2.poé (mapS x) — cl.pos X
Web servers & Lenses S -t 3 -t e

By mnoticing that GET and POST
requests from servers look like lens, we

— Y

employ them to define and implement get Get
servers. By making use of the Para jnput output
construction we model state, and by
making use of Container Morphisms POST .POST
as dependent lenses we combine OUTPUT 1nput
multiple servers together.
Implementing servers A server as a lens Choice of server
We can instanciate lenses as servers by requiring that each input
myServer = "path" / "to" / "resource" / Lens

is parsable from a URI and each output is serialisable as a HI'TP s8& "Other" / "resource" / Lens

response body. Those constraints are closed under products and

coproducts which we use to combine multiple servers together. main : I0 ()

Starting a server on localhost:8080 is as easy as: main = runServer Normal myServer def

