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Why Graphs?

• string diagrams syntaxes for monoidal categories

• want combinatorial representation to implement rewriting

• use (some form of) graphs and their morphisms

here: vertices represent generators, edges represent wires

1 / 18



Why Graphs?

• string diagrams syntaxes for monoidal categories

• want combinatorial representation to implement rewriting

• use (some form of) graphs and their morphisms

here: vertices represent generators, edges represent wires

1 / 18



Why Surface-Embedded Graphs?

• monoidal theories may require non-trivial topology of graphs
in particular non-symmetric theories

• example: string diagrams for quantum processes

• easiest case: plane graph embeddings

• working at the level of the embedding
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Representing Graph Embeddings

Rotation Systems fix order of edges around vertices

Theorem
Rotation systems uniquely determine a graph embedding.

plan: construct a category of graphs, then add rotation information
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Diagram Rewriting

L B R

G G \ L G [R/L]
q p

• rewrite rules are L ⇒ R, with common boundary B

• double-pushout diagram, all maps are embeddings

• C = G \ L: context with a hole

• L = G \ C : LHS with a “hole”

• need: pushouts, pushout complements, notion of embedding
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Category of Graphs

We start from the usual category of graphs:

• graphs are E V
s

t

• morphisms are pairs of edge map fE and vertex map fV s.t.

E E ′

V V ′

s

fE

s′

fV

E E ′

V V ′

t

fE

t′

fV

Disclaimer
(Almost) all graphs are drawn undirected in this presentation.
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Open Graphs

• have to encode inputs and outputs of the diagrams

• different approaches: open graphs, representative vertices,
cospans

• morphisms for open graphs don’t preserve the surface:

6 / 18



Boundary Vertices

• identify the “outside” of a graph

• attach input and output edges to this region

• replace the outside with a vertex

This provides:

• total graphs

• strategy to deal with the outside, and any holes in a graph
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Requirements for Graph Morphisms(1)

• vertex map needs to be partial

• cannot be injective on edges

What are embeddings?
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Requirements for Graph Morphisms(2)

• vertices must not change their arity

• morphisms from edges to loops are allowed

but the other way is not
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Flags

• connection points between vertices and their incident edges,
pairs (v , e)

• flag map (fE , fV ) partial map induced by graph map

• characterize morphisms/embeddings by properties of the flag
map
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Graphs with Circles

Objects are total graphs, as defined above
Morphisms are (fE , fV ) where

• the flag map is surjective
(no increase in flags at a vertex)

• + other conditions

Further graph, embeddings are

• flag injective (no decrease in flags at a vertex)

• + other conditions

It’s a category!
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Rewriting for Graphs with Circles

specify the cases for applying a rewrite rule
Boundary graph:
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Partitioning Spans

partition a graph into two (connected) parts: context and subgraph

Theorem
Pushouts of partitioning spans exist, and all morphisms in the
pushout square are embeddings.
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Boundary Embeddings

for constructing pushout complements which give rise to
partitioning spans

Theorem
Pushout complements of boundary embeddings exist
and are unique (up to degeneracies).
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An Example of Applying a Rewrite Rule
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Category of Rotation Systems

so far, edges around vertices were sets...

• objects are rotation systems: assign to a cyclic ordering of
flags to all vertices

• morphisms are morphisms in the underlying category of
graphs, plus an order preservation condition

Theorem
Pushouts and pushout complements are the same as in the
underlying category.
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Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution
and a non-plane solution

17 / 18



Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution
and a non-plane solution

17 / 18



Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution

and a non-plane solution

17 / 18



Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution

and a non-plane solution

17 / 18



Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution
and a non-plane solution

17 / 18



Summary

• fix inputs and outputs to control topology

• restrict your rewrite rules to meaningful cases

• category of graphs with circles extendable to rotation systems

Future Thoughts

• How about surface-embedded loops?

• How about multiple boundary vertices?

Thank You for Your Attention!
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Appendix: Examples

Valid morphisms:

Embeddings:



Appendix: Non-Examples



Appendix: Graphs with Circles

A morphism f : G → G ′ between two graphs with circles consists of two (partial)
functions fV : V ⇀ V ′ as above, and fA : A→ A′, satisfying the conditions listed
below. Note that any such fA factors as four maps,

fE : E → E ′ fEO : E → O′

fOE : O → E ′ fO : O → O′

The following conditions must be satisfied:

• fA : A→ A′ is total;

• the component fOE : O → E ′ is the empty function;

• the pair (fV , fE ) forms a flag surjection between the underlying graphs.

If, additionally, the following three conditions are satisfied, we call the morphism an
embedding:

• fV : V ⇀ V ′ is injective;

• the component fO is injective;

• the pair (fV , fE ) forms a flag bijection between the underlying graphs.



Appendix: Flag Surjectivity

Let f : G → G ′ be a morphism between two total graphs; we say that f is flag
surjective if the two diagrams below commute laxly,

V V ′

P(E) P(E ′)

fV

s−1 s′−1≥

P(fE )

V V ′

P(E) P(E ′)

fV

t−1 t′−1≥

P(fE )


