Categories of Kirchhoff Relations

Amolak Ratan Kalra (joint work with Robin Cockett and Shiroman Prakash) arXiv:2205.05870

July 18, 2022

- The goal of this work was to build a bridge between electrical circuits and quantum circuits.
- The connection to electrical circuits is made, using subcategories of Lagrangian relations that satisfy Kirchhoff current law.
- \bullet Comfort and Kissinger showed that ${\rm AffLagRel}_F$ is isomorphic to qudit stabilizer circuits. 1

$$\mathsf{ResRel}_F \hookrightarrow \mathsf{KirRel}_F \hookrightarrow \mathsf{AffLagRel}_F = \begin{array}{c} \mathsf{Stabilizer} \\ \mathsf{QM} \\ (\mathsf{odd-prime}) \end{array}$$

¹Cole Comfort, and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations." arXiv preprint arXiv:2105.06244 (2021).

- Graphical Calculus: reasoning about relations using pictures!
- Parity-Check Matrices: Reasoning about relations using matrices.

Basics of Electrical Circuits

• **Kirchhoff's current law**: (KCL) is just a restatement of conservation of charge, for example at node 2, KCL will give:

$$I_3 = I_1 + I_2$$

• Kirchhoff's voltage law: (KVL) states that the voltage drop in a loop is zero.

Circuits as relations

- A circuit can be viewed as a **relation** between input and output currents and voltages.
- One can use a matrix to capture this relationship:

$$Hx = 0$$

where H is a matrix which characterizes the circuit and

$$x = \begin{pmatrix} V_{in} & V_{out} & I_{in} & I_{out} \end{pmatrix}^T$$

The category of **linear relations** $LinRel_F$ over a field F is defined as:

- Objects: Natural Numbers, $m, n \in \mathbb{N}$
- Maps: $\mathcal{R}: m \to n$ where $\mathcal{R} \subseteq F^m \times F^n$. The morphisms are linear subspaces.
- Composition: Given two relations $\mathcal{R}_1: m \to n$ and $\mathcal{R}_2: n \to p$, the composite relation $\mathcal{R}_2 \circ \mathcal{R}_1: m \to p$ is:

 $\mathcal{R}_2 \circ \mathcal{R}_1 := \{ (x, z) \in F^m \times F^n : \exists y. (x, y) \in \mathcal{R}_1 \text{ and } (y, z) \in \mathcal{R}_2 \}$

• Identity: $\{(a,a) \mid a \in F^m\}$.

Category of Linear Relations

• The category $LinRel_F$ has a graphical calculus whose generators are²:

 $\{(x, (x - y, y)) \mid x, y \in F\} \quad \{((x, y), x + y) \mid x, y \in F)\} \ \{(*, 0)\} \qquad \qquad \{(0, *)\} \qquad \{(kx, x) \mid x \in F\} \ (kx, x) \mid x \in F\}$

Read all these diagrams bottom up!

²Bonchi, F., Piedeleu, R., Sobociński, P., & Zanasi, F. (2019, June). Graphical affine algebra. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1-12). IEEE.

Electrical Elements in GLA

Resistor

Current Divider

The KCL and KVL equations for a resistor are:

 $V_2 = V_1 + I_1 R$ $I_1 = I_2$

- A symplectic form is a bilinear, alternating, non-degenerate map
 ω(_, _): V ⊗ V → F. A vector space with a symplectic form is called a
 symplectic vector space.
- A symplectic vector space always has a **Darboux basis** that is a basis $q_1, ..., q_n, p_1, ..., p_n$ satisfying $\omega(q_i, p_j) = -\omega(p_j, q_i) = \delta_{ij}$ and $\omega(q_i, q_j) = \omega(p_i, p_j) = 0$. Symplectic vector spaces are always even dimensional.
- In the Darboux basis, the symplectic form can be expressed using the $2n \times 2n$ block matrix J:

$$\omega(x,y) := \begin{pmatrix} q^T & p^T \end{pmatrix} J \begin{pmatrix} q \\ p \end{pmatrix} \quad \text{where} \quad J = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$$

- The symplectic dual of a linear subspace U ⊆ V of a symplectic vector space V is the linear subspace U^ω := {u' ∈ V | ∀u ∈ U, ω(u', u) = 0} ⊆ V.
- A Lagrangian subspace U of a symplectic vector space V is linear subspace which is its own symplectic dual, so that U = U^ω.

The category of Lagrangian relations over a field F consists of:

Objects: $n \in \mathbb{N}$: correspond to the graded vector spaces $F^n \oplus F^n$ equipped with the canonical symplectic form given by J.

Maps: $\mathcal{R}: n \to m$: are relations $\mathcal{R} \subseteq F^{n+m} \oplus F^{n+m}$ which is Lagrangian.

Identity: Identity relation.

Composition: Relational composition.

Lagrangian Relations: Graphical Definition

• A Lagrangian relation can be graphically be depicted as a linear relation V which satisfies the following condition ³:

- $(-)^{\perp}$: LinRel_F \rightarrow LinRel_F, this maps a relation R to its orthogonal complement R^{\perp} .
- Using this definition one can show resistors, current dividers and junctions are Lagrangian relations!

 $^{^3} Comfort,$ Cole, and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations." arXiv preprint arXiv:2105.06244 (2021).

• Any linear relation can be specified as a set of vectors $(x, y) \in F^m \oplus F^n$ satisfying a linear equation of the form:

$$H\begin{pmatrix}x\\y\end{pmatrix} = 0.$$

where $H: n + m \rightarrow n + m - k$ is a matrix of rank n + m - k. *H* is called a **parity check matrix**.

• *H* can be put using Gaussian elimination into a standard form:

$$H = \begin{pmatrix} 1_{m+n-k} & A \end{pmatrix} \ \sigma : m+n \to m+n-k,$$

where σ is a permutation matrix.

Theorem

The parity-check matrix for Lagrangian relations has the following standard form:

$$H = \begin{pmatrix} Y & 0 & 1_{n_p} & A^T \\ -A & 1_{n_q} & 0 & 0 \end{pmatrix} \sigma_S$$

where $n_p + n_q = n$ (the dimension of \mathcal{R}), σ_S is a symplectic permutation, A has dimensions $n_q \times n_p$, and $Y = Y^T$.

The Category of Kirchhoff Relations

A Lagrangian relation $\mathcal{R}: n \to m$ in LagRel_F satisfies:

Wirchhoff's Current Law if, for all $((q, p), (q', p')) \in \mathcal{R}$, the following equality holds:

$$\sum_{j=1}^{n} p_j = \sum_{k=1}^{m} p'_k$$

Translation invariance if, whenever $\lambda \in F$ and $((q, p), (q', p')) \in \mathcal{R}$, then $((q + \vec{\lambda}_m, p), (q' + \vec{\lambda}_n, p') \in \mathcal{R}$, where $\vec{\lambda}_n$ is a vector of dimension n all of whose components are the same $\lambda \in F$.

Lemma

For a state $\mathcal R$ in LagRel_F the following are equivalent:

- **(**) \mathcal{R} satisfies the Kirchhoff current law;
- R satisfies translational invariance.

Theorem

The parity-check matrix for Kirchhoff relations has the following standard form:

$$H = \begin{pmatrix} Y & 0 & \mathbf{1}_{n_p} & A^T \\ -A & \mathbf{1}_{n_q} & 0 & 0 \end{pmatrix} \sigma_S$$

with the following additional constraints:

$$Y\vec{1} = 0, \quad A\vec{1} = \vec{1}.$$

Here $\vec{1}$ is a column vector of all 1's.

 $A\vec{1} = \vec{1}$ says A is **quasi-stochastic** as the rows of A sum to 1 but can contain negatives.

Subcategories I

- Lagrangian relations satisfying the Kirchhoff current law form a subcategory, ${\rm KirRel}_F\subseteq {\rm LagRel}_F.$
- Kirchhoff relations include resistor circuits and they also allow additional new components: namely **ideal current dividers** $(A\vec{1} = \vec{1})$.

Theorem

All maps in Kirchhoff relations $KirRel_F$ are generated by the current divider, resistors and junctions.

Lemma

A deterministic Kirchhoff relation over F, has a parity-check matrix in standard Kirchhoff form, with the additional constraint that A is deterministic. (A is deterministic if there is only 1 one in each row)

 $\bullet\,$ This corresponds to the subprop ResRel (resistor circuits) which was studied by Baez and Fong $^4.$

⁴Baez, John C., and Brendan Fong. "A compositional framework for passive linear networks." arXiv preprint arXiv:1504.05625 (2015)

 \bullet Power associated to a state ${\cal R}$ is given as follows:

$$P = -q^T Y q$$

• \mathcal{R} is said to be **lossless** if $P_{\mathcal{R}} = 0$.

Lemma

- **()** For \mathcal{R} to be lossless $q^T Y q$ must vanish, which implies that Y = 0.
- **(a)** Any state in LossKirRel has Y = 0 and $A\vec{1}_{n_p} = \vec{1}_{n_q}$.

Quantum Connection: $AffLagRel_F = Qudit Stabilizer Quantum Mechanics$

- Connections to qudit error correction...
- Importing techniques of electrical network theory to quantum circuits.
- Normal forms for electrical circuits?
- Normal Form for stabilizer circuits?

- Comfort, Cole, and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations." arXiv preprint arXiv:2105.06244 (2021).
- Baez, John C., and Brendan Fong. "A compositional framework for passive linear networks." arXiv preprint arXiv:1504.05625 (2015).
- Bonchi, F., Piedeleu, R., Sobociński, P., & Zanasi, F. (2019, June). Graphical affine algebra. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1-12). IEEE.
- Pawel Sobocinski blog on Graphical Linear Algebra: https://graphicallinearalgebra.net/