
STR

Magnitude and topological entropy
of digraphs

Steve Huntsman
steve.huntsman@str.us

20 July 2022

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the author and should not be interpreted as
representing the o�cial views or policies of the Department of Defense
or the U.S. Government.



Part 1: flow graphs



● There are unique source (indegree 0)
and target (outdegree 0) vertices

● There are unique edges (entry) from the
source and (exit) to the target

● Identifying the source and target yields
a strongly connected digraph
● Trivial case: entry = exit

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Definition. A flow graph is a digraph such that:



● There are unique source (indegree 0)
and target (outdegree 0) vertices

● There are unique edges (entry) from the
source and (exit) to the target

● Identifying the source and target yields
a strongly connected digraph
● Trivial case: entry = exit

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Definition. A flow graph is a digraph such that:



Definition

Let D be a digraph and j , k ∈V (D): j dom k i� every path from a source s in D to k passes through j
● Relation extends to edges; dual relation denoted pdom

Definition

A single entry/single exit region (SESER) in a digraph D is an ordered pair of edges (e1, e2) s.t.
● e1 dom e2
● e2 pdom e1
● a cycle in D contains e1 i� it contains e2

Notes
● (e1, e1) is degenerate
● Nondegenerate (e1, e2) determined by (t (e1), s(e2)), where s(⋅) and t (⋅) respectively denote

the source and target of an edge
● Very easy to find SESERs in DAGs, not so easy in general

Single-entry/single-exit regions are sub-flow graphs



Tank , the category of tangles in a (k + 1)-dimensional box, has series and parallel monoidal structures

f1 f2

f1 ⊠ f2

f1 ⊗ f2

Analogy with tangles (adapted from Baez and Stay, arXiv:0903.0340)



● There ought to be one that behaves like Tank or the category of n-cobordisms 1

● Unfortunately, categories of digraphs are complicated
● Problem: how to deal with loops [Brown et al. 2008]
● Identifying vertices “should” induce a graph morphism, but edges must also be preserved, so any edges

between identified vertices induce a loop
● Insofar as loops in a “coarse” flow graph ought to correspond to actual loops in a program, this behavior

is bad for applications to program analysis

● Solution: treat loops and non-loop edges di�erently
● Resulting category Dgph is awkward to define but works
● Flow is the full subcategory whose objects are flow graphs

● It has an obvious operad structure with convenient algorithmic framework (“program structure tree”)
● Parallel tensor is slightly nontrivial (tricky when entry/exit edges are the same or adjacent)
● Series tensor is trivial but still interesting . . .

1Morphisms given by manifolds with (n − 1)-dimensional manifolds as boundaries (for n = 2, think of “pajamas for all
numbers of heads/arms and legs”)

The category of flow graphs requires finesse with loops



Proposition

(Flow,⊠, e) is a monoidal category, where the unit object e is the trivial flow graph and:
● D ⊠D ′: identify exit edge of D with entry edge of D ′

● For f ∈ Flow(D ,Df ) and f ′ ∈ Flow(D ′,D ′
f ′), we obtain f ⊠ f ′ ∈ Flow(D ⊠D ′,Df ⊠D ′

f ′) by
identifying the output of f on the exit edge of D with that of f ′ on the entry edge of D ′

Proposition

For a flow graph D , we can form a category SubFlowD enriched over Flow as follows:
● Ob(SubFlowD ) ∶= E (D) (this excludes loops: reflexivity);
● For es , e t ∈ Ob(SubFlowD ), SubFlowD (es , e t ) ∈ Ob(Flow) is the (possibly empty) flow graph with

entry es and exit e t ;
● The composition morphism is induced by ⊠;
● The identity element is determined by the trivial flow graph

Unlike Free(D), SubFlowD is always finite and we can build it

We can tensor flow graphs in series



Part 2: magnitude



● Let M = (M,⊗, 1) be a monoidal category and C a (small) M-category, a/k/a a (small) category
enriched over M. This means C is specified by:
● A set Ob(C);
● Hom-objects C(j , k ) ∈ M for all j , k ∈ Ob(C);
● Identity morphisms 1→ C(j , j ) for all j ∈ Ob(C);
● And composition morphisms C(j , k )⊗ C(k , `)→ C(j , `) for all j , k , ` ∈ Ob(C)
● Hom-objects and morphisms are required to satisfy associativity and unitality

● The theory of magnitude introduced by Leinster incorporates a M-category and a semiring S via a
“size” map σ ∶ Ob(M)→ S that is constant on isomorphism classes and that satisfies
● σ(1) = 1
● σ(X ⊗Y ) = σ(X ) ⋅ σ(Y )

The general theory of magnitude suggests looking for examples



Definition

If n ∶= ∣Ob(C)∣ <∞ then its similarity matrix Z ∈ M (n, S) has entries Z j k ∶= σ(C(j , k ))

Definition

A weighting is a column vectorw satisfying Zw = 1, where the semiring matrix multiplication and
column vector of ones are indicated. A coweighting is the transpose of a weighting for ZT

Definition

If Z has a weighting and a coweighting, its magnitude is the sum of either (a line of algebra shows
these necessarily coincide)

Magnitude is readily defined in finite settings



● Magnitude has been the subject of increasing attention over the past 15 years, but almost entirely
in the setting of Lawvere metric spaces
● Over the last two years applications have begun to emerge based on properties of (co)weightings in

Euclidean space, which is the only case that has been explored in detail
● Only one non metric example we know of (involves a Vect-category) besides the one presented here

● The Lawvere metric space setting emerges from the choice M = (([0,∞],≥),+, 0)
● Assuming continuity at just a single point, this requires σ(x) = exp(−t x) for some constant t ; varying

this constant leads to the notion of a magnitude function
● The corresponding enriched categories are precisely the Lawvere metric spaces, also known as extended

quasipseudometric spaces since they generalize metric spaces by allowing distances that are infinite
(extended), asymmetric (quasi-), or zero (pseudo-)

● It turns out that seemingly “adjacent” monoidal structures on ([0,∞],≥) in fact lead to the same
construction, so to move away from the generalized metric space setting at all, it is necessary to move
quite far indeed . . .

Magnitude is a general concept but examples are lacking



Part 3: max-plus magnitude for flow
graphs



Definition

A digraph D determines a (sub)shift of finite type, and the corresponding topological entropy
h(D) ∶= limN ↑∞ N −1 logW (D ,N ) measures the growth of the numberW (D ,N ) of paths in D of
length N

● Happens that h(D) = log ρ(A(D)) where A(D) = adjacency matrix and ρ = spectral radius

Proposition

h(⊠jDj ) = maxj h(Dj )

In fact more is true:

spec A(⊠jDj ) = {0} ∪⋃j spec A(Dj ); if we define the zeta function 2 ζD (t ) ∶= 1/det(I − tA(D))
then furthermore ζ⊠jDj =∏j ζDj

2It turns out (Mizuno, 2001) that ζD (t) =∏[γ](1 − t ∣γ∣)−1 where γ denotes a prime reduced cycle in D (i.e., a cycle that is
not a power ≥ 2 of another cycle and with a no-backtracking restriction) and [⋅] denotes the equivalence class obtained by
quotienting cycles by shifts. This “Euler product” justifies the zeta function terminology.

Topological entropy is a good notion of size for flow graphs



-3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

100

Left: D1 ⊠D2 for two flow graphs D1 and D2 on 10 vertices.
Upper right: spectra specx ⊂ Ã of A(Dx) for x = 1, x = 2, and x = 12 with D12 ∶= D1 ⊠D2.
Lower right: zeta functions ζ12 and ζ1 ⋅ ζ2 with ζx ≡ ζDx .

Topological entropy is a good notion of size for flow graphs



● Recall that max furnishes a monoidal structure on the poset ([0,∞],≥) of extended nonnegative
real numbers, and that categories enriched over this are Lawvere ultrametric spaces

● Similarly, ([−∞,∞),≤,−∞,max) is a monoidal poset
● This is su�cient data for us to define the magnitude of SubFlowD over the max-plus or tropical

semiring
● Unpacking details:

● (Z ⊠D )st ≡ Z
⊠
D (es , et ) ∶= h(D⟨es , et ⟩)

● If there exist v ,w satisfying the max-plus matrix (co)weighting equations
maxs [vs + (Z ⊠D )st ] = 0 = maxt [(Z ⊠D )st +wt ] then the maxima of v andw coincide and also equal
the magnitude of Z ⊠D

● Linear equations over the max-plus semiring yield “principal solutions” (which may not be bona fide
solutions in general) v̂s ∶= −maxt (Z ⊠D )st and ŵt ∶= −maxs(Z ⊠D )st

We can define magnitude for flow graphs



Lemma

Z ⊠
D , and hence SubFlowD , has well-defined magnitude z over the max-plus semiring i�

max
s

[−max
t

(Z ⊠
D )st ] = z = max

t
[−max

s
(Z ⊠

D )st ]

● Such a z must be the negative of the largest value in both its row and column of Z ⊠
D

● It is not obvious that such a z always exists . . .
● . . . but any nontrivial D ⟨es , e t ⟩ ≡ SubFlowD (es , e t ) ∈ Flow must be of the form ⊠jD ⟨e j−1, e j ⟩

where the D ⟨e j−1, e j ⟩ are minimal

Theorem

Z ⊠
D , and hence SubFlowD , has well-defined magnitude over the max-plus semiring

(Co)weighting identifies regions of high topological entropy

We can define magnitude for flow graphs



Part 4: magnitudes of balls in the
universal cover of a digraph



Definition. The universal coverUD ∶= (VU ,EU ) of a weak digraphD = (V ,E ) is

a polytree defined as follows: pick v0 ∈V and set

VU ∶= {(v0,v1, . . . ,vL) ∶ (vj−1,vj ) ∈ E ;vj−1 ≠ vj } ∪ {(vL,vL−1, . . . ,v0) ∶ (vj ,vj−1) ∈ E ;vj ≠ vj−1}

where vj ∈V and e j ∈ E identically; and set

EU ∶= {((v0,v1, . . . ,vL−1), (v0,v1, . . . ,vL)) ∶ (vL−1,vL) ∈ E}
∪ {((v0,v1, . . . ,vL), (v0,v1, . . . ,vL−1)) ∶ (vL,vL−1) ∈ E}.

1

2

3

(0)

(0,3,1)

(0,2,3,1)

(1,3,0)

(1,2,3,0)

(0,2)

(0,3,1,2)

(2,3,0) (0,3)

(0,2,3)

(0,3,1,3)

(3,0)

(3,1,3,0)

The universal cover of a digraph is a straightforward construction



(L) The portion ofUD with vertices at distance ≤ 3 to or from v0 with covering of D (at bottom)
indicated.
(R) The portion ofUD with vertices at distance ≤ 10 to or from v0.

The universal cover of a digraph is a straightforward construction



Proposition

Let γ ∈VU . Then there is either a unique path inUD from v0 to γ or vice versa.

Remark (recall loops are cycles of length 1)

∣{paths from v0 of length L inUD}∣ = ∣{loopless paths from v0 of length L in D}∣

Definition: Bv0(L) is the sub-polytree ofUD (defined with basepoint v0)

induced by its vertices at (the usual notion of digraph) distance ≤ L from (versus to) v0.

Proposition

If D is loopless, then Bv0(L) is an arboresence with ∣V (Bv0(L))∣ = ∑L`=0∑k (A`)j k , where A is the
adjacency matrix of D and j is the matrix index corresponding to v0.

Remark

The Katz centrality is∑∞
`=1 α ` ∑i (A`)i j , where α is restricted to ensure convergence. The Katz

centrality of the graph with all edges reversed is therefore∑∞
`=1 α ` ∑k (A`)j k .

Balls in the universal cover of a digraph evoke Katz centrality



Lemma

Let F be a DAG whose corresponding undirected graph is a forest. 3 Then the magnitude function of F
(i.e., the magnitude of the matrix exp(−t dj k ) where d is the usual Lawvere metric on F ) is

Mag(F , t ) = ∣V (F )∣ − ∣E (F )∣e−t

Remark

Since an arborescence (or more generally a polytree) has one more vertex than it has edges, the lemma
above yields that for D loopless, the magnitude function of Bv0(L) is

Mag(Bv0(L), t ) = ∣V (Bv0(L))∣ − (∣V (Bv0(L))∣ − 1)e−t

and there is an elementary algorithm for computing ∣V (Bv0(L))∣. If D is loopless and strong, we have

h(D) = h(UD ) =∶ lim
L↑∞

L−1 log ∣V (Bv0(L))∣, ∀v0.

3Note that if F is a polytree, then ∣V (F )∣ = ∣E (F )∣ + 1.

Magnitudes of balls in the universal cover are nice



Proposition

Let D be a strong loopless digraph and v0 ∈V (D). Then

lim
L↑∞

L−1 log Mag(Bv0(L), t ) ≤ h(D)

with equality at t =∞, and the left hand side is independent of v0 for any t .

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

L−1 log Mag(Bv0(L), t )→ h(D) for t > 0, but depends strongly on t even for fairly large L.

Magnitudes of balls in the universal cover are nice



Import graph of Flare software hierarchy:
sources (resp., targets) colored red (resp., blue)

● N = 100 realizations of two random subgraphs:
removed edges with probability 3/4 and kept
the largest weak component: computed
● (Co)weightings at scale 0
● Log-magnitudes of balls of radius ≤ 3 at scale
t = 100 ≈∞

● Common vertex centralities

● Computed correlation coe�cients for all items
above on vertices common to both subgraphs

● Coweighting and log-magnitudes of balls in the
universal cover of the digraph with edges
reversed are very strongly correlated . . .

● Similarly considered N = 100 realizations of an
Erdős-Renyí digraph (n = 100 vertices; edge
probability = 4/n), formed two subgraphs by
removing edges with probability 1/2, then
keeping the largest weak component . . .

Log-magnitudes of small balls are useful features for graph matching



Upper panel: Flare import digraph

* indicates a ball in the digraph with all edges reversed.

As L increases, boundary e�ects cause the
log-magnitudes of balls in the universal cover to
become (slightly) more correlated to each other than
the log-magnitudes of balls in the digraph itself. Note
that the three best-performing centralities are
computing almost exactly the same thing.

Lower panel: Erdős-Renyí digraph with n = 100 vertices
and edge probability q = 4/n

Log-magnitudes of small balls are useful features for graph matching



Thanks



Backup



● Object is D = (U ,α ,ω)
● U is a set
● α ,ω ∶ U → U are head and tail functions that satisfy α ○ ω = ω and ω ○ α = α

● For D ′ = (U ′,α ′,ω′), a morphism f ∈ Dgph(D ,D ′) is a function f ∶U →U ′ such that
f ○ α = α ′ ○ f and f ○ω = ω′ ○ f

● The vertices of D = (U ,α ,ω) are the (mutual) imageV ≡V (D) of α and ω
● The loops are the set L ≡ L(D) ∶= {u ∈U ∶ α(u) = ω(u)} (so thatV ⊆ L),
● The edges are the set E ≡ E (D) ∶=U /L
● We recover the usual notion of a digraph by considering α ×ω and its appropriate restrictions on
U 2, L2, and E 2:
● E.g., we can abusively write E = (α × ω)(E 2

), where the LHS and RHS respectively refer to usual and
reflexive notions of digraph edges

● Thus a morphism f ∶U →U ′ restricts to f ∣V ∶V →V ′, f ∣L ∶ L → L′, and f ∣E ∶ E →U ′

● Since morphisms are only partially specified by their actions on vertices, defining Flow as a full
subcategory of Dgph is essentially a convention about vertex identification

The category Dgph of reflexive digraphs



1 START
2 repeat
3 repeat
4 repeat
5 if b goto 7
6 if b
7 repeat
8 S
9 until b
10 endif
11 until b
12 do while b
13 do while b
14 repeat
15 S
16 until b
17 enddo
18 enddo
19 until b
20 until b
21 HALT

Each S is its own statement or subroutine;
each b is its own Boolean predicate;
branches are colored according to associated b evaluating to ⊺ or �

Control flow graphs (CFGs) model computational paths



In practice CFGs are much bigger than this



● Code restructuring can eliminate gotos [Zhang and D’Hollander, 2004]
● E�ective version of Böhm-Jacopini structured program theorem
● Dovetails with the constructions we discuss here

● Subroutines are programs in their own right
● Recursively (de)compose programs: multiresolution analysis
● Much more interesting when trying to parallelize source or reverse engineer binary code than when

merely parsing Python

● Similar considerations inform myriad other domains where flow graphs are good process models

Multiresolution analysis lets us cope with CFG scale



A CFG with no gotos is nicer but still complicated



A CFG with no gotos is nicer but still complicated



● Insert edges into a flow graph as follows:

● becomes

● becomes

● becomes

● becomes

Lemma

The resulting stretching is well defined

● There is a planar flow graph whose stretching is nonplanar:

stretches to which contains K3,3

Stretching flow graphs helps coax SESERs into existence



Definition

The interior of a SESER (es , e t ) is the set of vertices on paths from t (es) that do not encounter t (e t )
● Di�ers from flawed def. 6 of [Johnson, Pearson, Pingali, 1994]
● §5 of [Boissinot et al., 2012] illustrates this and why it matters

Definition

A nondegenerate SESER (e1, e2) is canonical if
● For any SESER (e1, e ′2) we have e2 dom e ′2
● For any SESER (e ′1, e2) we have e1 pdom e ′1

Theorem (easily salvaged from JPP’94)

Interiors of distinct canonical SESERs are either disjoint or nested
● “Canonical = minimal”
● Inclusion relation induces the program structure tree (PST)

The program structure tree organizes SESERs



Stretching, PST, and “coarsening” 1, 2, 3, & 6x



Stretching, PST, and “coarsening” 1, 3, 5, & 13x



Definition

For j , k ∈V , the absorption of k into j is the morphism induced by identifying j and k and (if k ≠ j )
annihilating any loop at j (by mapping it to the vertex j )
● Definition chosen to dovetail with ideas of program abstraction
● Absorbing k ,m into j is equivalent to absorbingm, k into j
● For D ,D ′ ∈ Ob(Flow) with D ′ ⊂ D , define the absorption of D ′ to be the image of absorbing the

interior of D ′ into its source (considered as a vertex in D )
● Amounts to replacing D ′ w/ single edge from source to target

Definition

The coarsening ⊚D is obtained by absorbing the sub-flow graphs corresponding to leaves of PST(D)

Observation: the pullback of a
g○fÐ→ c

g←Ð b is a
i d←Ð a

fÐ→ b

● In particular, f is the pullback of g ○ f by g
● We may therefore think of ⊚D literally as a kind of pullback of D by the leaves of PST(D)

Using the PST to “coarsen” CFGs is like a pullback



Let P (n) ∶= {flow graphs with n ordered edges} and define

○ ∶ P (n) × P (k1) × ⋅ ⋅ ⋅ × P (kn)→ P (k1 + ⋅ ⋅ ⋅ + kn)
(D ,D1, . . . ,Dn)↦ D ○ (D1, . . . ,Dn)

by replacing the j th edge in D with Dj in the obvious way
● Edge ordering on D ○ (D1, . . . ,Dn) inherited from constituents

Theorem

The triple {e, {P (n)}∞n=1, ○}, where e denotes the trivial flow graph, forms a operad (in Set)

Lemma

If D ∈ P (n) and ⊚Dj = e ≠ Dj for j ∈ [n], then ⊚(D ○ (D1, . . .Dn)) = D

● ○ and ⊚ are complementary

Flow graphs give rise to an obvious operad



Theorem

(Flow,⊗, e) is a monoidal category, where ⊗ is defined below and the unit object e is the trivial flow
graph
● D ⊗D ′ ∶= D ⊔D ′/ ∼, where ∼ is mostly obvious but has messy technical details to account for the

cases where entry and exit edges are either identical or adjacent
● ∼ always identifies entry edges
● ∼ identifies exit edges if interiors are una�ected...
● ...otherwise ∼ collapses a “small” factor to make things work
● Constraints on how to fill in these technical details are perhaps the main benefit of invoking category

theory ab initio

● Let [⋅] denote an equivalence class under ∼ and set

(f ⊗ f ′)(k ) ∶=
⎧⎪⎪⎨⎪⎪⎩

[(f (j ), 0)] if k = [(j , 0)]
[(f ′(j ′), 1)] if k = [(j ′, 1)]

along with an implied extension to edges

We can tensor flow graphs in parallel



● ⊠ corresponds to sequential execution
● ⊗ corresponds to an if (or parallel execution)
● ○ (e, ●, e, e) corresponds to a do while or repeat
● By the structured program theorem and an e�ective version thereof, we have a

category-theoretical framework for (de)composing structured programs up to statement/predicate
vertex labels and ⊺/� edge labels
● Exercise: eliminate the “up to” disclaimer

Takeaway

Requiring that flow graphs exhibit various category-theoretical desiderata places strong but satisfiable
restrictions on them that can usefully inform the architecture of program analysis platforms, program
synthesizers, compilers, etc.

Summary



● As mentioned, the usual addition operation on ([0,∞],≥) gives a monoidal structure that
essentially mandates σ(x) = exp(−t x) for some constant t

Proposition

Let f be a strictly increasing bijection from [0,∞] to a subset of [−∞,∞] containing 0. Then
x ⊗ y ∶= f −1(f (x) + f (y)) gives rise to a strict symmetric monoidal structure on ([0,∞],≥) with
monoidal (additive) unit f −1(0)

● A category C enriched over the strict symmetric monoidal category above has, for every
j , k ∈ Ob(C), some ηj k ∶= C(j , k ) ∈ [0,∞] such that ηj j = f −1(0) and ηj k ⊗ ηk ` ≥ ηj `

● That is, we have the triangle inequality f (ηj k ) + f (ηk `) ≥ f (ηj `)
● Turns out that if f (η) = d , our similarity matrix Z takes values in the semiring Ò with the usual

structure (as opposed to some more exotic choice), and we require (any) continuity of σ , then
Z = σ(η) = σ(f −1(d)) = exp(−τd), i.e., this attempted generalization actually has no material
e�ect

Generalized metric spaces are hard to get away from . . .



● What about a more exotic semiring structure on Ò?

Proposition

Let g be a strictly increasing function from [−∞,∞] to itself, and taking on the value 0 (and also 1 for
the final part of the statement). Then x ⊕ y ∶= g−1(g(x) + g(y)) gives rise to a strict symmetric
monoidal structure on ([−∞,∞],≥) with monoidal (additive) unit g−1(0). Moreover, additionally
taking x ⊙ y ∶= g−1(g(x) ⋅ g(y)) gives a semiring with multiplicative unit g−1(1)

● If g(x) ∶= sgn(x) ⋅ ∣x ∣p for p > 0, we get the semiring ([−∞,∞],⊕, 0, ⋅, 1)
● If g(x) ∶= exp(−τx) for τ < 0, then we get the semiring ([−∞,∞],⊕,−∞,+, 0)

Generalized metric spaces are hard to get away from . . . really hard . . .



● Trying this more exotic semiring structure x ⊕ y ∶= g−1(g(x) + g(y)) and
x ⊙ y ∶= g−1(g(x) ⋅ g(y)) . . .

● Weighting equation Zw = 1 unpacks first to⊕k (Z j k ⊙wk ) = g−1(1) in semiring arithmetic and
then to the matrix equation g [Z ]g [w ] = 1 in ordinary arithmetic

● Since Z = σ[η] and f [η] = d , we have Z = σ[f −1[d ]]
● Meanwhile, we have the generalized Cauchy equation σ(x ⊗ y) = σ(x)⊙ σ(y), which unpacks

to σ(f −1(f (x) + f (y))) = g−1(g(σ(x)) ⋅ g(σ(y)))
● Defining h ∶= g ○ σ ○ f −1, this becomes h(f (x) + f (y)) = h(f (x)) ⋅ h(f (y))

● I.e., h satisfies the usual Cauchy equation; assuming any continuity, we have h(d) = exp(−τd)

● Since g [Z ] = h[d ], the weighting equation is h[d ]g [w ] = 1, which apart from the
transformation ofw is the same as in ordinary arithmetic

Generalized metric spaces are hard to get away from . . . really hard!



If D ∶= ⊗Kk=1 ⊠
Jk
j=1 D ⟨e(j−1,k ), e(j ,k )⟩ with PSTs of

D ⟨e(j−1,k ), e(j ,k )⟩ all trivial (i.e., there are no nontrivial sub-flow
graphs) then (Z ⊠

D )(j0,k ),(j1,k ) = maxj0<j≤j1 h(D ⟨e(j−1,k ), e(j ,k )⟩),
(Z ⊠

D )−∞,∞ = h(D), where ∓∞ indicate the entry and exit edges of
D , and all other entries of Z ⊠

D are trivial

The nontrivial (co)weighting components are

w(j ,k ) = −max
j0<j

h(D ⟨e(j0,k ), e(j ,k )⟩)

= −max
j0<j

h(D ⟨e(j0,k ), e(j0+1,k )⟩);

v(j ,k ) = −max
j1>j

h(D ⟨e(j ,k ), e(j1,k )⟩)

= −max
j1>j

h(D ⟨e(j1−1,k ), e(j1,k )⟩)

e−

e(0,1)

e(1,1)

e(2,1)

e(0,2)

e(1,2)

e(2,2)

e(0,3)

e(1,3)

e(2,3)

e+

Flow graph of the form
D ∶= ⊗Kk=1⊠

Jk
j=1D ⟨e(j−1,k ), e(j ,k )⟩

for Jk ≡ 2 and K = 3. The large
nodes indicate nontrivial interiors

of sub-flow graphs

Magnitude for flow graphs: example



That is . . .

. . . the weightingw and coweighting v respectively encode the
cumulative forward and reverse maxima of the topological entropy
along the K “backbones” ⊠Jkj=1D ⟨e(j−1,k ), e(j ,k )⟩ of D . In particular,
v(j∗−1,k ) =w(j∗,k ) when j∗ = arg maxj h(D ⟨e(j−1,k ), e(j ,k )⟩)

e−

e(0,1)

e(1,1)

e(2,1)

e(0,2)

e(1,2)

e(2,2)

e(0,3)

e(1,3)

e(2,3)

e+

Flow graph of the form
D ∶= ⊗Kk=1⊠

Jk
j=1D ⟨e(j−1,k ), e(j ,k )⟩

for Jk ≡ 2 and K = 3. The large
nodes indicate nontrivial interiors

of sub-flow graphs

Magnitude for flow graphs: example


