STR

Magnitude and topological entropy
of digraphs

Steve Huntsman
steve.huntsman@str.us

This research was developed with funding from the Defense Advanced

Research Projects Agency (DARPA). The views, opinions and/or findings

expressed are those of the author and should not be interpreted as

representing the official views or policies of the Department of Defense 20 July 2022
or the U.S. Government.

Part 1: flow graphs

Definition. A flow graph is a digraph such that:

® There are unique source (indegree 0)
and target (outdegree 0) vertices

® There are unique edges (entry) from the
source and (exit) to the target

® |dentifying the source and target yields
a strongly connected digraph

® Trivial case: entry = exit

®

P09
—

(8 ™

()

Definition. A flow graph is a digraph such that:

| | ® O—O—@®
® There are unique source (indegree 0)

and target (outdegree 0) vertices 8 l
® There are unique edges (entry) from the C”j /@)“ 1 O,
source and (exit) to the target /
® |dentifying the source and target yields]
a strongly connected digraph <9> T

® Trivial case: entry = exit l

Single-entry/single-exit regions are sub-flow graphs

Let D be a digraph and j, k € V(D): j dom k iff every path from a source s in D to k passes through j
® Relation extends to edges; dual relation denoted pdom

A single entry/single exit region (SESER) in a digraph D is an ordered pair of edges (e1, e2) sit.
® ¢;dom ey
® e) pdom e

® acycle in D contains e; iff it contains e;

Notes
® (e1,e1) is degenerate
® Nondegenerate (e1, e2) determined by (t(e1),s(ez)), where

® Very easy to find SESERs in DAGS, not so easy in general

Analogy with tangles (adapted from Baez and Stay, arXiv:0903.0340) str

Tang, the category of tangles in a (k + 1)-dimensional box, has series and parallel monoidal structures

irf

i 8) Wb

The category of flow graphs requires finesse with loops

® There ought to be one that behaves like Tany or the category of n-cobordisms’
® Unfortunately, categories of digraphs are complicated

® Problem: how to deal with loops [Brown et al. 2008]

® |dentifying vertices “should” induce a graph morphism, but edges must also be preserved, so any edges
between identified vertices induce a loop

® |nsofar as loops in a “coarse” flow graph ought to correspond to actual loops in a program, this behavior
is bad for applications to program analysis

® Solution: treat loops and non-loop edges differently
® Resulting category Dgph is awkward to define but works
® Flow is the full subcategory whose objects are flow graphs

® |t has an obvious operad structure with convenient algorithmic framework (“program structure tree”)

® Pparallel tensor is slightly nontrivial (tricky when entry/exit edges are the same or adjacent)
L]

"Morphisms given by manifolds with (n — 1)-dimensional manifolds as boundaries (for n = 2, think of “pajamas for all
numbers of heads/arms and legs”)

We can tensor flow graphs in series

(Flow, ®, €) is a monoidal category, where the unit object e is the trivial flow graph and:
® D D’: identify exit edge of D with entry edge of D’

® For f € Flow(D, Dr) and f' € Flow(D’, D},), we obtain f ® f' € Flow(D ® D', Df ® Dy,) by
identifying the output of £ on the exit edge of D with that of £’ on the entry edge of D’

For a flow graph D, we can form a category SubFlowp, enriched over Flow as follows:
® Ob(SubFlowp) := E(D) (this excludes loops: reflexivity);

® For es, e; € Ob(SubFlowp), SubFlowp (e, e¢) € Ob(Flow) is the (possibly empty) flow graph with
entry es and exit ey;

® The composition morphism is induced by ;

® The identity element is determined by the trivial flow graph

Unlike Free(D), SubFlow,, is always finite and

Part 2: magnitude

The general theory of magnitude suggests looking for examples Str

® letM=(M,®,1) be a monoidal category and C a (small) M-category, a/k/a a (small) category
enriched over M. This means C is specified by:
® AsetOb(C);
Hom-objects C(j, k) € M for all j, k € Ob(C);
Identity morphisms 1 — €(j, /) for all j € Ob(C);
And composition morphisms C(j, k) ® C€(k, €) — C(j, £) for all j, k, £ € Ob(C)
Hom-objects and morphisms are required to satisfy associativity and unitality

® The theory of magnitude introduced by Leinster incorporates a M-category and a semiring S via a
“size” map o : Ob(M) — S that is constant on isomorphism classes and that satisfies
° o(1)=1
* o(X®Y)=0(X) -o(Y)

Magnitude is readily defined in finite settings

If n:=|0b(C)| < co then its similarity matrix Z € M (n, S) has entries Zj; = o(C(j, k))

A weighting is a column vector w satisfying Zw = 1, where the semiring matrix multiplication and
column vector of ones are indicated. A coweighting is the transpose of a weighting for Z "

If Z has a weighting and a coweighting, its magnitude is the sum of either (a line of algebra shows
these necessarily coincide)

Magnitude is a general concept but examples are lacking str

® Magnitude has been the subject of increasing attention over the past 15 years, but almost entirely
in the setting of Lawvere metric spaces

® Qver the last two years applications have begun to emerge based on properties of (co)weightings in
Euclidean space, which is the only case that has been explored in detail

® Only one non metric example we know of (involves a Vect-category) besides the one presented here

® The Lawvere metric space setting emerges from the choice M = (([0, o0], >), +,0)

® Assuming continuity at just a single point, this requires o'(x) = exp(—tx) for some constant t; varying
this constant leads to the notion of a magnitude function

® The corresponding enriched categories are precisely the Lawvere metric spaces, also known as extended
quasipseudometric spaces since they generalize metric spaces by allowing distances that are infinite
(extended), asymmetric (quasi-), or zero (pseudo-)

® |t turns out that seemingly “adjacent” monoidal structures on ([0, c0],>) in fact lead to the same
construction, so to move away from the generalized metric space setting at all, it is necessary to move
quite far indeed ...

Part 3: max-plus magnitude for flow
graphs

Topological entropy is a good notion of size for flow graphs

A digraph D determines a (sub)shift of finite type, and the corresponding topological entropy
h(D) = limyteo N~' log W (D, N) measures the growth of the number W (D, N) of paths in D of
length N

® Happensthat h(D) = logp(A(D)) where A(D) = adjacency matrix and p = spectral radius

h(w; D) = max; h(D;)

In fact more is true:

spec A(®;D;) = {0} U U, spec A(D;); if we define the zeta function * {p(t) := 1/det(I - tA(D))
then furthermore {w p, = I1; {p;

?It turns out (Mizuno, 2001) that {p (¢) = T, (1 - t")=" where y denotes a prime reduced cycle in D (i.e., a cycle that is
not a power > 2 of another cycle and with a no-backtracking restriction) and [-] denotes the equivalence class obtained by
quotienting cycles by shifts. This “Euler product” justifies the zeta function terminology.

Topological entropy is a good notion of size for flow graphs

o] ® @ { spec
o5t B & 0 specs |
- E « specpa
,',A, //.' ot & @ (oo o) ® @4
. A
r/ sl o° =96 :
é = @
A AL A Y 1 ‘ :
% L -3 2 1 0 1 2 3 4
R
e T T
e T ¥ N
— Y
S | S v
v SN ALY
71 ®
A4 -« e == e
S £ 10°F
e a 2=
- Cia(t)
© Q) e®)
-1 -0.5 0 05 1

t
Left: D1 ® D, for two flow graphs D; and D, on 10 vertices.
Upper right: spectra spec, c C of A(Dy) for x = 1, x =2, and x = 12 with Dy, := D1 ® D;.
Lower right: zeta functions {12 and {7 - {2 with {x = ¢{p,.

We can define magnitude for flow graphs str

® Recall that max furnishes a monoidal structure on the poset ([0, 0], >) of extended nonnegative
real numbers, and that categories enriched over this are Lawvere ultrametric spaces

e Similarly, ([—o0, 00), <, —00, max) is a monoidal poset
® This is sufficient data for us to define the magnitude of SubFlowp over the max-plus or tropical
semiring
® Unpacking details:
° (Zg)st = Zg(es, et) := h(D{es, et))
® |f there exist v, w satisfying the max-plus matrix (co)weighting equations
maxs[vs + (Z])st] = 0 = max¢[(Z})st + we] then the maxima of v and w coincide and also equal
the magnitude of Zg
® Linear equations over the max-plus semiring yield “principal solutions” (which may not be bona fide
solutions in general) Vs := — maxt(Z)st and Wi = — maxs(Z)st

We can define magnitude for flow graphs

Z, and hence SubFlowp, has well-defined magnitude z over the max-plus semiring iff

max[_ mtax(ZE)st] =Z= m;‘-]X[— maX(Z‘DZ)St]
s s

Such a z must be the negative of the largest value in both its row and column of ZDE
It is not obvious that such a z always exists ...

...but any nontrivial D(es, e;) = SubFlowp (e, ;) € Flow must be of the form m;D(e;_1, €;)
where the D(e;_1, ;) are minimal

ZE, and hence SubFlowp, has well-defined magnitude over the max-plus semiring

(Co)weighting identifies regions of high topological entropy

Part 4: magnitudes of balls in the
universal cover of a digraph

The universal cover of a digraph is a straightforward construction str

a polytree defined as follows: pick vp € V and set
Vu = {(vo,vi,...,ve) : (vim1,vp) € Esvimr #vib u{(ve, viet, ..o v0) s (vj, vi—1) € Ej vy # vig)
where v; € V and e; € E identically; and set

Ey:={((vosv1,---svi-1),(Vo,V1,--»v)) : (vi1,v) € E}

U{((vo,v1s--sve), (vo, Vi, .o viet)) s (vi,vieq) € E}.

®(0313)
®1
® (1230) ®(230) ® (03 ©(031)
®2

° @30 e ® (0312

® (3,1;3,0) @ (1,3,0)

®3 ®(0,2) ®(023) @ (0,231)

The universal cover of a digraph is a straightforward construction str

*3

(L) The portion of Up with vertices at distance < 3 to or from v with covering of D (at bottom)
indicated.
(R) The portion of Up with vertices at distance < 10 to or from vj.

Balls in the universal cover of a digraph evoke Katz centrality

Let y € V. Then there is either a unique path in Up from vq to y or vice versa.

|{paths from vg of length L in Up }| = |{loopless paths from v of length L in D}|

induced by its vertices at (the usual notion of digraph) distance < L from (versus to) vp.

If D is loopless, then By, (L) is an arboresence with |V (B,,(L))] = X5_, Y« (A9)jk, where A is the
adjacency matrix of D and j is the matrix index corresponding to vo.

The Katz centrality is Y 524 at Z,-(Ae),-j, where «a is restricted to ensure convergence. The Katz
centrality of the graph with all edges reversed is therefore .52, a’® Zk(Ae)jk.

Maghnitudes of balls in the universal cover are nice str

Let F be a DAG whose corresponding undirected graph is a forest. > Then the magnitude function of F
(i.e., the magnitude of the matrix exp(—tdjk) where d is the usual Lawvere metric on F) is

Mag(F,t) = |V (F)| - |E(F)le”"

Since an arborescence (or more generally a polytree) has one more vertex than it has edges, the lemma
above yields that for D loopless, the magnitude function of B, (L) is

Mag(By, (L), t) = |V (Byo (L)) = (IV(By (L)) - 1)e™"
and there is an elementary algorithm for computing |V (B,,(L))|. If D is loopless and strong, we have

h(D) = h(Up) = fim L™ og|V(By, (L), VY.

3Note that if F is a polytree, then |V (F)| = |[E(F)| + 1.

Magnitudes of balls in the universal cover are nice

Let D be a strong loopless digraph and vy € V(D). Then

Jim L' logMag(B,,(L),t) < h(D)

with equality at ¢ = oo, and the left hand side is independent of vq for any t.

L~'log Mag(B1(L),t)

; ;
h(D)
———— £ =10.001
——— ¢ =0.0031623
A4 ———t=0.01 J
———— =0.031623
——t=01 i
——— t=0.31623 [
2 — =1 &=
——t=31623 [
/ T iw
0 | | | | |
5 10 15 20 25 30 35 40 45

L
L™ " logMag(B,,(L),t) = h(D) for t > 0, but depends strongly on ¢ even for fairly large L.

Log-magnitudes of small balls are useful features for graph matching Str

Import graph of Flare software hierarchy: e N =100 realizations of two random subgraphs:
sources (resp., targets) colored red (resp., blue) removed edges with probability 3/4 and kept
the largest weak component: computed
® (Co)weightings at scale o
® Log-magnitudes of balls of radius < 3 at scale
t =100~ oo
® Common vertex centralities
® Computed correlation coefficients for all items
above on vertices common to both subgraphs

® Coweighting and log-magnitudes of balls in the
universal cover of the digraph with edges
reversed are very strongly correlated ...

® Similarly considered N = 100 realizations of an
Erdés-Renyi digraph (n = 100 vertices; edge
probability = 4/n), formed two subgraphs by
removing edges with probability 1/2, then
keeping the largest weak component...

Log-magnitudes of small balls are useful features for graph matching Str

08

0.6

041

021

Correlation coefficients of vertex centralities;
(co)weighting at scale 0; log-magnitudes of balls at seale 100
\\\\\\\\\\\\\\\\\\\\

Correlatior

(co)weighting at scale 0; log

Upper panel: Flare import digraph
* indicates a ball in the digraph with all edges reversed.

As L increases, boundary effects cause the
log-magnitudes of balls in the universal cover to
become (slightly) more correlated to each other than
the log-magnitudes of balls in the digraph itself. Note
that the three best-performing centralities are
computing almost exactly the same thing.

Lower panel: Erdds-Renyi digraph with n = 100 vertices
and edge probability g = 4/n

Thanks

Backup

The category Dgph of reflexive digraphs

® Objectis D = (U, a,w)
® Jisaset
® a,w:U — U are head and tail functions that satisfya ow =wandwoa = a

e fFor D' = (U',a’,w"), a morphism f € bgph(D, D') is a function f : U — U’ such that
foa=a'ofandfow=w'of

® The vertices of D = (U, ar,w) are the (mutual) image V = V(D) of a and w

® The loopsaretheset L=L(D):={ueU:a(u)=w(u)} (sothatV c L),

® The edges are the set £ = E(D) := U\L

® We recover the usual notion of a digraph by considering a x w and its appropriate restrictions on
U?, L2 and E%:

® E.g., we can abusively write £ = (ar x w)(Ez), where the LHS and RHS respectively refer to usual and
reflexive notions of digraph edges
® Thus a morphism f : U — U’ restrictsto |y : V > V', f|, : L > L' and flg : E > U’

® Since morphisms are only partially specified by their actions on vertices, defining Flow as a full
subcategory of Dgph is essentially a convention about vertex identification

Control flow graphs (CFGs) model computational paths

Each S is its own statement ;

1 START each b is its own Boolean predicate;
2 repeat branches are colored according to associated b evaluatingto T or L
3 repeat

4 repeat

5 if b goto 7

6 if b

7 repeat

8 S

9 until b

10 endif

11 until b

12 do while b

13 do while b

14 repeat

15 S

16 until b

17 enddo

18 enddo

19 until b

20 until b
21 HALT

In practice CFGs are much bigger than this

ultiresolution analysis lets us cope with CFG scale

® Code restructuring can eliminate gotos [Zhang and D’Hollander, 2004]
® Effective version of B6hm-Jacopini structured program theorem
® Dovetails with the constructions we discuss here
® Subroutines are programs in their own right
(]
® Much more interesting when trying to parallelize source or reverse engineer binary code than when
merely parsing Python

® Similar considerations inform myriad other domains where flow graphs are good process models

A CFG with no gotos is nicer but still complicated

A CFG with no gotos is nicer but still complicated

Stretching flow graphs helps coax SESERs into existence

® |nsert edges into a flow graph as follows:

° 4,% becomes Q %:

e 0 becomes, ()
° &ZE becomes\ %
—

'Mbecomes ,,,,Q,,,,ZE

The resulting stretching is well defined

® There is a planar flow graph whose stretching is nonplanar:

O<—0O stretches to O<—U which contains K33

The program structure tree organizes SESERs Str

The interior of a SESER (es, €;) is the set of vertices on paths from ¢(e;) that do not encounter ¢(e;)
e Differs from flawed def. 6 of [Johnson, Pearson, Pingali, 1994]

® s5 of [Boissinot et al., 2012] illustrates this and why it matters

A nondegenerate SESER (e, e2) is canonical if
® For any SESER (e, €5) we have e, dom e}

® For any SESER (€7, e2) we have e; pdom €]

Theorem (easily salvaged from JPP’9s)
Interiors of distinct canonical SESERs are either disjoint or nested
® “Canonical = minimal”

® Inclusion relation induces the program structure tree (PST)

Stretching, PST, and “coarsening” 1, 2, 3, & 6x

ST
&1

irg,

Stretching, PST, and “coarsening” 1, 3, 5, & 13X

o . - P T ey .
i e P [fo f I
g, y h 4

‘Ym’,h i L B e 5
> ol ST
L o,
Yoo, er s,
Py N A .
2, LA +
RC N IR
“""'%.N,)

gy

e, we, % Vo v g b, °

5295 2 o 1) Pt

P AN

Al e s,
!

ores,
i

o R,
T,

STagy.

LT 0

Using the PST to “coarsen” CFGs is like a pullback str

For j, k € V, the absorption of k into j is the morphism induced by identifying j and k and (if k # /)
annihilating any loop at j (by mapping it to the vertex j)

® Definition chosen to dovetail with ideas of program abstraction

® Absorbing k, m into j is equivalent to absorbing m, k into j

® For D, D’ € Ob(Flow) with D’ c D, define the absorption of D’ to be the image of absorbing the
interior of D’ into its source (considered as a vertex in D)

® Amounts to replacing D’ w/ single edge from source to target

The coarsening ®D is obtained by absorbing the sub-flow graphs corresponding to leaves of PST(D)

. gof g . id f
Observation: the pullbackof g — ¢ «— bisa<«—a — b
® In particular, f is the pullback of go f by g

Flow graphs give rise to an obvious operad

Let P(n) := {flow graphs with n ordered edges} and define

o:P(n)x P(ky)x---xP(kp) > P(ki +---+kp)
(D,Di,...,Dy) > Do (Ds,...,D,)

by replacing the jth edge in D with D; in the obvious way
® Edge orderingon D o (Dy, ..., D,) inherited from constituents

Theorem

The triple {e, {P(n)}:2,, o}, where e denotes the trivial flow graph, forms a operad (in Set)

If D e P(n)and ®D; = e #+ Dj for j € [n],then ®(D o (Dy,...D,)) =D

® oand ® are complementary

We can tensor flow graphs in parallel Stl'

(Flow, ®,) is a monoidal category, where ® is defined below and the unit object e is the trivial flow
graph

® D® D':= Du D’/ ~, where ~ is mostly obvious but has messy technical details to account for the
cases where entry and exit edges are either identical or adjacent

~ always identifies entry edges

~ identifies exit edges if interiors are unaffected...

...otherwise ~ collapses a “small” factor to make things work

Constraints on how to fill in these technical details are perhaps the main benefit of invoking category

theory ab initio

® Let [-] denote an equivalence class under ~ and set

[(F().0)] ifk=[(,0)]

(Fef')(k):= {[(f’(j’)J)] ifk=[("1)]

along with an implied extension to edges

Summary

® [corresponds to sequential execution
® ® corresponds to an if (or parallel execution)
® —_>—o(e-e,e,e)corresponds to ado while or repeat

® By the structured program theorem and an effective version thereof, we have a
category-theoretical framework for (de)composing structured programs up to statement/predicate
vertex labels and T/ 1 edge labels

® Exercise: eliminate the “up to” disclaimer

Requiring that flow graphs exhibit various category-theoretical desiderata places strong but satisfiable
restrictions on them that can usefully inform the architecture of program analysis platforms, program
synthesizers, compilers, etc.

Generalized metric spaces are hard to get away from

® As mentioned, the usual addition operation on ([0, oo], >) gives a monoidal structure that
essentially mandates o (x) = exp(—tx) for some constant ¢

Let f be a strictly increasing bijection from [0, co] to a subset of [—oo, 0o containing 0. Then
x®y = f'(f(x)+f(y)) gives rise to a strict symmetric monoidal structure on ([0, co], >) with
monoidal (additive) unit £~'(0)

® A category C enriched over the strict symmetric monoidal category above has, for every
Jj.k €0b(C), some njx = C(j, k) € [0, 00] such that n;; = £~'(0) and njx ® N > nje

® That is, we have the triangle inequality £ (n«) + f (nke) > f(nje)

® Turns out that if £(n7) = d, our similarity matrix Z takes values in the semiring R with the usual
structure (as opposed to some more exotic choice), and we require (any) continuity of o, then

Z =0(n)=o(f1(d)) = exp(-7d), i.e., this attempted generalization actually has no material
effect

Generalized metric spaces are hard to get away from ...really hard ... Str

® What about a more exotic semiring structure on R?

Let g be a strictly increasing function from [—o0, oo] to itself, and taking on the value O (and also 1 for

the final part of the statement). Then x @ y := g~ ' (g(x) + g()) gives rise to a strict symmetric
monoidal structure on ([~oo, 00], >) with monoidal (additive) unit g~'(0). Moreover, additionally

taking x © y == g7 (g(x) - g(y)) gives a semiring with multiplicative unit g ' (1)

® If g(x) :=sgn(x) - |x|P for p > 0, we get the semiring ([-o0,], ®,0,-,1)
® If g(x) := exp(—7x) for 7 < 0, then we get the semiring ([-o0, 00], ®, —00, +,0)

Generalized metric spaces are hard to get away from ...really hard! Str

® Trying this more exotic semiring structure x @ y := g~ (g(x) + g(y)) and
xoy:=g"(g(x) gy)) -

* Weighting equation Zw = 1 unpacks first to @, (Zjx © wi) = g~ ' (1) in semiring arithmetic and
then to the matrix equation g[Z]g[w] = 1 in ordinary arithmetic

* Since Z = o[n]and f[n] = d, we have Z = o[f~'[d]]

® Meanwhile, we have the generalized Cauchy equation c(x ® y) = o(x) ® o(y), which unpacks
oo (f1(F(x) +f(y))) =g (g(a(x)) g(c(y)))

* Defining h:= goo o, this becomes h(f(x) + f(y)) = h(f(x))-h(f(y))

® |e., hsatisfies the usual Cauchy equation; assuming any continuity, we have A(d) = exp(-7d)

® Since g[Z] = h[d], the weighting equation is h[d]g[w] = 1, which apart from the

transformation of w is the same as in ordinary arithmetic

Magnitude for flow graphs: example

If D := ®f:1 Ej‘i] D(e(j_Lk), e(j,k)) with PSTs of

D(e(j-1.k)» €(j.x)) all trivial (i.e., there are no nontrivial sub-flow
graphs) then (Z55) (jo.6).(j1.6) = MaXjo<j<js H(D(e(i-1.6): €(ik))),
(ZB)-c0,00 = (D), where Foo indicate the entry and exit edges of
D, and all other entries of Z are trivial

The nontrivial (co)weighting components are

W(j,k) = — max h(D(e(jO’k), e(j,k)))

Jo<J

= — max h(D(e(jo,k)? €(jo+1.k) >)'

Jo<J

V(jk) =~ maxh(D{e(), €(j,.k)))

J1>j

=—maxh(D(e(,-1.x)> ¢y .)))

J1>j

str

9
€(0,1 €(02) e0d)
e, €(1,2) €(1,3)

€23
e €(22) (

€+
@)
Flow graph of the form
D = ®f =%, D(e(16, €(jk))
for Jy =2 and K = 3. The large
nodes indicate nontrivial interiors
of sub-flow graphs

Magnitude for flow graphs: example

Thatis...

...the weighting w and coweighting v respectively encode the
cumulative forward and reverse maxima of the topological entropy
along the K “backbones” E;; D(e(j-1k)»€(j.x)) of D. In particular,
V(jo=1.k) = W(js.k) When j. = argmax; h(D(e(/-_Lk), e(/,k)»

str

9
€(0,1 €(02) e0d)
€,1) €(1,2) €(1,3)

ep2)| €23

3

@)
Flow graph of the form
J
D := ®f:1 ji1 D(e(j,hk), e(j’k)>
for Jy =2 and K = 3. The large
nodes indicate nontrivial interiors
of sub-flow graphs

€(2.1)

