
Dependent Optics

Pietro Vertechi - Applied Category Theory 2022

1 / 18

Structure

Brief introduction to lenses.

2 / 18

Structure

Brief introduction to lenses.

Functor lenses (in particular, dependent lenses).

2 / 18

Structure

Brief introduction to lenses.

Functor lenses (in particular, dependent lenses).

Lenses for reverse-mode automatic differentiation.

2 / 18

Structure

Brief introduction to lenses.

Functor lenses (in particular, dependent lenses).

Lenses for reverse-mode automatic differentiation.

Definition and basic properties of (dependent) optics.

2 / 18

Structure

Brief introduction to lenses.

Functor lenses (in particular, dependent lenses).

Lenses for reverse-mode automatic differentiation.

Definition and basic properties of (dependent) optics.

Dependent optics and functor lenses comparison.

2 / 18

Structure

Brief introduction to lenses.

Functor lenses (in particular, dependent lenses).

Lenses for reverse-mode automatic differentiation.

Definition and basic properties of (dependent) optics.

Dependent optics and functor lenses comparison.

Representations of dependent optics.

2 / 18

Lenses

Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

get value for a given field
get_age(person) = person.age

build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)

3 / 18

Lenses

Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

get value for a given field
get_age(person) = person.age

build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)

Bidirectionality. We have two methods in different directions:

get : X → Y put: X × Y →′ X .′

3 / 18

Lenses

Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

get value for a given field
get_age(person) = person.age

build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)

Bidirectionality. We have two methods in different directions:

Composability. Lenses can be composed to handle nested data:

get : X → Y put: X × Y →′ X .′

​ ​

X

x

→ Z

↦ get ​(get ​(x))2 1

X × Z ′

(x, z)′
→ X ′

↦ put ​(x, put ​(get ​(x), z))1 2 1
′

3 / 18

Functor lenses

Richer framework for lenses recently put forward (Spivak, 2019).

Setting. Let be a category and a pseudofunctor.C F : C →op Cat

4 / 18

Functor lenses

Richer framework for lenses recently put forward (Spivak, 2019).

Setting. Let be a category and a pseudofunctor.

Definition. The category has

objects of the form , where and ,

morphisms given by

Here, the notation is a shorthand for .

C F : C →op Cat

Lens ​F

​(
X

P) X ∈ Ob(C) P ∈ Ob(F)X

Lens ​ ​ , ​ =F ((
X

P) (
Y

Q)) ​ F (f (Q),P).
f : X→Y

∐ X ∗

f ∗ F(f)

4 / 18

Functor lenses

Richer framework for lenses recently put forward (Spivak, 2019).

Setting. Let be a category and a pseudofunctor.

Definition. The category has

objects of the form , where and ,

morphisms given by

Here, the notation is a shorthand for .

Bidirectionality. is forward and is backward.

Composability. By functoriality of (and), functor lenses compose.

C F : C →op Cat

Lens ​F

​(
X

P) X ∈ Ob(C) P ∈ Ob(F)X

Lens ​ ​ , ​ =F ((
X

P) (
Y

Q)) ​ F (f (Q),P).
f : X→Y

∐ X ∗

f ∗ F(f)

f : X → Y f : f (Q) →# ∗ P

f ∗ F

4 / 18

Examples of functor lenses

Plain lenses. Functor lenses for .X ↦ coKleisli(X × −)

​ ​

Lens((X,X), (Y ,Y))′ ′ = ​ C(X × Y ,X)
X→Y

∐ ′ ′

≃ C(X,Y) × C(X × Y ,X).′ ′

5 / 18

Examples of functor lenses

Plain lenses. Functor lenses for .

Dependent lenses. Functor lenses for (contravariant slice functor).

X ↦ coKleisli(X × −)

​ ​

Lens((X,X), (Y ,Y))′ ′ = ​ C(X × Y ,X)
X→Y

∐ ′ ′

≃ C(X,Y) × C(X × Y ,X).′ ′

C/−

DLens(U → X,V → Y) = ​ C/X(X × ​

X→Y

∐ Y V ,U).

5 / 18

Examples of functor lenses

Plain lenses. Functor lenses for .

Dependent lenses. Functor lenses for (contravariant slice functor).

The functor embeds lenses inside
dependent lenses.

We are replacing trivial bundles with general bundles

(aka dependent types) .

X ↦ coKleisli(X × −)

​ ​

Lens((X,X), (Y ,Y))′ ′ = ​ C(X × Y ,X)
X→Y

∐ ′ ′

≃ C(X,Y) × C(X × Y ,X).′ ′

C/−

DLens(U → X,V → Y) = ​ C/X(X × ​

X→Y

∐ Y V ,U).

(X,X) ↦′ (X × X →′ X)

X × X →′ X

U → X

5 / 18

Reverse-mode automatic differentiation

Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

6 / 18

Reverse-mode automatic differentiation

Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

Procedure.

Hard-code the derivative of primitive functions.

Apply the chain rule for composition of primitive functions.

6 / 18

Reverse-mode automatic differentiation

Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

Procedure.

Hard-code the derivative of primitive functions.

Apply the chain rule for composition of primitive functions.

Applications. Compute gradients in deep learning (backpropagation).

6 / 18

Reverse-mode automatic differentiation

Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

Procedure.

Hard-code the derivative of primitive functions.

Apply the chain rule for composition of primitive functions.

Applications. Compute gradients in deep learning (backpropagation).

Bidirectionality and composability suggest that lenses might be a good fit.

6 / 18

Reverse-mode automatic differentiation

Let be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (is a dual vector):

In other words,

the method is given by the function,

the method is given by the dual of the differential.

f : X → Y

v ∈ Y ∗

forward(x) = f(x) and backward(x, v) = (Df(x))v.∗

forward
backward

7 / 18

Reverse-mode automatic differentiation

Let be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (is a dual vector):

In other words,

the method is given by the function,

the method is given by the dual of the differential.

Bidirectionality. Value and derivatives computed in opposite directions.

Composability. Lens composition corresponds to the chain rule.

f : X → Y

v ∈ Y ∗

forward(x) = f(x) and backward(x, v) = (Df(x))v.∗

forward
backward

7 / 18

Reverse-mode automatic differentiation

Let be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (is a dual vector):

In other words,

the method is given by the function,

the method is given by the dual of the differential.

Bidirectionality. Value and derivatives computed in opposite directions.

Composability. Lens composition corresponds to the chain rule.

Inefficiency. The forward and backward passes often share computation.

f : X → Y

v ∈ Y ∗

forward(x) = f(x) and backward(x, v) = (Df(x))v.∗

forward
backward

7 / 18

Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as

​ ​

X

x

→ Y × [Y ,X]′ ′

↦ f(x), v ↦ (Df(x))v .(∗)

8 / 18

Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as

Advantages.

Closure can be optimized based on the forward pass computation.

Default implementation of most automatic differentiation libraries.

​ ​

X

x

→ Y × [Y ,X]′ ′

↦ f(x), v ↦ (Df(x))v .(∗)

8 / 18

Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as

Advantages.

Closure can be optimized based on the forward pass computation.

Default implementation of most automatic differentiation libraries.

Issues.

No clear representation of shared computation (hidden in a closure).

We actually need dependent lenses in general, but the equivalent of

 for dependent lenses is complicated.

​ ​

X

x

→ Y × [Y ,X]′ ′

↦ f(x), v ↦ (Df(x))v .(∗)

X → Y × [Y ,X]′ ′

8 / 18

Optics

Let be a space of shared data (between forward and backward passes).M

l : X →M × Y and r : M × Y →′ X .′

9 / 18

Optics

Let be a space of shared data (between forward and backward passes).

Key intuition. If is a category with finite products,

M

l : X →M × Y and r : M × Y →′ X .′

C

C(X,M ×∫
M∈C

Y) × C(M × Y ,X) ≃′ ′ C(X,Y) × C(X × Y ,X).′ ′

9 / 18

Optics

Let be a space of shared data (between forward and backward passes).

Key intuition. If is a category with finite products,

A (Cartesian) optic is an equivalence class of a pair of maps

M

l : X →M × Y and r : M × Y →′ X .′

C

C(X,M ×∫
M∈C

Y) × C(M × Y ,X) ≃′ ′ C(X,Y) × C(X × Y ,X).′ ′

l : X →M × Y and r : M × Y →′ X .′

9 / 18

Optics

Let be a space of shared data (between forward and backward passes).

Key intuition. If is a category with finite products,

A (Cartesian) optic is an equivalence class of a pair of maps

Efficiency. The morphism can read data from instead of recomputing it (Diffractor.jl).

M

l : X →M × Y and r : M × Y →′ X .′

C

C(X,M ×∫
M∈C

Y) × C(M × Y ,X) ≃′ ′ C(X,Y) × C(X × Y ,X).′ ′

l : X →M × Y and r : M × Y →′ X .′

r M

9 / 18

Optics

The Cartesian product can be replaced with a general symmetric monoidal structure

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

C(X,M ⊗∫
M∈C

Y) × C(M ⊗ Y ,Y).′

10 / 18

Optics

The Cartesian product can be replaced with a general symmetric monoidal structure

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:

where are actegories: actions of a monoidal category on respectively.

C(X,M ⊗∫
M∈C

Y) × C(M ⊗ Y ,Y).′

C ​(X,M ⋅ ​∫
M∈M

L L Y) × C ​(M ⋅ ​R R Y ,Y),′

⋅ ​, ⋅ ​L R M C ​, C ​L R

10 / 18

Optics

The Cartesian product can be replaced with a general symmetric monoidal structure

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:

where are actegories: actions of a monoidal category on respectively.

Issue. Unfortunately, this is not sufficient to generalize functor lenses,

where one has a pseudofunctor to rather than an actegory.

C(X,M ⊗∫
M∈C

Y) × C(M ⊗ Y ,Y).′

C ​(X,M ⋅ ​∫
M∈M

L L Y) × C ​(M ⋅ ​R R Y ,Y),′

⋅ ​, ⋅ ​L R M C ​, C ​L R

Cat

10 / 18

Optics

The Cartesian product can be replaced with a general symmetric monoidal structure

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:

where are actegories: actions of a monoidal category on respectively.

Issue. Unfortunately, this is not sufficient to generalize functor lenses,

where one has a pseudofunctor to rather than an actegory.

Key intuition. An actegory is a pseudofunctor from a bicategory with one object to .

Milewski (2022), Vertechi (2022), and Capucci (2022) allow an arbitrary source bicategory.

C(X,M ⊗∫
M∈C

Y) × C(M ⊗ Y ,Y).′

C ​(X,M ⋅ ​∫
M∈M

L L Y) × C ​(M ⋅ ​R R Y ,Y),′

⋅ ​, ⋅ ​L R M C ​, C ​L R

Cat

Cat

10 / 18

The category of dependent optics

Setting. Let be a bicategory. Let be pseudofunctors.B L,R : B ⇉op Cat

11 / 18

The category of dependent optics

Setting. Let be a bicategory. Let be pseudofunctors.

Definition. is the category with

objects of the form , where , , and ,

morphisms given by

Here, the notations are shorthands for respectively.

B L, R : B ⇉op Cat

Optic ​L,R

(X,X)′ A A ∈ Ob(B) X ∈ Ob(L)A X ∈′ Ob(R)A

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X).A ∗′ ′ ′

f , f∗ ∗′
L(f), R(f)

11 / 18

The category of dependent optics

Setting. Let be a bicategory. Let be pseudofunctors.

Definition. is the category with

objects of the form , where , , and ,

morphisms given by

Here, the notations are shorthands for respectively.

Bidirectionality. encode forward and backward directions.

Composability. By functoriality of (and), we can compose dependent optics.

B L, R : B ⇉op Cat

Optic ​L,R

(X,X)′ A A ∈ Ob(B) X ∈ Ob(L)A X ∈′ Ob(R)A

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X).A ∗′ ′ ′

f , f∗ ∗′
L(f), R(f)

L, R

f , f∗ ∗′
L, R

11 / 18

The category of dependent optics

Setting. Let be a bicategory. Let be pseudofunctors.

Definition. is the category with

objects of the form , where , , and ,

morphisms given by

Here, the notations are shorthands for respectively.

Bidirectionality. encode forward and backward directions.

Composability. By functoriality of (and), we can compose dependent optics.

Theorem. is a category.

B L, R : B ⇉op Cat

Optic ​L,R

(X,X)′ A A ∈ Ob(B) X ∈ Ob(L)A X ∈′ Ob(R)A

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X).A ∗′ ′ ′

f , f∗ ∗′
L(f), R(f)

L, R

f , f∗ ∗′
L, R

Optic ​L,R

11 / 18

The category of dependent optics

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X)A ∗′ ′ ′

12 / 18

The category of dependent optics

Specializations.

 is the delooping of a monoidal category mixed optics.

 is a 1-category and is trivial functor lenses.

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X)A ∗′ ′ ′

B ⇒

B L ⇒

12 / 18

The category of dependent optics

Specializations.

 is the delooping of a monoidal category mixed optics.

 is a 1-category and is trivial functor lenses.

Properties.

☑ Coproducts. If has finite coproducts which are turned into products by , then the

category has finite coproducts.

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X)A ∗′ ′ ′

B ⇒

B L ⇒

B L, R

Optic ​L,R

12 / 18

The category of dependent optics

Specializations.

 is the delooping of a monoidal category mixed optics.

 is a 1-category and is trivial functor lenses.

Properties.

☑ Coproducts. If has finite coproducts which are turned into products by , then the

category has finite coproducts.

☒ Fibration. There is in general no fibration ,
due to the equivalence
relation induced by coend.
We need the bicategory of optics, as in Braithwaite et. al (2021).

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X)A ∗′ ′ ′

B ⇒

B L ⇒

B L, R

Optic ​L,R

Optic ​ →L,R B

12 / 18

The category of dependent optics

Specializations.

 is the delooping of a monoidal category mixed optics.

 is a 1-category and is trivial functor lenses.

Properties.

☑ Coproducts. If has finite coproducts which are turned into products by , then the

category has finite coproducts.

☒ Fibration. There is in general no fibration ,
due to the equivalence
relation induced by coend.
We need the bicategory of optics, as in Braithwaite et. al (2021).

☐ Monoidal structure. Monoidality result for functor lenses may be valid here too.

Optic ​((X,X) , (Y ,Y)) =L,R
′ A ′ B L (X, f Y) ×∫

f∈B(A,B)
A ∗ R (f Y ,X)A ∗′ ′ ′

B ⇒

B L ⇒

B L, R

Optic ​L,R

Optic ​ →L,R B

12 / 18

Functor lenses as dependent optics, take 2

With trivial and only trivial 2-morphisms in , we can't use to share computation.

 becomes, in a sense, the forward part of the optic.

We will see how to circumvent this issue for dependent lenses.

L B f

f

13 / 18

Functor lenses as dependent optics, take 2

With trivial and only trivial 2-morphisms in , we can't use to share computation.

 becomes, in a sense, the forward part of the optic.

We will see how to circumvent this issue for dependent lenses.

Lenses as optics.

L B f

f

C(X,M ×∫
M∈C

Y) × C(M × Y ,Y) ≃′ C(X,Y) × C(X × Y ,Y).′

13 / 18

Functor lenses as dependent optics, take 2

With trivial and only trivial 2-morphisms in , we can't use to share computation.

 becomes, in a sense, the forward part of the optic.

We will see how to circumvent this issue for dependent lenses.

Lenses as optics.

Dependent lenses as optics. Replace product with fibered product:

The RHS is the set of dependent lenses from to .

L B f

f

C(X,M ×∫
M∈C

Y) × C(M × Y ,Y) ≃′ C(X,Y) × C(X × Y ,Y).′

C/A(X,M × ​∫
M∈C/(A×B)

B Y) × C/A(M × ​B Y ,X) ≃′ ′
​ C/A(X × ​

X→Y

∐ B Y ,X).′ ′

(X × ​A X) →′ X (Y × ​B Y) →′ Y

13 / 18

Is it problematic that different, natural choices of
pseudofunctors give rise to the same category of
dependent lenses?
Which is the most natural?

There is a unique 1-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.

As another example, and are not
really the same: they are different as bicategories.

Here, we recover them separately.

Philosophical FAQs on functor lenses as dependent optics

Optic ​(C,×) Lens ​(C,×)

14 / 18

Is it problematic that different, natural choices of
pseudofunctors give rise to the same category of
dependent lenses?
Which is the most natural?

There is a unique 1-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.

As another example, and are not
really the same: they are different as bicategories.

Here, we recover them separately.

What is the forward part of the optic if is trivial?

In the bicategory of optics, 1-morphisms are given by a
coproduct rather than a coend.

Intuitively, the image of a 1-morphism is its forward part,
whereas its value within a fiber is the backward part.

Philosophical FAQs on functor lenses as dependent optics

Optic ​(C,×) Lens ​(C,×)

L

​

​ L (X, f Y) × R (f Y ,X)
f∈B(A,B)

∐ A ∗ A ∗′ ′ ′

↓

​ L (X, f Y).
f∈B(A,B)

∐ A ∗

14 / 18

User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps

The morphism is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

l : X → f Y and r : f Y →∗ ∗′ ′ X .′

f

15 / 18

User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps

The morphism is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

1. Direct computation. Compute coend explicitly (if possible) and use that as interface.

l : X → f Y and r : f Y →∗ ∗′ ′ X .′

f

15 / 18

User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps

The morphism is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

1. Direct computation. Compute coend explicitly (if possible) and use that as interface.

2. Optics representation. Define a functor from the category of optics to a friendlier category.

l : X → f Y and r : f Y →∗ ∗′ ′ X .′

f

15 / 18

Tambara representations

Let be an arbitrary category.

Tambara representation. A -valued Tambara representation consists of

a functor , for all object in ,

a natural transformation for all ,

where is extranatural in and respects some coherence laws.

D

D

P : L ×A (A)
op

R →A D A B

ζ ​ : P (−, =f
B) ⇒ P (f −, f =A ∗ ∗′

) f : A → B

ζ ​f f

16 / 18

Tambara representations

Let be an arbitrary category.

Tambara representation. A -valued Tambara representation consists of

a functor , for all object in ,

a natural transformation for all ,

where is extranatural in and respects some coherence laws.

Theorem. A functor is the same as a -valued Tambara representation.

D

D

P : L ×A (A)
op

R →A D A B

ζ ​ : P (−, =f
B) ⇒ P (f −, f =A ∗ ∗′

) f : A → B

ζ ​f f

Optic ​ →L,R
op D D

16 / 18

Tambara representations

Let be an arbitrary category.

Tambara representation. A -valued Tambara representation consists of

a functor , for all object in ,

a natural transformation for all ,

where is extranatural in and respects some coherence laws.

Theorem. A functor is the same as a -valued Tambara representation.

Example. In the case of dependent lenses, we have a -valued Tambara representation

Geometric intuition. In the reverse-mode automatic differentiation case,

it corresponds to the pullback of differential 1-forms along smooth maps.

D

D

P : L ×A (A)
op

R →A D A B

ζ ​ : P (−, =f
B) ⇒ P (f −, f =A ∗ ∗′

) f : A → B

ζ ​f f

Optic ​ →L,R
op D D

Set

(X,X) ↦′ A C/A(X,X).′

16 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

☒ To generalize the functor lenses fibration, we need a bicategory of dependent optics.

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

☒ To generalize the functor lenses fibration, we need a bicategory of dependent optics.

☐ Work remains to be done to establish a monoidality theorem for dependent optics.

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

☒ To generalize the functor lenses fibration, we need a bicategory of dependent optics.

☐ Work remains to be done to establish a monoidality theorem for dependent optics.

☑ Dependent optics representations have a simple explicit description (Tambara representations).

17 / 18

Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

☒ To generalize the functor lenses fibration, we need a bicategory of dependent optics.

☐ Work remains to be done to establish a monoidality theorem for dependent optics.

☑ Dependent optics representations have a simple explicit description (Tambara representations).

☐ What can one say about Tambara representations for special cases of dependent optics?

17 / 18

Thank you!
Preprint.

Dependent Optics - Vertechi, 2022.

Available at arXiv:2204.09547.

Acknowledgments.

Mattia G. Bergomi

Keno Fischer

Bartosz Milewski

18 / 18

https://arxiv.org/abs/2204.09547

