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Lenses

Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

# get value for a given field
get_age(person) = person.age

# build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)
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jane = (name="Jane", age=32)

# get value for a given field
get_age(person) = person.age

# build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)

Bidirectionality. We have two methods in different directions:

Composability. Lenses can be composed to handle nested data:

get : X → Y put: X × Y →′ X .′

​ ​

X

x

→ Z

↦ get ​(get ​(x))2 1

X × Z ′

(x, z )′
→ X ′

↦ put ​(x, put ​(get ​(x), z ))1 2 1
′
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Setting. Let  be a category and  a pseudofunctor.

Definition. The category  has

objects of the form , where  and ,

morphisms given by

Here, the notation  is a shorthand for .

Bidirectionality.  is forward and  is backward.

Composability. By functoriality of  (and ), functor lenses compose.

C F : C →op Cat

Lens ​F

​(
X

P ) X ∈ Ob(C) P ∈ Ob(F )X

Lens ​ ​ , ​ =F ((
X

P) (
Y

Q)) ​ F (f (Q),P ).
f : X→Y

∐ X ∗

f ∗ F(f)

f : X → Y f : f (Q) →# ∗ P

f ∗ F
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Examples of functor lenses

Plain lenses. Functor lenses for .X ↦ coKleisli(X × −)

​ ​

Lens((X,X ), (Y ,Y ))′ ′ = ​ C(X × Y ,X )
X→Y

∐ ′ ′

≃ C(X,Y ) × C(X × Y ,X ).′ ′
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Examples of functor lenses

Plain lenses. Functor lenses for .

Dependent lenses. Functor lenses for  (contravariant slice functor).

The functor  embeds lenses inside
dependent lenses.

We are replacing trivial bundles  with general bundles

(aka dependent types) .

X ↦ coKleisli(X × −)

​ ​

Lens((X,X ), (Y ,Y ))′ ′ = ​ C(X × Y ,X )
X→Y

∐ ′ ′

≃ C(X,Y ) × C(X × Y ,X ).′ ′

C/−

DLens(U → X,V → Y ) = ​ C/X(X × ​

X→Y

∐ Y V ,U).

(X,X ) ↦′ (X × X →′ X)

X × X →′ X

U → X
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Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

Procedure.

Hard-code the derivative of primitive functions.

Apply the chain rule for composition of primitive functions.

Applications. Compute gradients in deep learning (backpropagation).

Bidirectionality and composability suggest that lenses might be a good fit.

6 / 18



Reverse-mode automatic differentiation

Let  be a smooth function between Euclidean spaces.


Then, we can define a lens as follows (  is a dual vector):

In other words,

the  method is given by the function,

the  method is given by the dual of the differential.

f : X → Y

v ∈ Y ∗

forward(x) = f(x)  and  backward(x, v) = (Df(x) )v.∗

forward
backward
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Then, we can define a lens as follows (  is a dual vector):

In other words,

the  method is given by the function,

the  method is given by the dual of the differential.

Bidirectionality. Value and derivatives computed in opposite directions.

Composability. Lens composition corresponds to the chain rule.

Inefficiency. The forward and backward passes often share computation.

f : X → Y

v ∈ Y ∗

forward(x) = f(x)  and  backward(x, v) = (Df(x) )v.∗

forward
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Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as
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Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as

Advantages.

Closure can be optimized based on the forward pass computation.

Default implementation of most automatic differentiation libraries.

Issues.

No clear representation of shared computation (hidden in a closure).

We actually need dependent lenses in general, but the equivalent of 

 for dependent lenses is complicated.

​ ​

X

x

→ Y × [Y ,X ]′ ′

↦ f(x), v ↦ (Df(x) )v .( ∗ )

X → Y × [Y ,X ]′ ′
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Optics

Let  be a space of shared data (between forward and backward passes).

Key intuition. If  is a category with finite products,

A (Cartesian) optic is an equivalence class of a pair of maps

Efficiency. The morphism  can read data from  instead of recomputing it (Diffractor.jl).

M

l : X →M × Y  and  r : M × Y →′ X .′

C

C(X,M ×∫
M∈C

Y ) × C(M × Y ,X ) ≃′ ′ C(X,Y ) × C(X × Y ,X ).′ ′
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Clarke et al. (2020) described an even more general version, mixed optics:

where  are actegories: actions of a monoidal category  on  respectively.

Issue. Unfortunately, this is not sufficient to generalize functor lenses,



where one has a pseudofunctor to  rather than an actegory.

Key intuition. An actegory is a pseudofunctor from a bicategory with one object to .


Milewski (2022), Vertechi (2022), and Capucci (2022) allow an arbitrary source bicategory.
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objects of the form , where , , and ,
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Here, the notations  are shorthands for  respectively.

Bidirectionality.  encode forward and backward directions.

Composability. By functoriality of  (and ), we can compose dependent optics.
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Definition.  is the category with

objects of the form , where , , and ,

morphisms given by

Here, the notations  are shorthands for  respectively.

Bidirectionality.  encode forward and backward directions.

Composability. By functoriality of  (and ), we can compose dependent optics.

Theorem.  is a category.

B L, R : B ⇉op Cat

Optic ​L,R

(X,X )′ A A ∈ Ob(B) X ∈ Ob(L )A X ∈′ Ob(R )A
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 is the delooping of a monoidal category  mixed optics.

 is a 1-category and  is trivial  functor lenses.

Properties.

☑ Coproducts. If  has finite coproducts which are turned into products by , then the

category  has finite coproducts.

☒ Fibration. There is in general no fibration ,
due to the equivalence
relation induced by coend.
We need the bicategory of optics, as in Braithwaite et. al (2021).

☐ Monoidal structure. Monoidality result for functor lenses may be valid here too.
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′ A ′ B L (X, f Y ) ×∫
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Functor lenses as dependent optics, take 2

With trivial  and only trivial 2-morphisms in , we can't use  to share computation.

 becomes, in a sense, the forward part of the optic.

We will see how to circumvent this issue for dependent lenses.

L B f

f
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Functor lenses as dependent optics, take 2

With trivial  and only trivial 2-morphisms in , we can't use  to share computation.

 becomes, in a sense, the forward part of the optic.

We will see how to circumvent this issue for dependent lenses.

Lenses as optics.

Dependent lenses as optics. Replace product with fibered product:

The RHS is the set of dependent lenses from  to .

L B f

f

C(X,M ×∫
M∈C

Y ) × C(M × Y ,Y ) ≃′ C(X,Y ) × C(X × Y ,Y ).′

C/A(X,M × ​∫
M∈C/(A×B)

B Y ) × C/A(M × ​B Y ,X ) ≃′ ′
​ C/A(X × ​

X→Y

∐ B Y ,X ).′ ′

(X × ​A X ) →′ X (Y × ​B Y ) →′ Y
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Is it problematic that different, natural choices of
pseudofunctors give rise to the same category of
dependent lenses?
Which is the most natural?

There is a unique 1-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.

As another example,  and  are not
really the same: they are different as bicategories.


Here, we recover them separately.

Philosophical FAQs on functor lenses as dependent optics

Optic ​(C,×) Lens ​(C,×)
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Which is the most natural?

There is a unique 1-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.

As another example,  and  are not
really the same: they are different as bicategories.


Here, we recover them separately.

What is the forward part of the optic if  is trivial?

In the bicategory of optics, 1-morphisms are given by a
coproduct rather than a coend.

Intuitively, the image of a 1-morphism is its forward part,
whereas its value within a fiber is the backward part.

Philosophical FAQs on functor lenses as dependent optics

Optic ​(C,×) Lens ​(C,×)

L

​

​ L (X, f Y ) × R (f Y ,X )
f∈B(A,B)

∐ A ∗ A ∗′ ′ ′

↓

​ L (X, f Y ).
f∈B(A,B)

∐ A ∗
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User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps

The morphism  is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

l : X → f Y  and  r : f Y →∗ ∗′ ′ X .′

f
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How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps

The morphism  is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

1. Direct computation. Compute coend explicitly (if possible) and use that as interface.

2. Optics representation. Define a functor from the category of optics to a friendlier category.

l : X → f Y  and  r : f Y →∗ ∗′ ′ X .′

f
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Tambara representations

Let  be an arbitrary category.

Tambara representation. A -valued Tambara representation consists of

a functor , for all object  in ,

a natural transformation  for all ,

where  is extranatural in  and respects some coherence laws.

D

D

P : L ×A ( A)
op

R →A D A B

ζ ​ : P (−, =f
B ) ⇒ P (f −, f =A ∗ ∗′

) f : A → B

ζ ​f f
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Tambara representations

Let  be an arbitrary category.

Tambara representation. A -valued Tambara representation consists of

a functor , for all object  in ,

a natural transformation  for all ,

where  is extranatural in  and respects some coherence laws.

Theorem. A functor  is the same as a -valued Tambara representation.

Example. In the case of dependent lenses, we have a -valued Tambara representation

Geometric intuition. In the reverse-mode automatic differentiation case,


it corresponds to the pullback of differential 1-forms along smooth maps.

D

D

P : L ×A ( A)
op

R →A D A B

ζ ​ : P (−, =f
B ) ⇒ P (f −, f =A ∗ ∗′

) f : A → B

ζ ​f f

Optic ​ →L,R
op D D

Set

(X,X ) ↦′ A C/A(X,X ).′
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Conclusions

☑ Dependent optics simultaneously generalize mixed optics and functor lenses.

☑ Dependent optics can be used to efficiently implement bidirectional transformations.

☑ Under some simple conditions, the category of dependent optics has finite coproducts.

☒ To generalize the functor lenses fibration, we need a bicategory of dependent optics.

☐ Work remains to be done to establish a monoidality theorem for dependent optics.

☑ Dependent optics representations have a simple explicit description (Tambara representations).

☐ What can one say about Tambara representations for special cases of dependent optics?
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Thank you!
Preprint.

Dependent Optics - Vertechi, 2022.

Available at arXiv:2204.09547.
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