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e Brief introduction to lenses.

o Functor lenses (in particular, dependent lenses).

e Lenses for reverse-mode automatic differentiation.

o Definition and basic properties of (dependent) optics.
e Dependent optics and functor lenses comparison.

e Representations of dependent optics.
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Lenses

Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

# get value for a given field
get_age(person) = person.age

# build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)
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Lenses are a useful abstraction to access and update data structures.

jane = (name="Jane", age=32)

# get value for a given field
get_age(person) = person.age

# build new structure from old structure and new field value
put_age(person, age) = (name=person.name, age=age)

Bidirectionality. We have two methods in different directions:

get: X - Y put: X xY' — X'.
Composability. Lenses can be composed to handle nested data:
X —=Z Xx7Z — X'
z — gety(get, (z)) (z,2') — put, (z, puty(get, (), 2'))
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Richer framework for lenses recently put forward (Spivak, 2019).

Setting. Let C be a category and F : C°? — Cat a pseudofunctor.

Definition. The category Lens r has

o objects of the form ()IZ,) where X € Ob(C) and P € Ob(F%),

e morphisms given by

Lens;(()}; )(g)): 1T 7#@),P)

f: X=Y
Here, the notation f* is a shorthand for JF( f).

Bidirectionality. f: X — Y is forwardand f# : f*(Q) — P is backward.

Composability. By functoriality of f* (and J), functor lenses compose.
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Examples of functor lenses

Plain lenses. Functor lenses for X +— coKleisli(X x —).

Lens((X,X'),(Y,Y")) = [] ¢(X xY',X)
X=Y
~C(X,Y)xC(X xY', X").
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Examples of functor lenses

Plain lenses. Functor lenses for X +— coKleisli(X x —).

Lens((X,X'),(Y,Y")) = [] ¢(X xY',X)
X=Y
~C(X,Y)xC(X xY', X").

Dependent lenses. Functor lenses for C /— (contravariant slice functor).

DLens(U — X,V = Y) = || ¢/X(X xy V,U).
X—=Y

The functor (X, X') — (X x X' — X) embeds lenses inside

dependent lenses.

We are replacing trivial bundles X x X' — X with general bundles
(aka dependent types) U — X.
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Reverse-mode automatic differentiation

Aim. Pull back cotangent vectors along a smooth function (dual of the differential).

Procedure.
e Hard-code the derivative of primitive functions.
e Apply the chain rule for composition of primitive functions.

Applications. Compute gradients in deep learning (backpropagation).

Bidirectionality and composability suggest that lenses might be a good fit.
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Reverse-mode automatic differentiation

Let f: X — Y be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (v € Y * is a dual vector):
forward(z) = f(xz) and Dbackward(z,v) = (Df(x)")v.
In other words,

o the forward method is given by the function,
o the backward method is given by the dual of the differential.

7/18



Reverse-mode automatic differentiation

Let f: X — Y be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (v € Y * is a dual vector):

forward(z) = f(xz) and Dbackward(z,v) = (Df(x)")v.

In other words,

o the forward method is given by the function,
o the backward method is given by the dual of the differential.

Bidirectionality. Value and derivatives computed in opposite directions.

Composability. Lens composition corresponds to the chain rule.

7/18



Reverse-mode automatic differentiation

Let f: X — Y be a smooth function between Euclidean spaces.

Then, we can define a lens as follows (v € Y * is a dual vector):
forward(z) = f(xz) and Dbackward(z,v) = (Df(x)")v.
In other words,

o the forward method is given by the function,
o the backward method is given by the dual of the differential.

Bidirectionality. Value and derivatives computed in opposite directions.

Composability. Lens composition corresponds to the chain rule.

Inefficiency. The forward and backward passes often share computation.
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Shared computation between forward and reverse passes

Closure encoding. Combine the forward and backward methods as
X =Y X [Y’,X']
z— (f(z), v (Df(x)*)v).

Advantages.
e Closure can be optimized based on the forward pass computation.

o Default implementation of most automatic differentiation libraries.

Issues.

 No clear representation of shared computation (hidden in a closure).

e We actually need dependent lenses in general, but the equivalent of
X — Y x [Y', X'] for dependent lenses is complicated.
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Let M be a space of shared data (between forward and backward passes).
I: X >MxY and r:MxY — X'

Key intuition. If C is a category with finite products,

McC
/ C(X,MxY)xC(MxY' , X"Y~C(X,Y)xC(X xY', X").

A (Cartesian) optic is an equivalence class of a pair of maps

I: X > MxY and r:MxY — X'

Efficiency. The morphism 7 can read data from M instead of recomputing it (Diffractor jl).

9/18



Optics
The Cartesian product can be replaced with a general symmetric monoidal structure
MeC
/ C(X,M®Y)xC(MYY).

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

10 /18



Optics
The Cartesian product can be replaced with a general symmetric monoidal structure

MeC
/ CX,MQY)xC(MQY'Y).

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:
MeM
/ Co(X,M-,Y)xCr(M -z YY),

where -, - are actegories: actions of a monoidal category M on Cr,, Cr respectively.

10 /18



Optics
The Cartesian product can be replaced with a general symmetric monoidal structure

MeC
/ CX,MQY)xC(MQY'Y).

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:
MeM
/ Co(X,M-,Y)xCr(M -z YY),

where -, - are actegories: actions of a monoidal category M on Cr,, Cr respectively.

Issue. Unfortunately, this is not sufficient to generalize functor lenses,
where one has a pseudofunctor to Cat rather than an actegory.

10 /18



Optics
The Cartesian product can be replaced with a general symmetric monoidal structure
MeC
/ C(X,M®Y)xC(MYY).

Riley (2018) proved that such optics compose and form a symmetric monoidal category.

Clarke et al. (2020) described an even more general version, mixed optics:
MeM
/ Co(X,M-,Y)xCr(M -z YY),

where -, - are actegories: actions of a monoidal category M on Cr,, Cr respectively.

Issue. Unfortunately, this is not sufficient to generalize functor lenses,
where one has a pseudofunctor to Cat rather than an actegory.

Key intuition. An actegory is a pseudofunctor from a bicategory with one object to Cat.

Milewski (2022), Vertechi (2022), and Capucci (2022) allow an arbitrary source bicategory.
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Setting. Let 3 be a bicategory. Let £, R : B°? =2 Cat be pseudofunctors.

Definition. Optic, y is the category with

o objects of the form (X, X')4, where A € Ob(B), X € Ob(L#), and X’ € Ob(R4),

e morphisms given by
feB(A,B) ,
Optic, (X, X")4, (Y,Y")P) = / LAX, YY) x RAFY, X).

Here, the notations f*, f*, are shorthands for L(f), R(f) respectively.
Bidirectionality. £, R encode forward and backward directions.
Composability. By functoriality of f*, f*l (and L, R), we can compose dependent optics.

Theorem. Optic, x is a category.
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The category of dependent optics
feB(A,B) /
Optic, p(X, X)4, (Y, Y)%) = [ LAX, 1Y) x RA(F'Y', X))

Specializations.
o BB is the delooping of a monoidal category = mixed optics.

o Bis al-category and L is trivial = functor lenses.

Properties.

Coproducts. If B has finite coproducts which are turned into products by L, R, then the
category Optic,  has finite coproducts.

Fibration. There is in general no fibration OpticE,R — B, due to the equivalence
relation induced by coend. We need the bicategory of optics, as in Braithwaite et. al (2021).

O Monoidal structure. Monoidality result for functor lenses may be valid here too.
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Functor lenses as dependent optics, take 2

o With trivial £ and only trivial 2-morphisms in B, we can't use f to share computation.

o f becomes, in a sense, the forward part of the optic.

o We will see how to circumvent this issue for dependent lenses.
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Functor lenses as dependent optics, take 2

o With trivial £ and only trivial 2-morphisms in B, we can't use f to share computation.

o f becomes, in a sense, the forward part of the optic.

o We will see how to circumvent this issue for dependent lenses.

Lenses as optics.

MeC
/ C(X,MxY)xC(MxY"Y)~C(X,Y)xC(X xY",Y).

Dependent lenses as optics. Replace product with fibered product:

MeC/(AxB)
/ C/AX,M xpY) x C/AM xpY', X') ~ [] C/AX xpY’, X").

X—=Y

The RHS is the set of dependent lenses from (X x4 X') = X to (Y xgY') = Y.
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Philosophical FAQs on functor lenses as dependent optics

Is it problematic that different, natural choices of
pseudofunctors give rise to the same category of
dependent lenses? Which is the most natural?

There is a unique T-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.
As another example, Optic ¢ .y and Lensc x) are not

really the same: they are different as bicategories.
Here, we recover them separately.
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Is it problematic that different, natural choices of
pseudofunctors give rise to the same category of
dependent lenses? Which is the most natural?

There is a unique T-category of dependent lenses, but at
least two reasonable bicategories of dependent lenses.

The two choices of pseudofunctors reflect this.

As another example, Optic ¢ .y and Lensc x) are not

really the same: they are different as bicategories.
Here, we recover them separately.

What is the forward part of the optic if L is trivial?

In the bicategory of optics, 1-morphisms are given by a
coproduct rather than a coend.

[T £4x, £Y)xRAFY, X))
fEB(A,B)

]
Il A&, rv).

feB(A,B)

Intuitively, the image of a 1-morphism is its forward part,
whereas its value within a fiber is the backward part.
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User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps
I: X = Y and r: ffY — X
The morphism f is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?
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User-facing APIs

How should libraries based on dependent optics (e.g., Diffractor.jl) interface with users?

Dependent optics are encoded as equivalence classes of pairs of maps
I: X = Y and r: ffY — X
The morphism f is somewhat ill-defined (due to the equivalence class).

How can it be hidden from the user?

1. Direct computation. Compute coend explicitly (if possible) and use that as interface.

2. Optics representation. Define a functor from the category of optics to a friendlier category.
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Tambara representations

Let D be an arbitrary category.

Tambara representation. A D-valued Tambara representation consists of

e afunctor P4: (EA)OP x R4 — D, for all object A in BB,
e anatural transformation s : PB(—, =) = PA(f*—, 7 =) forall f: A — B,

where (¢ is extranatural in f and respects some coherence laws.
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Let D be an arbitrary category.

Tambara representation. A D-valued Tambara representation consists of

e afunctor P4: (EA)OP x R4 — D, for all object A in BB,
e anatural transformation s : PB(—, =) = PA(f*—, 7 =) forall f: A — B,

where (¢ is extranatural in f and respects some coherence laws.
Theorem. A functor OptichR — D is the same as a D-valued Tambara representation.

Example. In the case of dependent lenses, we have a Set-valued Tambara representation
(X, X" — C/A(X, X)).

Geometric intuition. In the reverse-mode automatic differentiation case,
it corresponds to the pullback of differential 1-forms along smooth maps.
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Conclusions

Dependent optics simultaneously generalize mixed optics and functor lenses.
Dependent optics can be used to efficiently implement bidirectional transformations.
Under some simple conditions, the category of dependent optics has finite coproducts.
To generalize the functor lenses fibration, we need a bicategory of dependent optics.

O Work remains to be done to establish a monoidality theorem for dependent optics.

Dependent optics representations have a simple explicit description (Tambara representations).

O What can one say about Tambara representations for special cases of dependent optics?

17 /18



Thank you!

Preprint.

Dependent Optics - Vertechi, 2022.

Available at arXiv:2204.09547.
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