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» Domain theory provided a mathematical semantics for . Leyinh
ornischer
‘symbolic’ computation
Introduction

» Lack this explainability for ‘non-symbolic’
computation (e.g., neural nets)

» Today: extend domain-theoretic semantics to

non-symbolic computation
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> Non-symbolic computation as a dynamical system: Levin
Hornischer

> (computational) states

» dynamics (program) Introduction

» Task: build ‘domain’ describing its behavior.

Observation
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Dynamical systems Dynamical domains
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Definition (a very general one) e
A dynamical system X is a structure (X, A, u, T') where
> state space (X, .A, p) is probability space Dynamical
systems

(standard Borel)
» dynamics 7' : X — X is measurable.

X standard if the probability space is Lebesgue and 1" a

measure-preserving bijection.

» Standard dynamical systems studied in ergodic theory.

» In computation, standardness too strong:
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EXAMPLE: MACHINE LEARNING

> At each training stage, machine characterized by a set

w of parameters/weights.

» Given some data d, the learning algorithm produces
w' = L(w,d).

» As a dynamical system:

» State space X =W x D%
» Dynamics T : X — X maps

(w,a) - (L(w,ao) , (51,52,...))

> A measure on X describing random initialization and
data sampling needn’t be preserved by T'.
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Definition Levin

Hornischer

A system morphism (or factor)

Dynamical

@ : (X, A, My T) — (Y, B, v, S) systems

is a partial function ¢ : X — Y with domain M C X and
codomain N C Y such that

» M and N are invariant sets of full measure.
» Measure-preserving: u(¢~1(B)) = v(B)
» Equivariant: ¢(T'(z)) = S(p(x)).

If ¢ bijective, it is an isomorphism. Two morphisms

identified if identical on invariant set of full measure.
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BACKGROUND DOMAIN THEORY I

» Domains are certain partial orders.

» Intuitively, elements are outputs of computational

processes
» and the order describes information containment.

» Example: finite and infinite binary strings ordered by

extension.
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Systems via
Domains

» A directed-complete partial order (dcpo) is a partial oevin
order (D, <) where every directed subset A has a least
upper bound \/ A (aka join).
» Scott topology: U C D is Scott-open if ?yys?:r::cal
> acUa<b=belU
» ACD directed,/ AcU=3acA:aclU
» Function f: D — E between dcpos Scott-continuous

iff monotone and preserves directed joins.

> Scott domain: non-empty, ‘w-algebraic’, ‘bounded
complete’ dcpo.
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FROM SYSTEMS TO DOMAINS: THE IDEA

>

Given X = (X, A, u, T), construct © = (D, v, f), the
dynamical domain of X.

Intuitively, © consists of ‘basic’ elements that
represent increasingly finer observations of X,
together with the ‘limits’ of these basic elements.

The limit elements (with induced dynamics) form the

system modeled by ®, isomorphic to X.
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OBSERVED SYSTEM I Systems via
Domains
» A € A as observation/measurement: if system in a Lewim

Hornischer

state z € A, measurement A is positive.

> A finite cover C C A of X, yields observed system

reflecting the original one:

% C From systems
to domains

» For observation parameter i = (n,C) and € X define

(’)Z-(;v):{tGC”:Tk(m)etk fork:O,...,n—l}
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» Set of observable behaviors H; := {O;(z) : x € X} has

natural dynamics:

» But not functional ~» Smyth powerdomain:
» D, :={M :0# M CH,}, ordered by D
~~ Finite Scott domain
~~ Scott-continuous function
> 0;(0;(2)) :==p{y € X : Oi(y) = Oi(x)}.
~+ Valuation

» Write Ql = (Divviu fl)
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REFINING OBSERVATIONS 1

» Idea: Refine observation parameters 7 and take the
limit of the ©;.

» Won't use all of A, only measurements from a

countable subset B ‘generating’ A.

> Say B C A is a basis if closed under finite intersection.

» Write I(B) for the set of observation parameters
i=(n,C) with C C B.
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(refinement) if
> n<m
» Each D € D is a subset of some C € C
» For each z € C' € C, thereis D € D withz € D C C

» Then (I(B), <) is a directed preorder
» for i < j have p;; : Dj — D; with
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» For i = (n,C) and j = (m, D) in I(B), define i < j
(refinement) if
> n<m
» Each D € D is a subset of some C € C
» For each z € C' € C, thereis D € D withz € D C C

» Then (I(B), <) is a directed preorder
» for i < j have p;; : Dj — D; with

M — {O;(x) : Oj(x) € M}.

» Want the limit of the diagram (D, pij)r(s) to get
dynamical domain ©.
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THE CATEGORY OF DYNAMICAL DOMAINS

» To build the limit of (D, pi;) (), we need to specify

the surrounding category:
» the category dDOM of dynamical domains.

» Define it in domain-theoretic way.
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1. Fix background category C of domains

(dcpos with least element, Scott-continuous functions).
2. Subscript f: full subcategory of finite domains.

3. Superscript p: wide subcategory where morphisms
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4. Define expanding system as diagram in C} with
additional properties (directed index set).
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EXAMPLE: DEFINITION BIFINITE DOMAINS

1. Fix background category C of domains

(dcpos with least element, Scott-continuous functions).
2. Subscript f: full subcategory of finite domains.

3. Superscript p: wide subcategory where morphisms
also are projections.

4. Define expanding system as diagram in C} with
additional properties (directed index set).

5. Show expanding systems have limits in CP.

6. Define desired category D (bifinite domains) as full

subcategory of C whose objects are limits of
expanding systems.
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» v a continuous valuation on D (assigning Scott-open
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BACKGROUND CATEGORY I

Systems via
Domains

Definition Levin

Hornischer

A dynamical dcpo D is a triple (D, v, f) where
» D is a dcpo

» v a continuous valuation on D (assigning Scott-open
sets values in [0, 0o])

Dynamical

» f:D — D is Scott-continuous.

domains
® is a dynamical Scott domain if, additionally,
» D is a Scott domain

» v max-normalized (v(D) = 1 and max D is countable

intersection of Scot-opens with v-value 1).
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A dynamical morphism « : (D,v, f) = (E,w, g) is a
Scott-continuous function « : D — E such that

1. Max-preserving: a(max D) C max E.

2. Max-bisimulative: If a € D and e € max F with
a(a) < e, there is a < d € max D with a(d) = e. Dynamical

domains

3. Valuation-preserving: w(V) = v(a=1(V)).

4. Max-semi-equivariant: a(f(a)) > g(a(a)), a € max D



BACKGROUND CATEGORY 11

Definition

A dynamical morphism « : (D,v, f) = (E,w, g) is a
Scott-continuous function « : D — E such that

1. Max-preserving: a(max D) C max E.

2. Max-bisimulative: If a € D and e € max F with
a(a) < e, there is a < d € max D with a(d) = e.

3. Valuation-preserving: w(V) = v(a=1(V)).

=~

. Max-semi-equivariant: a(f(a)) > g(a(a)), a € max D

» Background category dSCO: dynamical Scott domains

with dynamical morphisms.
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EXPANDING SYSTEM

Definition
An expanding system is a diagram (D;, pij) o, in dSCOf
where [ is a countable directed preorder and
» upward deterministic: if f; fails, on input a;, to
uniquely pick out a maximal element above it, this

will be eventually remedied.

Formally: For alli € I, if 3a;,b; # b, € max D; : b;, b, > fi(a;),
then there is j >4 in I such that Va;,b;, b;» € max D; :
- if pij(a;) = a;,pij(b;) = bi, pi; (b)) = b},

- then b; ¥ fi(a;) or ¥, # fi(a;).
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THE LIMIT THEOREM I

Theorem

Let (D;,pi;)1 be an expanding system. Then
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Theorem
Let (D;,pi;)1r be an expanding system. Then

1. D:={a€[le; D;i:a(i) =pij(a(4))} is Scott domain.
Define p; : D — D; by pi(a) := a(i).
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THE LIMIT THEOREM I

Theorem
Let (D;,pi;)1r be an expanding system. Then
1. D:={a€[le; D;i:a(i) =pij(a(4))} is Scott domain.
Define p; : D — D; by pi(a) := a(i).

2. There is a unique mazx-normalizing valuation v with

v(U) = v(p{l(U)).
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THE LIMIT THEOREM I

Dynamical
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Let (D;,pi;)1r be an expanding system. Then

1. D:={a€[le; D;i:a(i) =pij(a(4))} is Scott domain.
Define p; : D — D; by pi(a) := a(i).

2. There is a unique mazx-normalizing valuation v with

V; (U) = U(p;1 (U)) . Dynamical

domains

3. There is a pointwise largest f : D — D that is

Scott-continuous, mazx-preserving, f(a)(i) > fi(a(i)).



THE LIMIT THEOREM I
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Let (D;,pi;)1r be an expanding system. Then

1. D:={a€[le; D;i:a(i) =pij(a(4))} is Scott domain.
Define p; : D — D; by pi(a) := a(i).

2. There is a unique mazx-normalizing valuation v with

V; (U) = q)(p{l (U)) . Dynamical

domains

3. There is a pointwise largest f : D — D that is
Scott-continuous, mazx-preserving, f(a)(i) > fi(a(i)).
And (D,p;) with ®© := (D, v, f) is the ‘restricted’ limit:
» a cone in dSCOP with mazx-preserving domain

» any other cone with max-preserving domain uniquely
factors through it.
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» Restricted limit:
> Want ® to model a dynamical system on its maximal
elements, so f should be max-preserving.

® limit subject to being max-preserving.
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» Restricted limit:

> Want © to model a dynamical system on its maximal
elements, so f should be max-preserving.
> ® limit subject to being max-preserving.

> Example:
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» Restricted limit:

> Want © to model a dynamical system on its maximal
elements, so f should be max-preserving.
> ® limit subject to being max-preserving.

> Example:

» The diagram (9D;, p;;) from observing a system.

Dynamical
Systems via
Domains

Levin
Hornischer

Dynamical
domains



THE LIMIT THEOREM II

» Restricted limit:
> Want © to model a dynamical system on its maximal
elements, so f should be max-preserving.
> ® limit subject to being max-preserving.
> Example:
» The diagram (9D;, p;;) from observing a system.

» Proof:

Dynamical
Systems via
Domains

Levin
Hornischer

Dynamical
domains



THE LIMIT THEOREM II

» Restricted limit:
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elements, so f should be max-preserving.
> ® limit subject to being max-preserving.

> Example:
» The diagram (9D;, p;;) from observing a system.

» Proof:
» The construction of D is standard [AJ94].
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» Restricted limit:
> Want © to model a dynamical system on its maximal
elements, so f should be max-preserving.
> ® limit subject to being max-preserving.

> Example:
» The diagram (9D;, p;;) from observing a system.

» Proof:
» The construction of D is standard [AJ94].
> For v one can use existing work [GL18].
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THE LIMIT THEOREM II

» Restricted limit:
> Want © to model a dynamical system on its maximal
elements, so f should be max-preserving.
> ® limit subject to being max-preserving.

> Example:
» The diagram (9D;, p;;) from observing a system.

» Proof:
» The construction of D is standard [AJ94].
> For v one can use existing work [GL18].
» The difficulty is with f, bit of a tour de force.

Dynamical
Systems via
Domains

Levin
Hornischer

Dynamical
domains



CATEGORY OF DYNAMICAL DOMAINS

Definition

» A dynamical domain is a dynamical Scott domain ®
that is the restricted limit of an expanding system.

Dynamical
Systems via
Domains

Levin
Hornischer

Dynamical
domains
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Definition
» A dynamical domain is a dynamical Scott domain ©
that is the restricted limit of an expanding system.

» The full subcategory of dSCO whose objects are
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CATEGORY OF DYNAMICAL DOMAINS Dynamical

Systems via
Domains

Definition Levin

Hornischer
» A dynamical domain is a dynamical Scott domain ©
that is the restricted limit of an expanding system.

» The full subcategory of dSCO whose objects are
dynamical domains is denoted dDOM.

Dynamical
domains

» So morphisms in dDOM are dynamical morphisms
(not required to be projections).
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Dynamical
Systems via

FROM DOMAINS TO SYSTEMS

Domains

Theorem Levin

Hornischer
Let © = (D,v, f) be a dynamical domain. Then

1. max D with the relative Scott topology T is a compact
0-dim Polish space

2. f restricts to a continuous function on max D

3. v determines a probability measure p, on B(T).

From domains

Thus, we obtain the dynamical system to systems

S(®) := (max D, B(7), jty, f | max D).
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Theorem

> Let X = (X, A, u,T) be a dynamical system.
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> Let X = (X, A, u,T) be a dynamical system.
> Let B C A be countable basis that is separating.
» Build ©; = (D, vi, fi) and pi; : Dj — D; as described.
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PUTTING EVERYTHING TOGETHER

Theorem

Let X = (X, A, u, T) be a dynamical system.

Let B C A be countable basis that is separating.

Build ®; = (D;, v, fi) and pij : Dj — D; as described.
Then (Di, pij)1() is an expanding system.

Let observation domain D(X,B) := (D, v, f) be the
dynamical domain obtained as restricted limit.
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PUTTING EVERYTHING TOGETHER

Theorem

| 2

vV v.Vvy

Let X = (X, A, u, T) be a dynamical system.

Let B C A be countable basis that is separating.

Build ®; = (D;, v, fi) and pij : Dj — D; as described.
Then (Di, pij)1() is an expanding system.

Let observation domain D(X,B) := (D, v, f) be the
dynamical domain obtained as restricted limit.

The canonical embedding of X into S(D(X, B))
p:X smaxD  z o ({Oi(@)} i€ I(B))

s an isomorphism of dynamical systems.
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CATEGORY-THEORETICALLY: ADJUNCTION I e

Systems via
Domains

» Idea: The operations D and S should be adjoint. Levin

Hornischer

» Use category TSpc of topological systems:
» Objects: (X, 7, u,T) with X 0-dim compact Polish
space, 1 probability measure on B(7), T' continuous.
» Morphisms: continuous, measure-preserving,
equivariant functions.
» Above results: Every dynamical system is realized by
such a topological system (cf. Jewett—Krieger Thm).
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CATEGORY-THEORETICALLY: ADJUNCTION II

Domains
Theorem o Levin
D
TSoc T dDOM
S
» For X in TSy, D(X) uses clopens as basis.
Adjunction

» Restricts to equivalence: demand for ©

» For a € D, a = A(TaNmax D)
» For ) # A C max D closed, A = (1 A A) Nmax D.



DETAILED PICTURE

dDOM

|
A S —

dDOM,

DS Loc bTS, <

TSoc

gl
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OuTLOOK 1

» All can be extended to standard dynamical systems.
> Reap the benefits: study dynamical systems through
the rich domain theory (e.g., entropy).
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Non-symbolic computation as limit of (or profinite)

symbolic computation?
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OuTLOOK 1

» All can be extended to standard dynamical systems.
> Reap the benefits: study dynamical systems through
the rich domain theory (e.g., entropy).

> Relation symbolic vs. non-symbolic computation:
»> Non-symbolic computation as limit of (or profinite)
symbolic computation?
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OuTtLooK II

Further questions:
» Computability theory for non-symbolic computation
via effective domain theory.
Explore dDOM: domain constructions, universal

domain, type structure for non-symbolic computation.
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OuTLOOK 11

Further questions:

» Computability theory for non-symbolic computation
via effective domain theory.
» Explore dDOM: domain constructions, universal

domain, type structure for non-symbolic computation.

» Finer notion of observation: real-valued functions (cf.

operator approach to ergodic theory)
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SUMMARY Dynamical

Systems via
Domains

» Extend domain-theoretic semantics to non-symbolic Levin

Hornischer

computation
> Viewed as dynamical system
> Category of dynamical domains

» Adjunction:

Observation

/\

Dynamical systems T Dynamical domains

\/

Modeled system Conclusion

Thank you!
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