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Introduction I

I Domain theory provided a mathematical semantics for
‘symbolic’ computation

I Lack this explainability for ‘non-symbolic’
computation (e.g., neural nets)

I Today: extend domain-theoretic semantics to
non-symbolic computation
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Introduction II

I Non-symbolic computation as a dynamical system:
I (computational) states
I dynamics (program)

I Task: build ‘domain’ describing its behavior.

Dynamical systems Dynamical domains

Observation

Modeled system
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Dynamical systems

Definition (a very general one)

A dynamical system X is a structure (X,A, µ, T ) where
I state space (X,A, µ) is probability space

(standard Borel)
I dynamics T : X → X is measurable.

X standard if the probability space is Lebesgue and T a
measure-preserving bijection.

I Standard dynamical systems studied in ergodic theory.
I In computation, standardness too strong:
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Example: machine learning

I At each training stage, machine characterized by a set
w of parameters/weights.

I Given some data d, the learning algorithm produces
w′ = L(w, d).

I As a dynamical system:
I State space X = W ×Dω

I Dynamics T : X → X maps(
w, δ

)
7→
(
L(w, δ0) , (δ1, δ2, . . .)

)

I A measure on X describing random initialization and
data sampling needn’t be preserved by T .
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System morphisms

Definition
A system morphism (or factor)

ϕ : (X,A, µ, T )→ (Y,B, ν, S)

is a partial function ϕ : X → Y with domain M ⊆ X and
codomain N ⊆ Y such that
I M and N are invariant sets of full measure.
I Measure-preserving: µ

(
ϕ−1(B)

)
= ν(B)

I Equivariant: ϕ(T (x)) = S(ϕ(x)).
If ϕ bijective, it is an isomorphism. Two morphisms
identified if identical on invariant set of full measure.
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Background domain theory I

I Domains are certain partial orders.
I Intuitively, elements are outputs of computational

processes
I and the order describes information containment.
I Example: finite and infinite binary strings ordered by

extension.
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Background domain theory II

I A directed-complete partial order (dcpo) is a partial
order (D,≤) where every directed subset A has a least
upper bound

∨
A (aka join).

I Scott topology: U ⊆ D is Scott-open if
I a ∈ U, a ≤ b⇒ b ∈ U
I A ⊆ D directed,

∨
A ∈ U ⇒ ∃a ∈ A : a ∈ U

I Function f : D → E between dcpos Scott-continuous
iff monotone and preserves directed joins.

I Scott domain: non-empty, ‘ω-algebraic’, ‘bounded
complete’ dcpo.
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From systems to domains: the idea

I Given X = (X,A, µ, T ), construct D = (D, v, f), the
dynamical domain of X.

I Intuitively, D consists of ‘basic’ elements that
represent increasingly finer observations of X,

I together with the ‘limits’ of these basic elements.
I The limit elements (with induced dynamics) form the

system modeled by D, isomorphic to X.
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Observed system I

I A ∈ A as observation/measurement: if system in a
state x ∈ A, measurement A is positive.

I A finite cover C ⊆ A of X, yields observed system
reflecting the original one:

X C

I For observation parameter i = (n, C) and x ∈ X define

Oi(x) =
{
t ∈ Cn : T k(x) ∈ tk for k = 0, . . . , n− 1

}
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Observed system II

I Set of observable behaviors Hi := {Oi(x) : x ∈ X} has
natural dynamics:

Oi(x) 7→ Oi(T (x)).

I But not functional  Smyth powerdomain:
I Di := {M : ∅ 6= M ⊆ Hi}, ordered by ⊇
 Finite Scott domain

I fi : Di → Di by fi(M) := {Oi(T (y)) : Oi(y) ∈M}
 Scott-continuous function

I vi

(
Oi(x)

)
:= µ

{
y ∈ X : Oi(y) = Oi(x)

}
.

 Valuation

I Write Di := (Di, vi, fi).
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Refining observations I

I Idea: Refine observation parameters i and take the
limit of the Di.

I Won’t use all of A, only measurements from a
countable subset B ‘generating’ A.

I Say B ⊆ A is a basis if closed under finite intersection.
I Write I(B) for the set of observation parameters
i = (n, C) with C ⊆ B.
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Refining observations II

I For i = (n, C) and j = (m,D) in I(B), define i ≤ j
(refinement) if
I n ≤ m
I Each D ∈ D is a subset of some C ∈ C
I For each x ∈ C ∈ C, there is D ∈ D with x ∈ D ⊆ C

I Then (I(B),≤) is a directed preorder
I for i ≤ j have pij : Dj → Di with

M 7→ {Oi(x) : Oj(x) ∈M}.

I Want the limit of the diagram (Di, pij)I(B) to get
dynamical domain D.
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Outline

Dynamical systems

From systems to domains

Dynamical domains

From domains to systems

Adjunction
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The category of dynamical domains

I To build the limit of (Di, pij)I(B), we need to specify
the surrounding category:

I the category dDOM of dynamical domains.
I Define it in domain-theoretic way.
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Example: definition bifinite domains

1. Fix background category C of domains
(dcpos with least element, Scott-continuous functions).

2. Subscript f: full subcategory of finite domains.
3. Superscript p: wide subcategory where morphisms

also are projections.
4. Define expanding system as diagram in Cp

f with
additional properties (directed index set).

5. Show expanding systems have limits in Cp.
6. Define desired category D (bifinite domains) as full

subcategory of C whose objects are limits of
expanding systems.
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Background category I

Definition
A dynamical dcpo D is a triple (D, v, f) where
I D is a dcpo
I v a continuous valuation on D (assigning Scott-open

sets values in [0,∞])
I f : D → D is Scott-continuous.

D is a dynamical Scott domain if, additionally,
I D is a Scott domain
I v max-normalized (v(D) = 1 and maxD is countable

intersection of Scot-opens with v-value 1).
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Background category II

Definition
A dynamical morphism α : (D, v, f)→ (E,w, g) is a
Scott-continuous function α : D → E such that
1. Max-preserving: α(maxD) ⊆ maxE.

2. Max-bisimulative: If a ∈ D and e ∈ maxE with
α(a) ≤ e, there is a ≤ d ∈ maxD with α(d) = e.

3. Valuation-preserving: w(V ) = v(α−1(V )).

4. Max-semi-equivariant: α(f(a)) ≥ g(α(a)), a ∈ maxD

I Background category dSCO: dynamical Scott domains
with dynamical morphisms.
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Expanding system

Definition
An expanding system is a diagram

(
Di, pij

)
Iop in dSCOp

f
where I is a countable directed preorder and
I upward deterministic: if fi fails, on input ai, to

uniquely pick out a maximal element above it, this
will be eventually remedied.

Formally: For all i ∈ I, if ∃ai, bi 6= b′
i ∈ maxDi : bi, b

′
i ≥ fi(ai),

then there is j ≥ i in I such that ∀aj , bj , b
′
j ∈ maxDj :

- if pij(aj) = ai, pij(bj) = bi, pij(b′
j) = b′

i,

- then bj 6≥ fj(aj) or b′
j 6≥ fj(aj).
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The limit theorem I

Theorem
Let (Di, pij)I be an expanding system. Then

1. D :=
{
a ∈

∏
i∈I Di : a(i) = pij(a(j))

}
is Scott domain.

Define pi : D → Di by pi(a) := a(i).

2. There is a unique max-normalizing valuation v with
vi(U) = v(p−1

i (U)).

3. There is a pointwise largest f : D → D that is
Scott-continuous, max-preserving, f(a)(i) ≥ fi(a(i)).

And (D, pi) with D := (D, v, f) is the ‘restricted’ limit:
I a cone in dSCOp with max-preserving domain
I any other cone with max-preserving domain uniquely

factors through it.
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The limit theorem II

I Restricted limit:
I Want D to model a dynamical system on its maximal

elements, so f should be max-preserving.
I D limit subject to being max-preserving.

I Example:
I The diagram (Di, pij) from observing a system.

I Proof:
I The construction of D is standard [AJ94].
I For v one can use existing work [GL18].
I The difficulty is with f , bit of a tour de force.
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Category of dynamical domains

Definition

I A dynamical domain is a dynamical Scott domain D

that is the restricted limit of an expanding system.
I The full subcategory of dSCO whose objects are

dynamical domains is denoted dDOM.
I So morphisms in dDOM are dynamical morphisms

(not required to be projections).
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From domains to systems

Theorem
Let D = (D, v, f) be a dynamical domain. Then

1. maxD with the relative Scott topology τ is a compact
0-dim Polish space

2. f restricts to a continuous function on maxD

3. v determines a probability measure µv on B(τ).
Thus, we obtain the dynamical system

S(D) :=
(

maxD,B(τ), µv, f � maxD
)
.
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Putting everything together

Theorem

I Let X = (X,A, µ, T ) be a dynamical system.
I Let B ⊆ A be countable basis that is separating.
I Build Di = (Di, vi, fi) and pij : Dj → Di as described.
I Then (Di, pij)I(B) is an expanding system.
I Let observation domain D(X,B) := (D, v, f) be the

dynamical domain obtained as restricted limit.
I The canonical embedding of X into S(D(X,B))

ϕ : X → maxD x 7→
〈
{Oi(x)} : i ∈ I(B)

〉
is an isomorphism of dynamical systems.
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Category-theoretically: adjunction I

I Idea: The operations D and S should be adjoint.
I Use category TS0c of topological systems:

I Objects: (X, τ, µ, T ) with X 0-dim compact Polish
space, µ probability measure on B(τ), T continuous.

I Morphisms: continuous, measure-preserving,
equivariant functions.

I Above results: Every dynamical system is realized by
such a topological system (cf. Jewett–Krieger Thm).
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Category-theoretically: adjunction II

Theorem

TS0c dDOM

D

S

>

I For X in TS0c, D(X) uses clopens as basis.
I Restricts to equivalence: demand for D

I For a ∈ D, a =
∧

(↑a ∩maxD)
I For ∅ 6= A ⊆ maxD closed, A = (↑

∧
A) ∩maxD.



Dynamical
Systems via

Domains

Levin
Hornischer

Introduction

Dynamical
systems

From systems
to domains

Dynamical
domains

From domains
to systems

Adjunction

Conclusion

References

30/35

Category-theoretically: adjunction II

Theorem

TS0c dDOM

D

S

>

I For X in TS0c, D(X) uses clopens as basis.
I Restricts to equivalence: demand for D

I For a ∈ D, a =
∧

(↑a ∩maxD)
I For ∅ 6= A ⊆ maxD closed, A = (↑

∧
A) ∩maxD.



Dynamical
Systems via

Domains

Levin
Hornischer

Introduction

Dynamical
systems

From systems
to domains

Dynamical
domains

From domains
to systems

Adjunction

Conclusion

References

30/35

Category-theoretically: adjunction II

Theorem

TS0c dDOM

D

S

>

I For X in TS0c, D(X) uses clopens as basis.
I Restricts to equivalence: demand for D

I For a ∈ D, a =
∧

(↑a ∩maxD)
I For ∅ 6= A ⊆ maxD closed, A = (↑

∧
A) ∩maxD.



Dynamical
Systems via

Domains

Levin
Hornischer

Introduction

Dynamical
systems

From systems
to domains

Dynamical
domains

From domains
to systems

Adjunction

Conclusion

References

31/35

Detailed picture
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Outlook I

I All can be extended to standard dynamical systems.
I Reap the benefits: study dynamical systems through

the rich domain theory (e.g., entropy).
I Relation symbolic vs. non-symbolic computation:

I Non-symbolic computation as limit of (or profinite)
symbolic computation?
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Outlook II

Further questions:
I Computability theory for non-symbolic computation

via effective domain theory.
I Explore dDOM: domain constructions, universal

domain, type structure for non-symbolic computation.
I Finer notion of observation: real-valued functions (cf.

operator approach to ergodic theory)
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Summary

I Extend domain-theoretic semantics to non-symbolic
computation

I Viewed as dynamical system
I Category of dynamical domains
I Adjunction:

Dynamical systems Dynamical domains

Observation

Modeled system

>

Thank you!
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