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We want an for digital circuits
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(Belnap’s four valued logic)
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circuits only contain gates and structure.
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Sequential circuit components

circuits T—.—?— may contain delay or feedback.
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Morphisms in a
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Interpretation

Values are interpreted in a V:
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The semantics of circuits is that of
A V¥ is an infinite sequence of values.

A f: (VM* — (V")” consumes and produces streams.
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Causal stream functions

Not all stream functions correspond to sequential circuits...

Depends on past inputs with respect to the lattice  Specifies finite behaviours

Every monotone causal stream function with ‘finite behaviours’ corresponds to
a class of sequential circuits.
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When are two circuits equal? When they have the same

D> D

When they have the same

Reasoning with streams is a
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Productivity

We want to reason : what equations do we need?
First goal:
A closed circuit is if it is equal to an and a

under the equational theory.
n
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We need a way to eliminate
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Non delay-guarded feedback

Our gates are , SO they must have a

Because the value set V is finite, we can always find this fixpoint!
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Combinational circuit equations il
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Tidying up 1
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Productivity

Any circuit has an and a

These values are the elements of the corresponding stream!
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We can think of circuits as

m n %
HB - e
The circuit produces the and of T—.—?—

: for all , if the are equal then the
are equal under the equational theory.

(cf. Mealy machine bisimulation)
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Full abstraction

T—.—?- = T—.—?— if and only if their streams are equal.

A

X G

3
E)
Il
N
-
S4-x
Il
N
S4<
Il
3
=




Conclusion

We have presented a for sequential circuits

23



Conclusion

We have presented a for sequential circuits

Circuits have semantics as

23



Conclusion

We have presented a for sequential circuits
Circuits have semantics as

It is easier to reason

23



Conclusion

We have presented a for sequential circuits

Circuits have semantics as

It is easier to reason

We have : a correspondence between syntactic and semantic

23



Conclusion

We have presented a for sequential circuits

Circuits have semantics as

It is easier to reason

We have : a correspondence between syntactic and semantic

Next step: refine the
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