
Fully abstract categorical semantics for digital circuits

George Kaye, David Sprunger and Dan Ghica
University of Birmingham
20 July 2022

ACT 2022



Joint work with...

David Sprunger Dan Ghica

1



Introduction

Digital circuits are everywhere!

How do we reason with them?
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Introduction

Generally by simulation

Reasoning in software is more reduction-based:

((λx.λy. x + y) 2) 5 =β (λy.2 + y) 5 =β 2 + 5 =η 7

We want an equational theory for digital circuits
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Syntax



Combinational circuit components

Values

f false

t true

disconnected

short circuit

(Belnap’s four valued logic)

Gates

AND gate

OR gate

NOT gate

Structure

identity

symmetry

fork

join

stub

Light circuits F
m n

only contain gates and structure.
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Sequential circuit components

Delay
Feedback

F
x

m

x

n
⇒ F

x

m

x

n

Dark circuits F
m n

may contain delay or feedback.
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Circuit morphisms

Morphisms in a freely generated symmetric traced monoidal category

t
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Semantics



Interpretation

Values are interpreted in a lattice V:

⊤

1

⊥

0

f 7→ 0

t 7→ 1

7→ ⊥

7→ ⊤
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Interpretation

gm
monotone functions g : Vm → V

copy x 7→ (x, x)

join in the lattice (x, y) 7→ x ⊔ y

discard x 7→ •
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Stream functions

The semantics of circuits is that of stream functions.

A stream Vω is an infinite sequence of values.

A stream function f : (Vm)ω → (Vn)ω consumes and produces streams.
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Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal
Depends on past inputs

Monotone
with respect to the lattice

‘Finite’
Specifies finite behaviours

Theorem
Every monotone causal stream function with ‘finite behaviours’ corresponds to
a class of sequential circuits.
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Equational reasoning



Equality of circuits

When are two circuits equal?

When they have the same behviour

When they have the same stream function

Reasoning with streams is a pain.
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Productivity

We want to reason equationally: what equations do we need?

First goal: productivity.

A closed circuit is productive if it is equal to an instant value and a delayed
subcircuit under the equational theory.

F
n

=
G

v
n

n
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Combinational equations

v gm
= g(v) v

w = v ⊔ w

F
m n

=
F

F

m n

m n F
nm

=
m

= = = =

These reduce any closed combinational circuit Fv
m n

to some w
n

.
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Sequential equations

=

gm
v

=
gv

g

m

m
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Non delay-guarded feedback

How do we deal with something like this?

t

We need a way to eliminate non delay-guarded feedback.

F
x

m

x

n
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Non delay-guarded feedback

Our gates are monotonic, so they must have a least fixed point...

Because the value set V is finite, we can always find this fixpoint!
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Non delay-guarded feedback

⊤

1

⊥

0 In V, the length of the longest chain is 2...

F
x

m

x

n

=
F

F
F

x
x

xm

m
m

n
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Productivity

We want

F
n

=
G

v
n

n
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Productivity

Axioms of STMCs

F

⇓

F̂v
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Productivity

Eliminating ‘instant feedback’

F̂v

⇓

F̃v
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Productivity

= =

F̃v

⇓

F̃v
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Productivity

gm
v

=
gv

g

m

m

F̃

F̃

v
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Productivity

Combinational circuit equations

F̃

F̃

v
F̃v

⇓

F̃

F̃

v w
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Productivity

Tidying up

F̃

F̃

v w

⇓

G

w
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Productivity

Any circuit has an instantaneous value and a delayed subcircuit.

F
m n

=
G

v
n

n

These values are the elements of the corresponding stream!
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Open circuits

We still cannot translate between open circuits with the same behaviour.

F =
t G =

t

When do two circuits have the same stream?
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Open circuits

We can think of circuits as state machines:

F
m n

= F̂
s

x

z

m n

The circuit F̂ produces the state transition and output of F
m n

.

Idea: for all accessible states, if the outputs are equal then the original circuits
are equal under the equational theory.
(cf. Mealy machine bisimulation)
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Full abstraction

Theorem

F
m n

= G
m n

if and only if their streams are equal.

Proof.

F
m n

= F̂
s

x

z

m n

= Ĝ
r y

w

m n

= G
m n
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Conclusion

We have presented a categorical framework for sequential circuits

Circuits have semantics as stream functions

It is easier to reason equationally

We have full abstraction: a correspondence between syntactic and semantic

Next step: refine the rewriting system
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