

Fully abstract categorical semantics for digital circuits

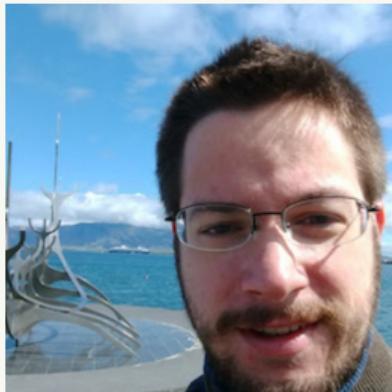
George Kaye, David Sprunger and Dan Ghica

University of Birmingham

20 July 2022

ACT 2022

Joint work with...



David Sprunger

Dan Ghica

Introduction

Digital circuits are everywhere!

Introduction

Digital circuits are everywhere!

How do we reason with them?

Introduction

Generally by **simulation**

Introduction

Generally by **simulation**

Reasoning in **software** is more **reduction-based**:

$$((\lambda x. \lambda y. x + y) 2) 5$$

Introduction

Generally by **simulation**

Reasoning in **software** is more **reduction-based**:

$$((\lambda x. \lambda y. x + y) 2) 5 =_{\beta} (\lambda y. 2 + y) 5$$

Introduction

Generally by **simulation**

Reasoning in **software** is more **reduction-based**:

$$((\lambda x. \lambda y. x + y) 2) 5 =_{\beta} (\lambda y. 2 + y) 5 =_{\beta} 2 + 5$$

Introduction

Generally by simulation

Reasoning in software is more reduction-based:

$$((\lambda x. \lambda y. x + y) 2) 5 =_{\beta} (\lambda y. 2 + y) 5 =_{\beta} 2 + 5 =_{\eta} 7$$

Introduction

Generally by simulation

Reasoning in software is more reduction-based:

$$((\lambda x. \lambda y. x + y) 2) 5 =_{\beta} (\lambda y. 2 + y) 5 =_{\beta} 2 + 5 =_{\eta} 7$$

We want an equational theory for digital circuits

Syntax

Combinational circuit components

Combinational circuit components

Values

- false
- true

Combinational circuit components

Values

 f false

 t true

 disconnected

 short circuit

(Belnap's four valued logic)

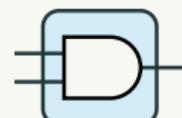
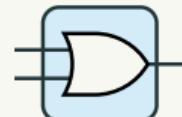
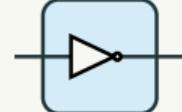
Combinational circuit components

Values

- false
- true
- disconnected
- short circuit

(Belnap's four valued logic)

Gates

-  AND gate
-  OR gate
-  NOT gate

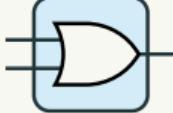
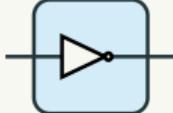
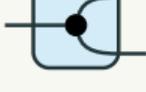
Combinational circuit components

Values	Gates	Structure
<i>(Belnap's four valued logic)</i>		
		AND gate
		OR gate
		NOT gate

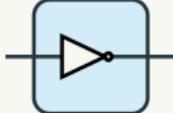
Combinational circuit components

Values	Gates	Structure
<i>(Belnap's four valued logic)</i>		
		AND gate
		OR gate
		NOT gate
		identity
		symmetry

Combinational circuit components

Values	Gates	Structure
f		identity
t		symmetry
disconnected		fork
short circuit		
<i>(Belnap's four valued logic)</i>		
	AND gate	
	 OR gate	
	 NOT gate	

Combinational circuit components

Values	Gates	Structure
false		AND gate
true		OR gate
disconnected		NOT gate
short circuit		
<i>(Belnap's four valued logic)</i>		

Combinational circuit components

Structure	
Values	Gates
f	AND gate
t	OR gate
disconnected	NOT gate
short circuit	
<i>(Belnap's four valued logic)</i>	

Combinational circuit components

Values	Gates	Structure
		identity
		symmetry
		fork
		join
<i>(Belnap's four valued logic)</i>		

Light circuits

Sequential circuit components

Sequential circuit components

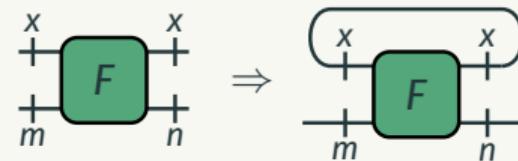
Delay

Sequential circuit components

Delay



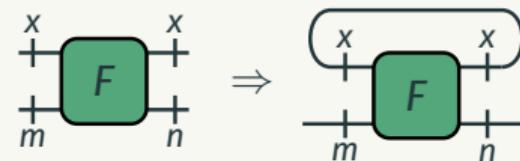
Feedback

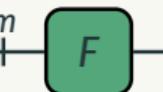


Sequential circuit components

Delay

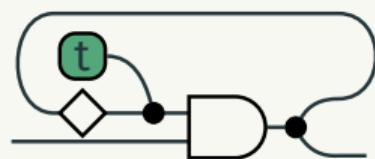
Feedback



Dark circuits  may contain delay or feedback.

Circuit morphisms

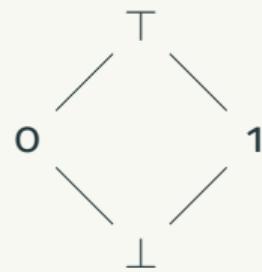
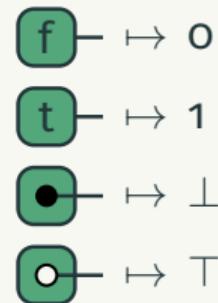
Morphisms in a **freely generated symmetric traced monoidal category**



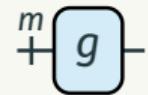
Semantics

Interpretation

Values are interpreted in a **lattice \mathbf{V}** :



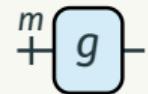
Interpretation



monotone functions

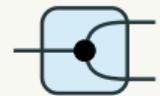
$\bar{g}: \mathbf{V}^m \rightarrow \mathbf{V}$

Interpretation



monotone functions

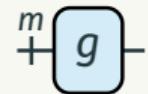
$$\bar{g}: \mathbf{V}^m \rightarrow \mathbf{V}$$



copy

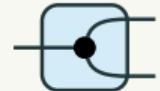
$$x \mapsto (x, x)$$

Interpretation



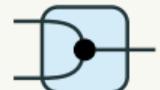
monotone functions

$$\bar{g}: \mathbf{V}^m \rightarrow \mathbf{V}$$



copy

$$x \mapsto (x, x)$$



join in the lattice

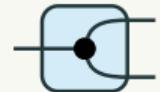
$$(x, y) \mapsto x \sqcup y$$

Interpretation



monotone functions

$$\bar{g}: \mathbf{V}^m \rightarrow \mathbf{V}$$



copy

$$x \mapsto (x, x)$$

join in the lattice

$$(x, y) \mapsto x \sqcup y$$

discard

$$x \mapsto \bullet$$

Stream functions

The semantics of circuits is that of **stream functions**.

Stream functions

The semantics of circuits is that of **stream functions**.

A **stream** \mathbf{V}^ω is an infinite sequence of values.

Stream functions

The semantics of circuits is that of **stream functions**.

A **stream** \mathbf{V}^ω is an infinite sequence of values.

A **stream function** $f: (\mathbf{V}^m)^\omega \rightarrow (\mathbf{V}^n)^\omega$ consumes and produces streams.

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal

Depends on past inputs

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal

Depends on past inputs

Monotone

with respect to the lattice

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal

Depends on past inputs

Monotone

with respect to the lattice

'Finite'

Specifies finite behaviours

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal

Depends on past inputs

Monotone

with respect to the lattice

'Finite'

Specifies finite behaviours

Theorem

Every monotone causal stream function with 'finite behaviours' corresponds to a class of sequential circuits.

Equational reasoning

Equality of circuits

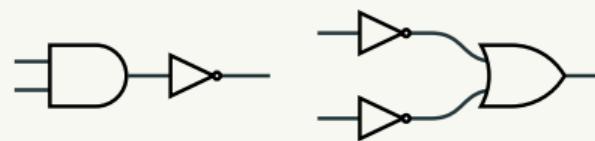
When are two circuits equal?

Equality of circuits

When are two circuits equal? When they have the same behaviour

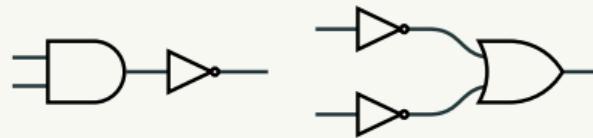
Equality of circuits

When are two circuits equal? When they have the same **behaviour**



Equality of circuits

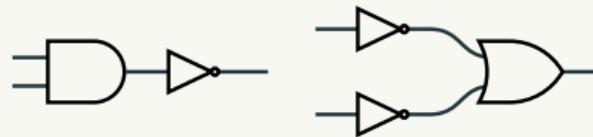
When are two circuits equal? When they have the same behaviour



When they have the same stream function

Equality of circuits

When are two circuits equal? When they have the same behaviour



When they have the same stream function

Reasoning with streams is a pain.

We want to reason **equationally**: what equations do we need?

Productivity

We want to reason **equationally**: what equations do we need?

First goal: **productivity**.

Productivity

We want to reason **equationally**: what equations do we need?

First goal: **productivity**.

A closed circuit is **productive** if it is equal to an **instant value** and a **delayed subcircuit** under the equational theory.

Combinational equations

Combinational equations

$$\text{v} \xrightarrow{m} g = \bar{g}(\text{v})$$

Combinational equations

$$\begin{array}{ccc} \text{v} \xrightarrow{m} g & = & \bar{g}(\text{v}) \\ \text{v} \cup \text{w} & = & \text{v} \cup \text{w} \end{array}$$

Combinational equations

$$\text{v} \xrightarrow{m} g = \bar{g}(\text{v}) = \text{v} \sqcup \text{w}$$

$$\text{v} \xrightarrow{m} F = F \xrightarrow{m} \text{v} \xrightarrow{n} \text{w}$$

Combinational equations

$$\text{v} \xrightarrow{m} g = \bar{g}(\text{v})$$

$$v \sqcup w = v \sqcup w$$

$$\begin{matrix} m \\ + \end{matrix} \xrightarrow{n} F = \begin{matrix} m \\ - \end{matrix} \xrightarrow{n} F \quad \begin{matrix} m \\ + \end{matrix} \xrightarrow{n} F = \begin{matrix} m \\ + \end{matrix}$$

Combinational equations

$$\text{v} \xrightarrow{m} g = \bar{g}(\text{v}) \quad \begin{array}{c} \text{v} \\ \text{w} \end{array} \text{---} \bullet = \text{v} \sqcup \text{w}$$

$$\begin{array}{c} m \\ + \end{array} F \begin{array}{c} n \\ + \end{array} \bullet = \begin{array}{c} m \\ + \end{array} \text{---} \begin{array}{c} n \\ + \end{array} F \quad \begin{array}{c} m \\ + \end{array} F \begin{array}{c} n \\ + \end{array} \bullet = \begin{array}{c} m \\ + \end{array}$$

$$\bullet \text{---} \bullet = \text{---} = \text{---} \bullet \quad \bullet \text{---} \bullet = \text{---} = \text{---} \bullet$$

Combinational equations

$$\text{v} \xrightarrow{m} g = \bar{g}(\text{v}) \quad \text{v} \text{ and } \text{w} = \text{v} \sqcup \text{w}$$

$$\text{v} \xrightarrow{m} F \xrightarrow{n} \text{v} = \text{v} \quad \text{v} \xrightarrow{m} F \xrightarrow{n} \text{v} = \text{v}$$

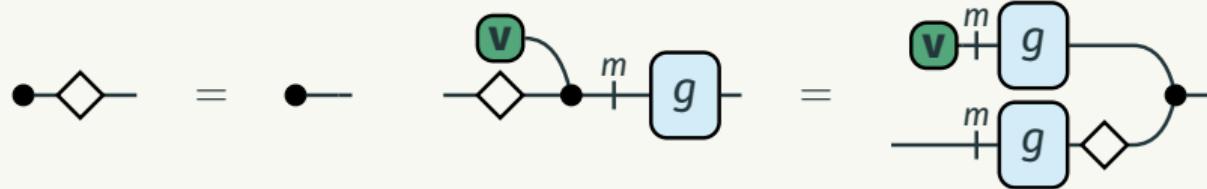
$$\text{v} = \text{v} = \text{v} = \text{v} = \text{v}$$

These reduce any **closed combinational circuit** $\text{v} \xrightarrow{m} F \xrightarrow{n} \text{v}$ to some $\text{v} \xrightarrow{n} \text{v}$.

Sequential equations

$$\bullet \text{---} \diamond \text{---} = \bullet \text{---}$$

Sequential equations



Non delay-guarded feedback

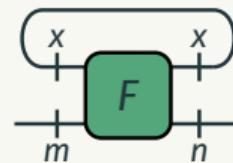
How do we deal with something like this?

Non delay-guarded feedback

How do we deal with something like this?



We need a way to eliminate **non delay-guarded feedback**.



Non delay-guarded feedback

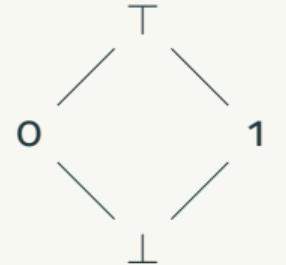
Non delay-guarded feedback

Our gates are **monotonic**, so they must have a **least fixed point**...

Non delay-guarded feedback

Our gates are **monotonic**, so they must have a **least fixed point**...
Because the value set **V** is finite, we can always find this fixpoint!

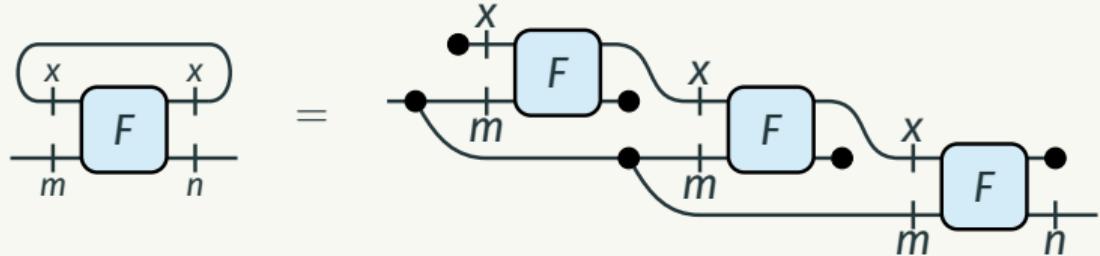
Non delay-guarded feedback



In **V**, the length of the longest chain is **2**...

Non delay-guarded feedback

In **V**, the length of the longest chain is **2**...

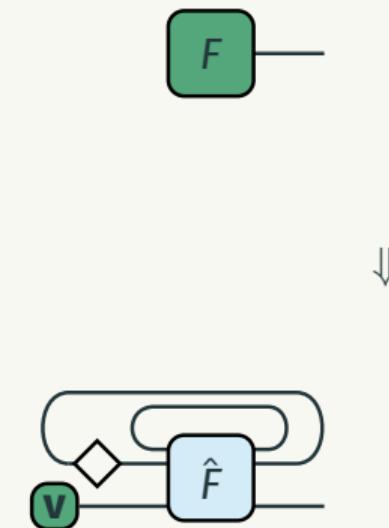


Productivity

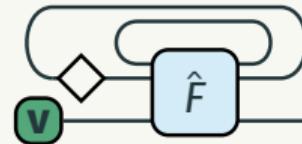
We want

Productivity

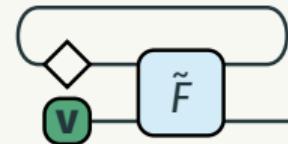
Axioms of STMCs



Productivity

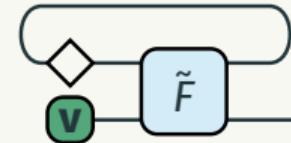
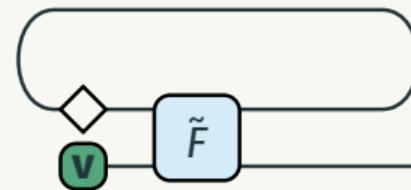


Eliminating 'instant feedback'

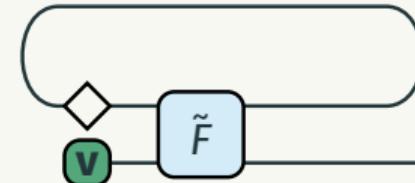


Productivity

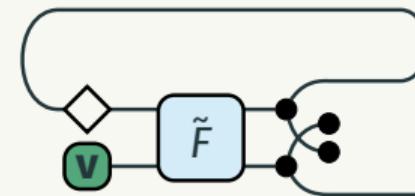
Axioms of STMCs



Productivity

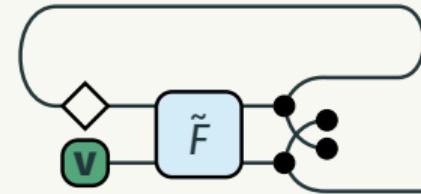


↓

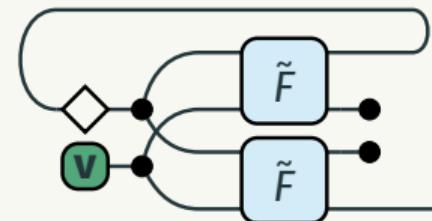


Productivity

$$\begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array} = \begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array} \begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array}$$

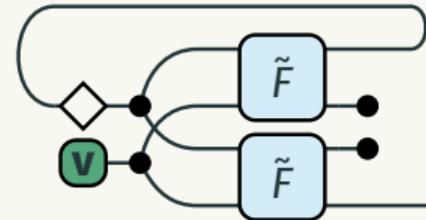
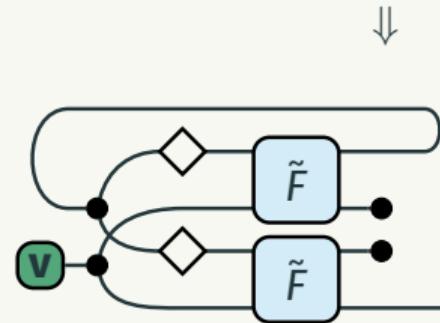


↓



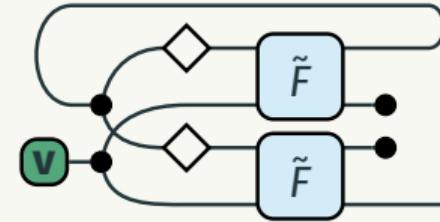
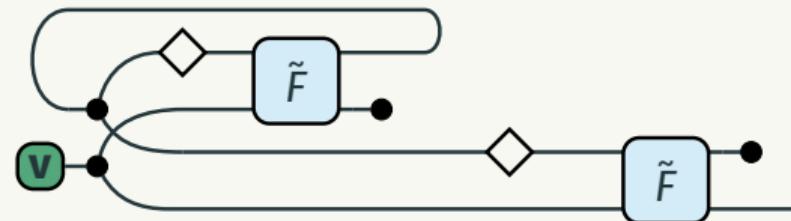
Productivity

$$\begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array} = \begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array} \begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \square \end{array} \begin{array}{c} n \\ + \end{array}$$



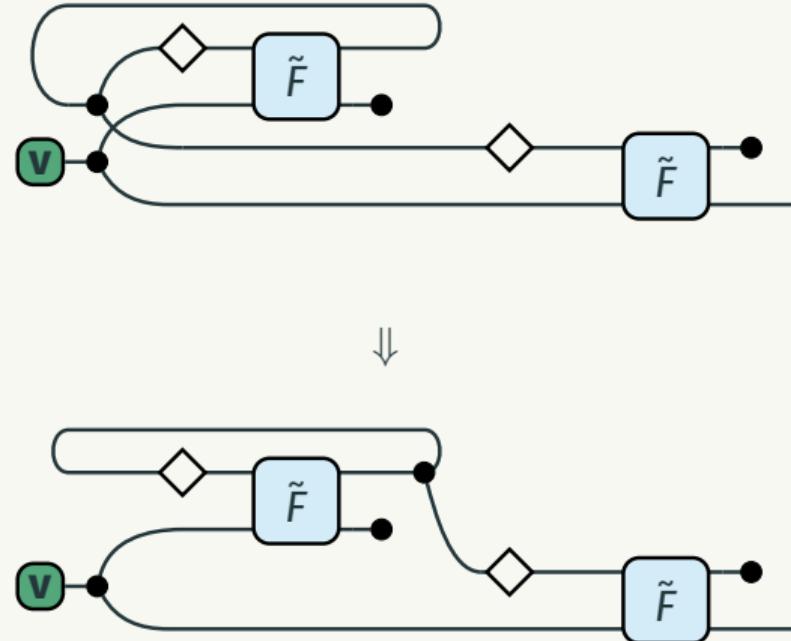
Productivity

Axioms of STMCs



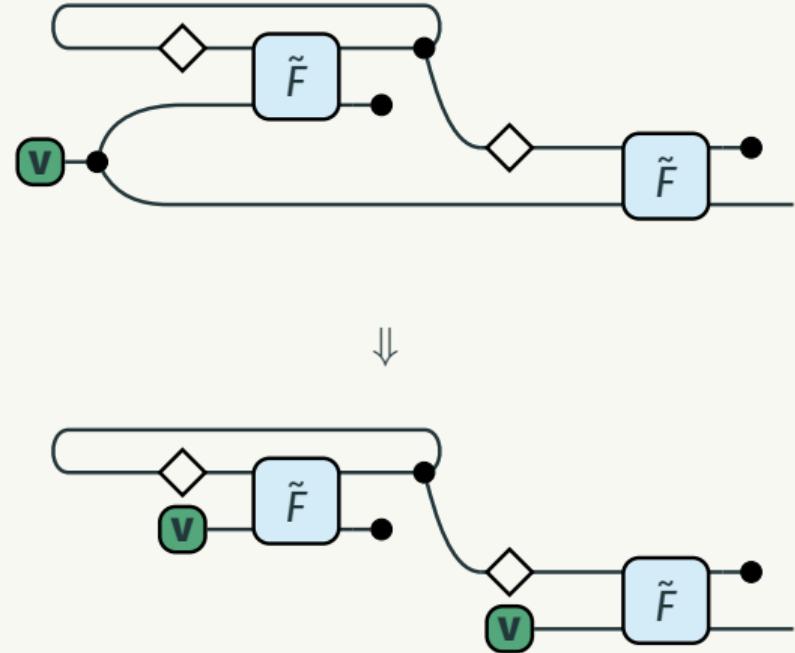
Productivity

Axioms of STMCs

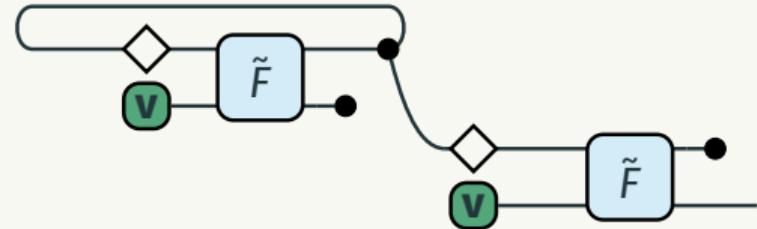


Productivity

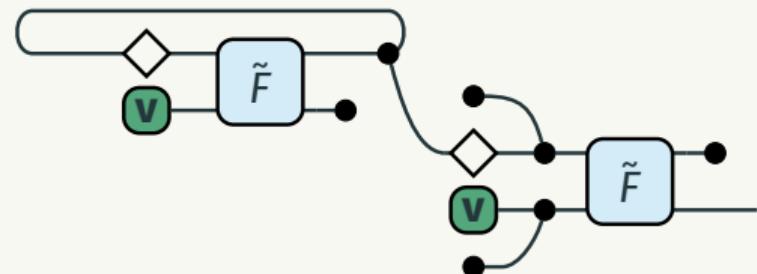
$$m \begin{array}{c} + \\ \text{---} \\ F \\ \text{---} \\ + n \end{array} = \begin{array}{c} m \begin{array}{c} + \\ \text{---} \\ F \\ \text{---} \\ + n \end{array} \\ \text{---} \\ m \begin{array}{c} + \\ \text{---} \\ F \\ \text{---} \\ + n \end{array} \end{array}$$



Productivity

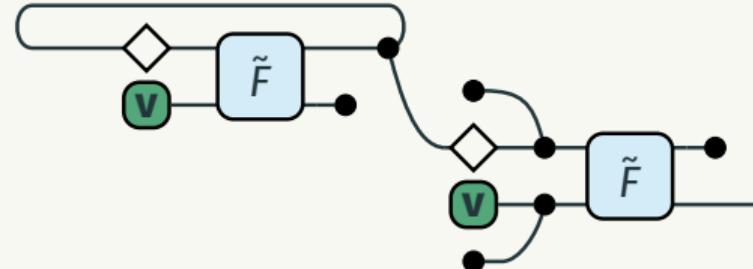
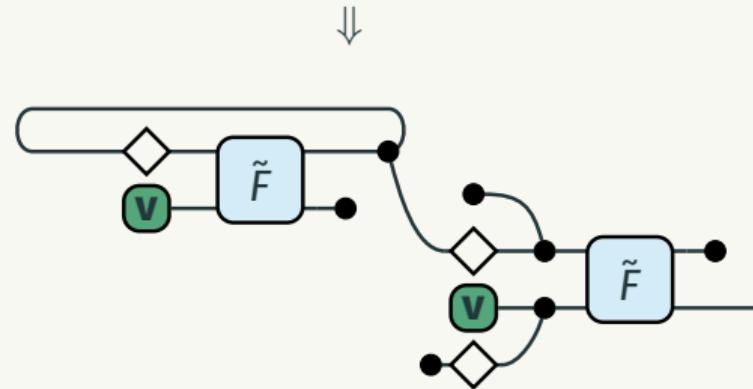


↓

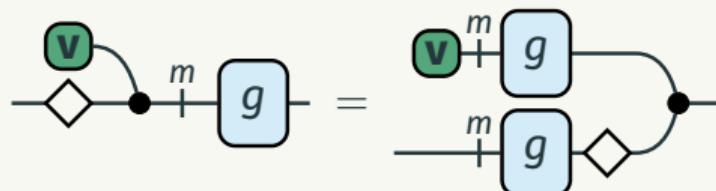
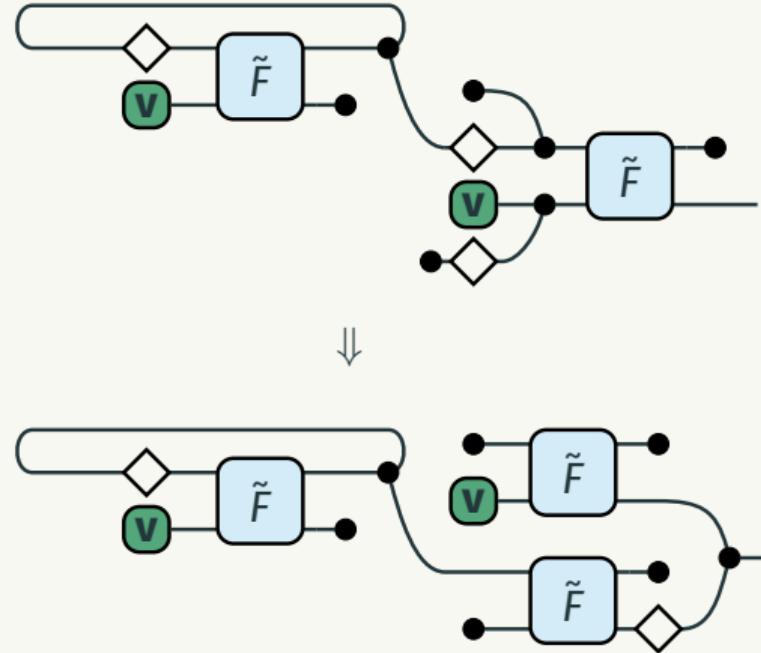


Productivity

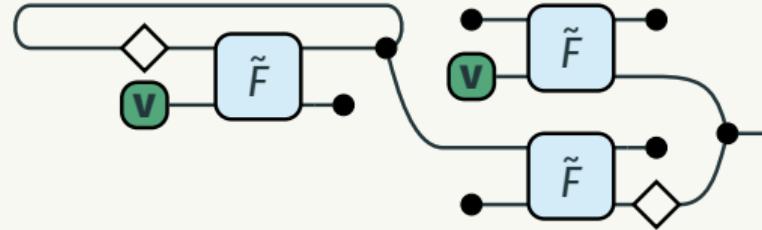
$$\bullet - = \bullet \diamond$$



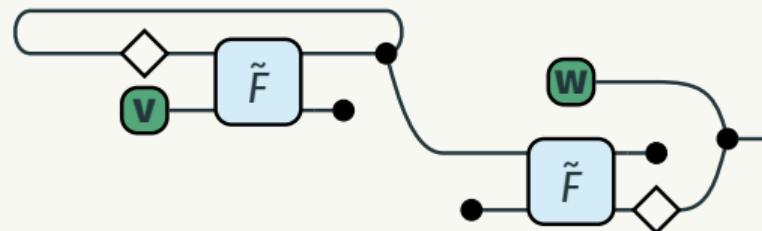
Productivity



Productivity

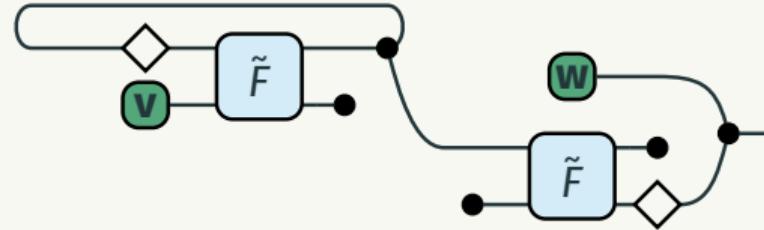
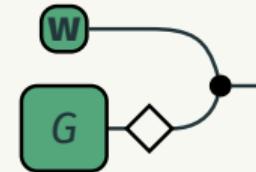


Combinational circuit equations



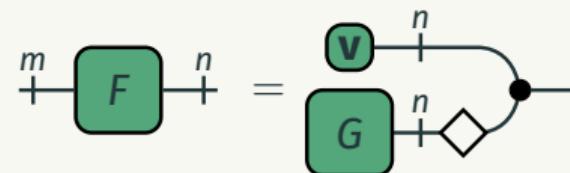
Productivity

Tidying up



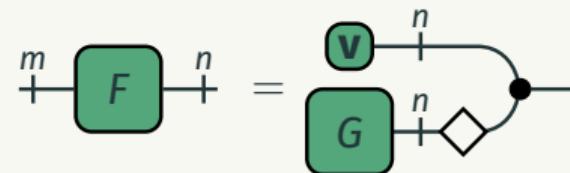
Productivity

Any circuit has an **instantaneous value** and a **delayed subcircuit**.



Productivity

Any circuit has an **instantaneous value** and a **delayed subcircuit**.



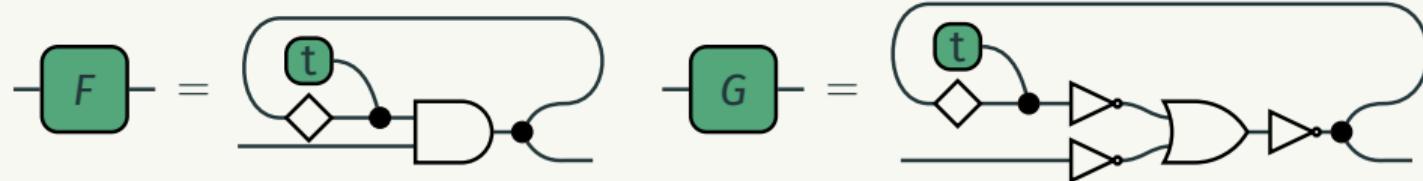
These values are the elements of the corresponding stream!

Open circuits

We still cannot translate between **open** circuits with the same behaviour.

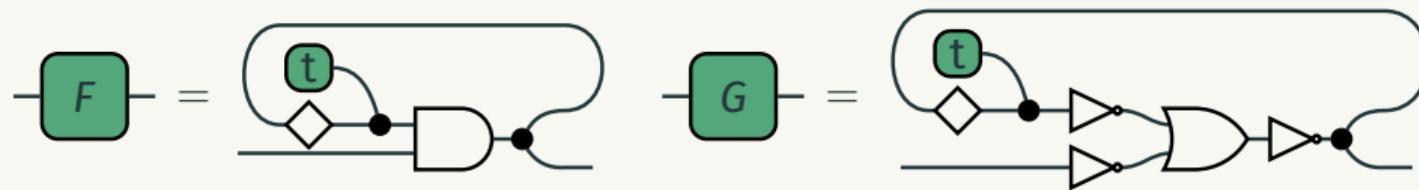
Open circuits

We still cannot translate between **open** circuits with the same behaviour.



Open circuits

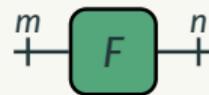
We still cannot translate between **open** circuits with the same behaviour.



When do two circuits have the **same stream**?

Open circuits

We can think of circuits as **state machines**:

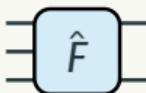


Open circuits

We can think of circuits as **state machines**:

Open circuits

We can think of circuits as **state machines**:

The circuit  produces the **state transition** and **output** of $\begin{array}{c} m \\ + \end{array} \begin{array}{c} F \\ \boxed{F} \end{array} \begin{array}{c} n \\ + \end{array}$.

Open circuits

We can think of circuits as **state machines**:

The circuit \hat{F} produces the **state transition** and **output** of F .

Idea: for all **accessible states**, if the **outputs** are equal then the **original circuits** are equal under the equational theory.

(cf. Mealy machine bisimulation)

Theorem

$\overset{m}{+} \boxed{F} \overset{n}{+} = \overset{m}{+} \boxed{G} \overset{n}{+}$ if and only if their streams are equal.

Proof.

□

Theorem

$\overset{m}{+} \boxed{F} \overset{n}{+} = \overset{m}{+} \boxed{G} \overset{n}{+}$ if and only if their streams are equal.

Proof.

□

Theorem

$$\begin{array}{c} m \\ + \end{array} \boxed{F} \begin{array}{c} n \\ + \end{array} = \begin{array}{c} m \\ + \end{array} \boxed{G} \begin{array}{c} n \\ + \end{array} \text{ if and only if their streams are equal.} \end{array}$$

Proof.

$$\begin{array}{c} m \\ + \end{array} \boxed{F} \begin{array}{c} n \\ + \end{array} = \boxed{S} \begin{array}{c} z \\ \downarrow \end{array} \begin{array}{c} \diamond \\ \downarrow \end{array} \boxed{\hat{F}} \begin{array}{c} x \\ \downarrow \end{array} \begin{array}{c} n \\ + \end{array} = \boxed{r} \begin{array}{c} w \\ \downarrow \end{array} \begin{array}{c} \diamond \\ \downarrow \end{array} \boxed{\hat{G}} \begin{array}{c} y \\ \downarrow \end{array} \begin{array}{c} n \\ + \end{array} = \begin{array}{c} m \\ + \end{array} \boxed{G} \begin{array}{c} n \\ + \end{array} \end{array}$$

□

Theorem

$$\begin{array}{c} m \\ + \end{array} \boxed{F} \begin{array}{c} n \\ + \end{array} = \begin{array}{c} m \\ + \end{array} \boxed{G} \begin{array}{c} n \\ + \end{array} \text{ if and only if their streams are equal.} \end{array}$$

Proof.

$$\begin{array}{c} m \\ + \end{array} \boxed{F} \begin{array}{c} n \\ + \end{array} = \boxed{S} \begin{array}{c} z \\ \diamond \\ m \end{array} \boxed{\hat{F}} \begin{array}{c} x \\ n \end{array} = \boxed{r} \begin{array}{c} w \\ \diamond \\ m \end{array} \boxed{\hat{G}} \begin{array}{c} y \\ n \end{array} = \begin{array}{c} m \\ + \end{array} \boxed{G} \begin{array}{c} n \\ + \end{array} \end{array}$$

□

Conclusion

We have presented a **categorical framework** for sequential circuits

Conclusion

We have presented a **categorical framework** for sequential circuits

Circuits have semantics as **stream functions**

Conclusion

We have presented a **categorical framework** for sequential circuits

Circuits have semantics as **stream functions**

It is easier to reason **equationally**

Conclusion

We have presented a **categorical framework** for sequential circuits

Circuits have semantics as **stream functions**

It is easier to reason **equationally**

We have **full abstraction**: a correspondence between syntactic and semantic

Conclusion

We have presented a **categorical framework** for sequential circuits

Circuits have semantics as **stream functions**

It is easier to reason **equationally**

We have **full abstraction**: a correspondence between syntactic and semantic

Next step: refine the **rewriting system**