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What is a game?
Game theory is the mathematical study of interaction

among independent, self-interested agents.
– Essentials of Game Theory, [1]

A game factors in two parts:

1. An arena, which models the dynamics of the game.

2. Some players, which intervene in the arena by making decisions.
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The idea behind parametric-optics-as-cybernetic-systems [2] is ‘players in arenas’ is a
rough description of many other kinds of systems, including learners, Bayesian reasoners,
control problems, etc.
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Indeed, looking at gradient-based learners:

This is further corroborated by how these things compose, actually.
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Contrast this with ‘open games with agency’:

Players are extra-diegetic: a player’s counterfactual analysis
of the game happens outside of the system.
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Outline

Goal of the work: try to understand and fix this situation.

1. Why do learners exhibit ‘diegetic agency’?

2. Can we imitate this in games?
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Outline

Goal of the work: try to understand and fix this situation.

1. Why do learners exhibit ‘diegetic agency’?

2. Can we imitate this in games?

Results:

1. An understanding of learners and games as second-order cybernetic systems,
whose mathematical structure naturally leads to backprop/backward induction

2. A diegetic, dynamical view of players obtained by reverse-mode differentiation of
general parametric lenses

3. An important lax monoidal structure, the Nashator, shining light on
game-theoretical phenomena
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Model vs training dynamics

Question: Why don’t we consider this to be a learner’s arena?

This is the model dynamics: inputs and parameters go in, losses come out.
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Model vs training dynamics

Answer: we actually want to describe the ‘counterfactual’ dynamics.

This is the training dynamics: inputs and parameters go in, loss differentials come out.
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Backpropagation, conceptually

Feedback about y ∈ Y is given to its entire ‘infinitesimal neighbourhood’ TyY

It is a counterfactual evaluation:
How much would ` change if I were to move away from y

in a given direction v ∈ TyY ?
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Backpropagation, conceptually

Feedback about y ∈ Y is given to its entire ‘infinitesimal neighbourhood’ TyY

d` ∈ T ∗Y is a covector over Y :

T ∗Y

Y

=

 TY R× Y

Y

ξ

πY

∣∣∣∣ ξy : TyY → R is linear for all y ∈ Y
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Backpropagation, conceptually

T ∗ also acts contravariantly on maps, yielding reverse derivatives:
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Backpropagation, functorially

The latter assignment yields a functor

Smooth DLens(VectR)T ∗
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Backpropagation, functorially

However, we are interested in parametric smooth functions:

Para(Smooth) Para(DLens(VectR))
Para(T ∗)

where ∼= is the strong monoidal stucture of T ∗

∼= : T ∗(P ×X) −→ T ∗P ⊕ T ∗X
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Gradients from covectors
Once an arena is given, a learner is a system that converts a covector to a vector:

A morphism like (−)] : T ∗X → TX (a 2-form) is induced by Riemannian metrics,
symplectic and Poisson structures (relevant in optimization theory & physics)
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Recap

1. Start with a model
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Recap

2. Get the arena by applying Para(T ∗)
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Recap

3. Add the learner
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Recap

4. Surround with a training apparatus (training data + d(loss))
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States, changes, values and valuations

What did we use to do this?

Remember how d` arisen:

it’s a valuation in R
of possible changes TyY
from a given state y ∈ Y
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States, changes, values and valuations
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States, changes, values and valuations

learners games

states space Y : Smooth

moves & payoffs (Y,R) : Lens(Set)

changes tangent vectors TY : VectR(Smooth/Y ) deviations Y : Set

values losses R : VectR(Smooth/Y ) payoffs R : Set/prjY

loss map ` : Y → R payoff map u : Y → R

loss diff. d` : (y : Y )→ (TyY → R) ∆u : Y → (Y → R)
const ȳ 7→ u
regret ȳ 7→ λy . u(y)− u(ȳ)

valuations covectors T ∗Y : VectR(Smooth/Y ) payoff maps RY : Set/prjY
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valuations covectors T ∗Y : VectR(Smooth/Y ) payoff maps RY : Set/prjY

18



States, changes, values and valuations

learners games

states space Y : Smooth moves & payoffs (Y,R) : Lens(Set)

changes tangent vectors TY : VectR(Smooth/Y ) deviations Y : Set

values losses R : VectR(Smooth/Y ) payoffs R : Set/prjY

loss map ` : Y → R payoff map u : Y → R

loss diff. d` : (y : Y )→ (TyY → R) ∆u : Y → (Y → R)
const ȳ 7→ u
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Idea
Like learners, games have a ‘model dynamics’ and a ‘counterfactual dynamics’.
We specify the first, but players live in the latter and that’s what we are interested with:
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As before, valuations give a ‘reverse-mode differentiation’, sending a map of game states
to its counterfactual dynamics:

Lens(Set) Lens(Set)
(−)∗

where coplay∗(play)(u) = λx . coplay(x, u(play(x))), i.e.:
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Nashator

Crucially, the functor (−)∗ can be equipped with a lax monoidal structure.
Given X = (X,S), Y = (Y,R):

(1X×Y,nX,Y) : (X × Y, SX ×RY ) � (X × Y, (S ×R)X×Y )

where the backward part is the Nashator:

nX,Y : X × Y × (S ×R)X×Y −→ SX ×RY

(x̄, ȳ, u) 7−→ 〈 λx . uS(x, ȳ), λy . uR(x̄, y) 〉

Notice this monoidal structure can only be defined because (−)∗ lands in lenses!
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Nashator

We can use the Nashator to make Para((−)∗) into a lax 2-functor :

Para(Lens(Set)) Para(Lens(Set))
Para((−)∗)
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Nashator

The laxness of this functor represents the difference between two players competing
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Nashator
Nashators + lens composition reproduce precisely the propagation of feedback from
the regret function to players (aka performs backward induction)

If players play the profile (ω̄, ξ̄) ∈ Ω× Ξ, they respectively get back

u1 = λω . u(play′(ξ̄, play(ω, x̄)))− u(play′(ξ̄, play(ω̄, x̄)))︸ ︷︷ ︸
regret expected by unilaterally deviating from ω̄ to ω

u2 = λξ . u(play′(ξ, play(ω̄, x̄)))− u(play′(ξ̄, play(ω̄, x̄)))︸ ︷︷ ︸
regret expected by unilaterally deviating from ξ̄ to ξ
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Players as a system

Now arenas provide enough information to allow players to be embodied by a system
over it:

A morphism ε : (Ω→ P )→PΩ is known as selection function and does indeed
encode an agent’s preference (see [3, 4, 5]). The extra dependency on Ω can be
interpreted as a hint towards incomplete information games [6].
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Recap

1. Start with a game dynamics
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Recap

2. Get the arena by applying Para((−)∗)
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Recap

3. Add the players
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Recap

4. Surround with a context (Nature’s move (initial state) + ∆(payoff function))
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Recap

4. Or don’t, and compose it with other games!
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Conclusions

In this talk, we’ve seen...

1. how to think accurately about the geometry of learners

2. the general motif behind their workings: states, changes, values and valuations

3. the way such a situation gives rise to ‘reverse-mode derivation’ functors, and the
importance of their monoidal structures

4. how to extend this to games, using the Nashator
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Future directions

Wide horizon of directions from here: having pinned down the dynamical structure, we
can...

1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game
theory

2. separately extract equilibria and other behavioural information using machinery
from (an extension of) categorical systems theory [7, 8]
Fact: Nash equilibria are fixpoints of diegetic open games

3. investigate the state-changes-values paradigm to analyze more systems, like
Bayesian reasoners

30



Future directions

Wide horizon of directions from here: having pinned down the dynamical structure, we
can...

1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game
theory

2. separately extract equilibria and other behavioural information using machinery
from (an extension of) categorical systems theory [7, 8]
Fact: Nash equilibria are fixpoints of diegetic open games

3. investigate the state-changes-values paradigm to analyze more systems, like
Bayesian reasoners

30



Future directions
Wide horizon of directions from here: having pinned down the dynamical structure, we
can...

1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game
theory

2. separately extract equilibria and other behavioural information using machinery
from (an extension of) categorical systems theory [7, 8]
Fact: Nash equilibria are fixpoints of diegetic open games

1 1

(X,SX) (Y,RY )

1 1

(X,SX) (Y,RY )

1

∆u
x

coplay∗(play)

(PΩ,Ω)

(Ω,Ω)

(ε,1Ω)

{ω}ω

3. investigate the state-changes-values paradigm to analyze more systems, like
Bayesian reasoners

30



Future directions

Wide horizon of directions from here: having pinned down the dynamical structure, we
can...

1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game
theory

2. separately extract equilibria and other behavioural information using machinery
from (an extension of) categorical systems theory [7, 8]
Fact: Nash equilibria are fixpoints of diegetic open games

3. investigate the state-changes-values paradigm to analyze more systems, like
Bayesian reasoners

30



Thank you!
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