Diegetic representation of feedback in open games

Matteo Capucci

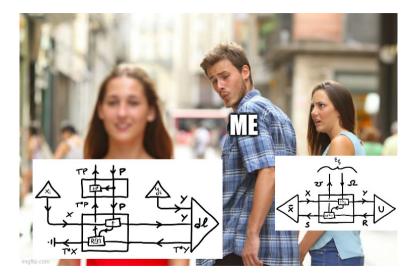
Mathematically Structured Programming group, Department of Computer and Information Sciences, University of Strathclyde

5th International Conference on Applied Category Theory, Glasgow (Scotland)

July 21st, 2022

1

Meme abstract



What is a game?

Game theory is the mathematical study of interaction among independent, self-interested agents. - Essentials of Game Theory, [1]

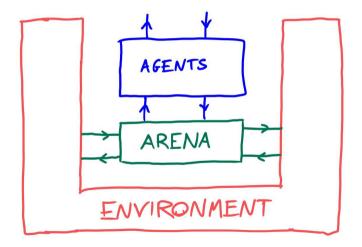
What is a game?

Game theory is the mathematical study of interaction among independent, self-interested agents. - Essentials of Game Theory, [1]

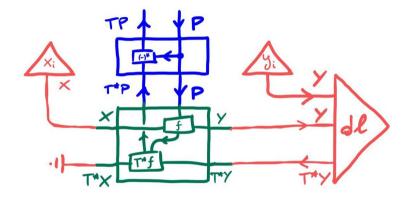
A game factors in two parts:

- 1. An arena, which models the dynamics of the game.
- 2. Some players, which intervene in the arena by making decisions.

The idea behind parametric-optics-as-cybernetic-systems [2] is 'players in arenas' is a rough description of many other kinds of systems, including learners, Bayesian reasoners, control problems, etc.

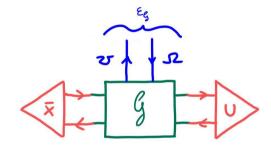


Indeed, looking at gradient-based learners:

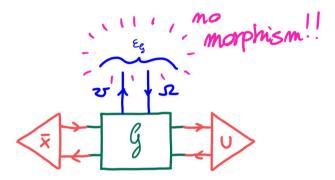


This is further corroborated by how these things compose, actually.

Contrast this with 'open games with agency':



Contrast this with 'open games with agency':



Players are **extra-diegetic**: a player's counterfactual analysis of the game happens *outside* of the system.

Outline

Goal of the work: try to understand and fix this situation.

- 1. Why do learners exhibit 'diegetic agency'?
- 2. Can we imitate this in games?

Outline

Goal of the work: try to understand and fix this situation.

- 1. Why do learners exhibit 'diegetic agency'?
- 2. Can we imitate this in games?

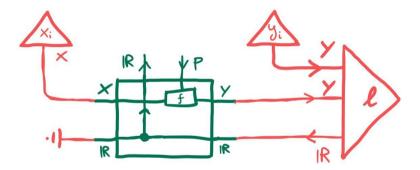
Results:

- **1.** An understanding of **learners and games as second-order cybernetic systems**, whose mathematical structure naturally leads to backprop/backward induction
- 2. A diegetic, dynamical view of players obtained by reverse-mode differentiation of general parametric lenses
- **3.** An important lax monoidal structure, the **Nashator**, shining light on game-theoretical phenomena

Learners

Model vs training dynamics

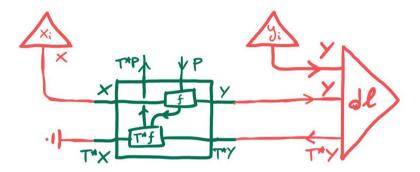
Question: Why don't we consider this to be a learner's arena?



This is the model dynamics: inputs and parameters go in, losses come out.

Model vs training dynamics

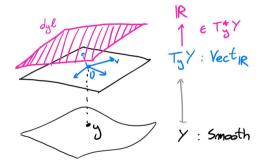
Answer: we actually want to describe the 'counterfactual' dynamics.



This is the **training dynamics**: inputs and parameters go in, *loss differentials* come out.

Backpropagation, conceptually

Feedback about $y \in Y$ is given to its entire 'infinitesimal neighbourhood' $T_y Y$

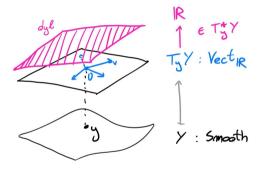


It is a counterfactual evaluation:

How much would ℓ change if I were to move away from yin a given direction $v \in T_y Y$?

Backpropagation, conceptually

Feedback about $y \in Y$ is given to its entire 'infinitesimal neighbourhood' T_yY

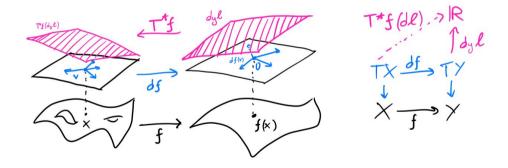


 $d\ell \in T^*Y$ is a covector over Y:

$$\begin{array}{c} T^*Y \\ \downarrow \\ Y \end{array} = \left\{ \begin{array}{c} TY \xrightarrow{\xi} \mathbb{R} \times Y \\ \searrow & \swarrow \\ & \swarrow \\ & & Y \end{array} \middle| \ \xi_y : T_yY \to \mathbb{R} \text{ is linear for all } y \in Y \end{array} \right\}$$

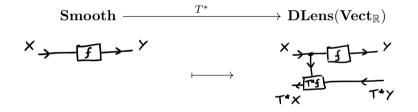
Backpropagation, conceptually

 T^{\ast} also acts $\mathit{contravariantly}$ on maps, yielding reverse derivatives:



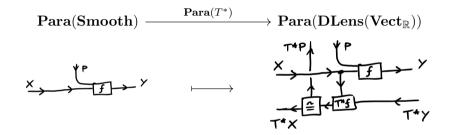
Backpropagation, functorially

The latter assignment yields a functor



Backpropagation, functorially

However, we are interested in *parametric* smooth functions:

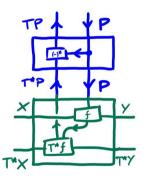


where \cong is the strong monoidal stucture of T^*

$$\cong : T^*(P \times X) \longrightarrow T^*P \oplus T^*X$$

Gradients from covectors

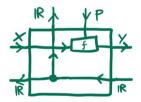
Once an arena is given, a learner is a system that converts a covector to a vector:



A morphism like $(-)^{\sharp}: T^*X \to TX$ (a 2-form) is induced by **Riemannian metrics**, symplectic and Poisson structures (relevant in optimization theory & physics)

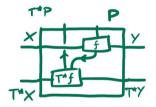
Recap

1. Start with a model



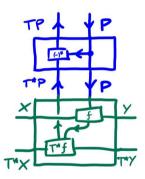
Recap

2. Get the arena by applying $\mathbf{Para}(T^*)$

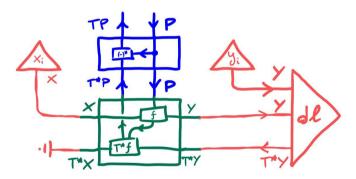


Recap

3. Add the learner



4. Surround with a training apparatus (training data + d(loss))



What did we use to do this?

What did we use to do this? Remember how $\mathrm{d}\ell$ arisen:

What did we use to do this? Remember how $\mathrm{d}\ell$ arisen:

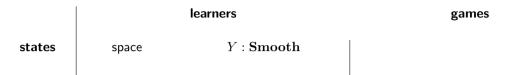
it's a valuation in $\ensuremath{\mathbb{R}}$

What did we use to do this? Remember how $\mathrm{d}\ell$ arisen:

it's a valuation in \mathbb{R} of possible changes $T_y Y$

What did we use to do this? Remember how $\mathrm{d}\ell$ arisen:

it's a valuation in \mathbb{R} of possible changes T_yY from a given state $y \in Y$



	learners		games	
states	space	$Y:\mathbf{DLens}(\Delta_{\mathbb{R}})$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$		

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$		

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$		

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$	payoff map	$u:Y\to R$

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$	payoff map	$u:Y\to R$
	loss diff.	$\mathrm{d}\ell:(y:Y)\to (T_yY\to\mathbb{R})$		

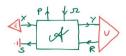
	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$	payoff map	$u:Y\to R$
	loss diff.	$d\ell: (y:Y) \to (T_y Y \to \mathbb{R})$	const regret	$\begin{array}{l} \Delta u: Y \to (Y \to R) \\ \bar{y} \mapsto u \\ \bar{y} \mapsto \lambda y . u(y) - u(\bar{y}) \end{array}$

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$	payoff map	$u:Y\to R$
	loss diff.	$d\ell: (y:Y) \to (T_y Y \to \mathbb{R})$	const regret	$\begin{array}{l} \Delta u: Y \to (Y \to R) \\ \bar{y} \mapsto u \\ \bar{y} \mapsto \lambda y . u(y) - u(\bar{y}) \end{array}$
valuations	covectors	$T^*Y: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$		

	learners		games	
states	space	$Y: \mathbf{Smooth}$	moves & payoffs	$(Y,R):\mathbf{Lens}(\mathbf{Set})$
changes	tangent vectors	$TY:\mathbf{Vect}_R(\mathbf{Smooth}/Y)$	deviations	$Y:\mathbf{Set}$
values	losses	$\mathbb{R}: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoffs	$R:\mathbf{Set}/_{\mathrm{prj}}Y$
	loss map	$\ell:Y\to\mathbb{R}$	payoff map	$u:Y\to R$
	loss diff.	$d\ell: (y:Y) \to (T_y Y \to \mathbb{R})$	const regret	$\begin{array}{c} \Delta u:Y \rightarrow (Y \rightarrow R) \\ \bar{y} \mapsto u \\ \bar{y} \mapsto \lambda y . u(y) - u(\bar{y}) \end{array}$
valuations	covectors	$T^*Y: \mathbf{Vect}_R(\mathbf{Smooth}/Y)$	payoff maps	$R^Y:\mathbf{Set}/_{\mathrm{prj}}Y$

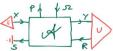
Idea

Like learners, games have a 'model dynamics' and a 'counterfactual dynamics'. We specify the first, but players live in the latter and that's what we are interested with:



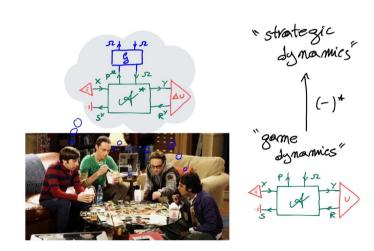
Idea

Like learners, games have a 'model dynamics' and a 'counterfactual dynamics'. We specify the first, but players live in the latter and that's what we are interested with:

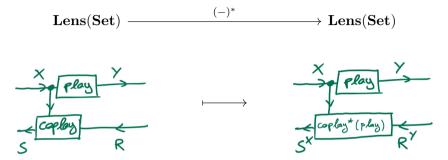


Idea

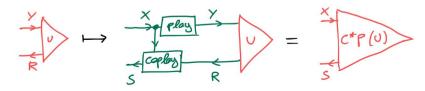
Like learners, games have a 'model dynamics' and a 'counterfactual dynamics'. We specify the first, but players live in the latter and that's what we are interested with:



As before, valuations give a 'reverse-mode differentiation', sending a map of game states to its counterfactual dynamics:



where $\operatorname{coplay}^*(\operatorname{play})(u) = \lambda x \operatorname{.} \operatorname{coplay}(x, u(\operatorname{play}(x))), \text{ i.e.}:$



Crucially, the functor $(-)^*$ can be equipped with a lax monoidal structure. Given $\mathbf{X} = (X, S)$, $\mathbf{Y} = (Y, R)$:

$$(1_{\mathbf{X}\times\mathbf{Y}},\mathbf{n}_{\mathbf{X},\mathbf{Y}}):(X\times Y,S^X\times R^Y)\rightleftharpoons (X\times Y,(S\times R)^{X\times Y})$$

where the backward part is the Nashator:

$$\mathbf{n}_{\mathbf{X},\mathbf{Y}}: X \times Y \times (S \times R)^{X \times Y} \longrightarrow S^X \times R^Y$$
$$(\bar{\boldsymbol{x}}, \ \bar{\boldsymbol{y}}, \ \boldsymbol{u}) \quad \longmapsto \langle \ \lambda x \, . \, \boldsymbol{u}_S(x, \bar{\boldsymbol{y}}), \ \lambda y \, . \, \boldsymbol{u}_R(\bar{\boldsymbol{x}}, y) \ \rangle$$

Crucially, the functor $(-)^*$ can be equipped with a lax monoidal structure. Given $\mathbf{X} = (X, S)$, $\mathbf{Y} = (Y, R)$:

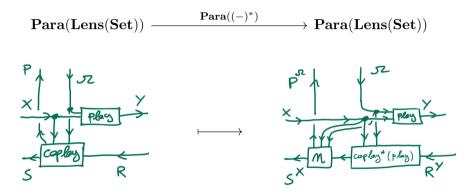
$$(1_{\mathbf{X}\times\mathbf{Y}},\mathbf{n}_{\mathbf{X},\mathbf{Y}}):(X\times Y,S^X\times R^Y)\rightleftharpoons (X\times Y,(S\times R)^{X\times Y})$$

where the backward part is the Nashator:

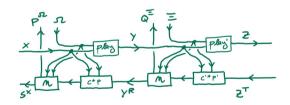
$$\mathbf{n}_{\mathbf{X},\mathbf{Y}}: X \times Y \times (S \times R)^{X \times Y} \longrightarrow S^X \times R^Y$$
$$(\bar{x}, \ \bar{y}, \ u) \quad \longmapsto \langle \ \lambda x \, . \, u_S(x, \bar{y}), \ \lambda y \, . \, u_R(\bar{x}, y) \ \rangle$$

Notice this monoidal structure can only be defined because $(-)^*$ lands in lenses!

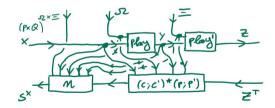
We can use the Nashator to make $Para((-)^*)$ into a *lax 2-functor*:



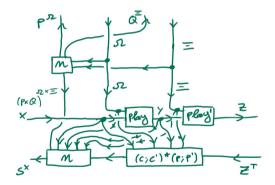
The laxness of this functor represents the difference between two players competing



The laxness of this functor represents the difference between two players competing and two players together:

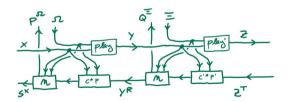


The laxness of this functor represents the difference between two players competing and two players together:



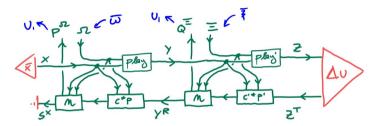
The Nashator breaks coalitions canonically

The laxness of this functor represents the difference between two players competing and two players together:



The Nashator breaks coalitions naturally

Nashators + **lens composition** reproduce precisely the propagation of feedback from the regret function to players (aka performs **backward induction**)



If players play the profile $(ar{\omega},ar{\xi})\in\Omega imes\Xi$, they respectively get back

 $u_1 = \lambda \omega . \ u(\mathsf{play}'(\bar{\xi},\mathsf{play}(\omega,\bar{x}))) - u(\mathsf{play}'(\bar{\xi},\mathsf{play}(\bar{\omega},\bar{x})))$

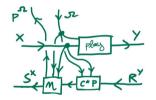
regret expected by unilaterally deviating from $\bar{\omega}$ to ω

$$u_2 = \lambda \xi \cdot u(\mathsf{play}'(\xi,\mathsf{play}(\bar{\omega},\bar{x}))) - u(\mathsf{play}'(\bar{\xi},\mathsf{play}(\bar{\omega},\bar{x})))$$

regret expected by unilaterally deviating from $ar{\xi}$ to ξ

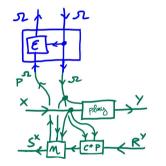
Players as a system

Now arenas provide enough information to allow players to be embodied by a system over it:



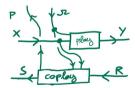
Players as a system

Now arenas provide enough information to allow players to be embodied by a system over it:

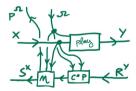


A morphism $\varepsilon : (\Omega \to P) \to \mathscr{P}\Omega$ is known as selection function and does indeed encode an agent's preference (see [3, 4, 5]). The extra dependency on Ω can be interpreted as a hint towards incomplete information games [6].

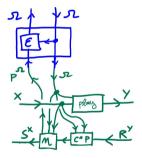
1. Start with a game dynamics



2. Get the arena by applying $\mathbf{Para}((-)^*)$



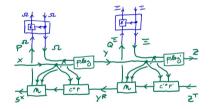
3. Add the players



4. Surround with a context (Nature's move (initial state) + Δ (payoff function))



4. Or don't, and compose it with other games!



In this talk, we've seen...

1. how to think accurately about the geometry of learners

- 1. how to think accurately about the geometry of learners
- 2. the general motif behind their workings: states, changes, values and valuations

- 1. how to think accurately about the geometry of learners
- 2. the general motif behind their workings: states, changes, values and valuations
- **3.** the way such a situation gives rise to 'reverse-mode derivation' functors, and the importance of their monoidal structures

- 1. how to think accurately about the geometry of learners
- 2. the general motif behind their workings: states, changes, values and valuations
- **3.** the way such a situation gives rise to 'reverse-mode derivation' functors, and the importance of their monoidal structures
- 4. how to extend this to games, using the Nashator

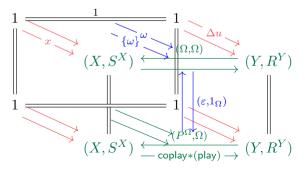
Wide horizon of directions from here: having pinned down the dynamical structure, we can...

Wide horizon of directions from here: having pinned down the dynamical structure, we can...

1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game theory

Wide horizon of directions from here: having pinned down the dynamical structure, we can...

- 1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game theory
- separately extract equilibria and other behavioural information using machinery from (an extension of) categorical systems theory [7, 8]
 Fact: Nash equilibria are fixpoints of diegetic open games



Wide horizon of directions from here: having pinned down the dynamical structure, we can...

- 1. vary the geometry and talk about stochastic, differential, evolutionary, etc. game theory
- separately extract equilibria and other behavioural information using machinery from (an extension of) categorical systems theory [7, 8]
 Fact: Nash equilibria are fixpoints of diegetic open games
- **3.** investigate the state-changes-values paradigm to analyze more systems, like Bayesian reasoners

Thank you!

Replying to @Alan_Taylor_314 @Joe_DoesMath and @mattecapu

Behold, my Nashequilibriyinator! I kept seeing people coOPerate with each other in little ways, just holding society together, y'know? But soon, everyone in the Tri-State Area will be FORCED to play Nash equilibria, so they won't be able to coordinate without a tyrannical leader!

References I

- K. Leyton-Brown and Y. Shoham, *Essentials of Game Theory: A Concise Multidisciplinary Introduction*. Morgan & Claypool, 2008.
- M. Capucci, B. Gavranović, J. Hedges, and E. F. Rischel, "Towards foundations of categorical cybernetics", in *Proceedings of Applied Category Theory 2021*, EPTCS, 2021. [Online]. Available: https://arxiv.org/abs/2105.06332.
- M. Capucci, N. Ghani, J. Ledent, and F. N. Forsberg, "Translating extensive form games to open games with agency", in *Proceedings of Applied Category Theory 2021*, EPTCS, 2021. [Online]. Available: https://arxiv.org/abs/2105.06763.
- M. Escardó and P. Oliva, "Selection functions, bar recursion and backward induction", *Mathematical structures in computer science*, vol. 20, no. 2, pp. 127–168, 2010.

References II

- J. Hedges, P. Oliva, E. Shprits, V. Winschel, and P. Zahn, "Higher-order decision theory", in *International Conference on Algorithmic Decision Theory*, Springer, 2017, pp. 241–254.
- J. C. Harsanyi, "Games with incomplete information played by "bayesian" players, i–iii part i. the basic model", *Management science*, vol. 14, no. 3, pp. 159–182, 1967.
- D. J. Myers, "Double categories of open dynamical systems", 2020, [Online]. Available: https://arxiv.org/abs/2005.05956.
- Categorical Systems Theory. 2022, (Work in progress). [Online]. Available: http://davidjaz.com/Papers/DynamicalBook.pdf (visited on 05/14/2022).