
On the pre- and promonoidal structure of
spacetime

James Hefford and Aleks Kissinger

University of Oxford

ACT 2022



Compositionality in CQM



Compositionality in CQM

U1

U2 U3

­

­ ­



Compositionality in CQM

U1 U2

U3

­

­

­



Compositionality in CQM

U1 U2 U3

­ ­

­



Decompositionality



Decompositionality

 



Decompositionality

 



Two problems:

1.
Not independent

2. Joint system might not be well-defined
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Partially Monoidal Categories

Definition (Partial Functor)

F : C ⇀ D

where:
S

C D

F0 F1

S full, replete subcategory of C.

Coecke & Lal, 2013, Found Phys 43. Gogioso, 2019, arXiv:1905.13117
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Can we “totalise” the tensor?
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Promonoidal Categories

Definition (Profunctor)

P : C −7→ D is a functor P : Dop × C −→ Set, equivalently
P̂ : C −→ [Dop,Set].

Composition:

(Q ◦ P )(−,=) =

∫ d

Q(−, d)× P (d,=)

Units:

F (−) ∼=
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∫ c
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Promonoidal Categories

Joint systems are given by presheaves

(A⊗B)(−) : Cop −→ Set

When representable

(A⊗B)(−) ∼= C(−, X)

we can identify “A⊗B ∼= X”
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A Toy Category of Slices

Fix M, a connected time-orientable Lorentzian manifold

Definition (Slice)

A closed set S ⊂M where no x 6= y in S are connected by a
future-directed causal curve.

Definition (Jointly Spacelike Slices)

X and Y jointly spacelike if X ∪ Y is a slice.
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A Toy Category of Slices

Definition
Slice category with:

Objects Slices of M
Morphisms γ : X −→ Y set of causal curves through X then Y

Composition δ ◦ γ = δ ∩ γ
Identities 1X : X −→ X set of all causal curves through X



A Toy Category of Slices
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7→

S : X → Y

T : Y → Z

T ◦ S : X → Z

Z

Y

X X

Z
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(X 7 Y )(Z) := P(C[Z,X] ∩ C[Z, Y ])
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Theorem
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A Toy Category of Slices

Conjecture

(Slice,6,Slice(−,∅)) is a symmetric “pro-premonoidal” category.

Theorem
(X 6 Y )(−) is representable if and only if X and Y are jointly
spacelike.

Theorem
For every slice X, (X 6−)(−) is a multiplicative kernel for
(Slice,7, J).
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Future Work

I Can we interpret 7 and 6 logically?

I Can we formalise “pro-premonoidal” categories? (Pre-print
out soon, hopefully!)

I Can we find similar structures in less “toy” versions of Slice,
e.g. with composition given by gluing causal curves? Can we
map fields onto such a category like in AQFT?

I How does the story play out with enrichment?
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