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Partially Monoidal Categories

Definition (Partial Functor)

F:C—~D
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where:

S full, replete subcategory of C.

Coecke & Lal, 2013, Found Phys 43.  Gogioso, 2019, arXiv:1905.13117
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1. Premonoidal categories to deal with non-independence of
systems

2. Promonoidal categories to deal with ill-defined joint systems
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Promonoidal Categories

Definition (Profunctor)

P:C—» Disafunctor P: D x C — Set, equivalently
P :C — [D°P, Set].

Composition:

d
(QoP)(~,=) = / Q(~,d) x P(d, =)

Units:

F(—)%/CFCXC(C,—), G(—)%/CC(—,c)ch
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Day, 1970, In: Reports of the Midwest Category Seminar IV
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Joint systems are given by presheaves

(A® B)(—) : C°P — Set
When representable

(A®B)(-) =C(-, X)

we can identify “A® B = X"
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A Toy Category of Slices

Fix M, a connected time-orientable Lorentzian manifold

Definition (Slice)
A closed set S C M where no z # y in S are connected by a
future-directed causal curve.

Definition (Jointly Spacelike Slices)
X and Y jointly spacelike if X UY is a slice.



A Toy Category of Slices

Definition
Slice category with:
Objects Slices of M
Morphisms ~: X — Y set of causal curves through X then Y
Composition doy=4dN~y

Identities 1x : X — X set of all causal curves through X
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(X oY) (Z) :=P(C[Z X]NC[Z,Y])

Z_/—\ Z_/\

® extends to a profunctor @ : Slice x Slice —+ Slice

J(=) :=P(C[—]) : Slice®® — Set
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Theorem

(Slice, ®, J) is a symmetric promonoidal category.

Theorem

(X ®©Y)(—) is representable if and only if X and Y are jointly
spacelike.
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A Toy Category of Slices

Conjecture

(Slice, @, Slice(—, @)) is a symmetric “pro-premonoidal” category.

Theorem
(X @Y)(—) is representable if and only if X and Y are jointly
spacelike.

Theorem
For every slice X, (X @ —)(—) is a multiplicative kernel for
(Slice, ®, J).
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Future Work

» Can we interpret ® and @ logically?

» Can we formalise “pro-premonoidal” categories? (Pre-print
out soon, hopefully!)

» Can we find similar structures in less “toy” versions of Slice,
e.g. with composition given by gluing causal curves? Can we
map fields onto such a category like in AQFT?

» How does the story play out with enrichment?



