

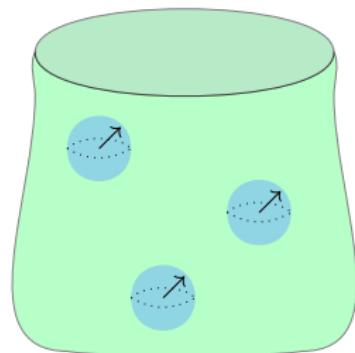
On the pre- and promonoidal structure of spacetime

James Hefford and Aleks Kissinger

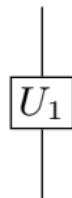
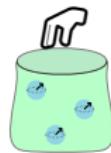
University of Oxford

ACT 2022

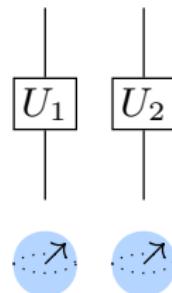
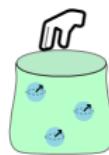
Compositionality in CQM



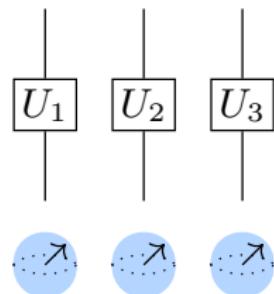
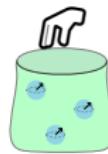
Compositionality in CQM



Compositionality in CQM

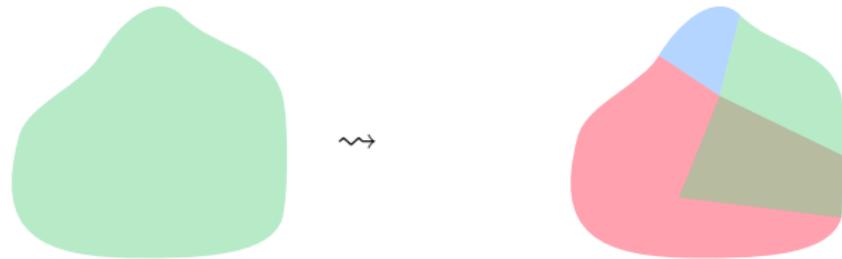


Compositionality in CQM

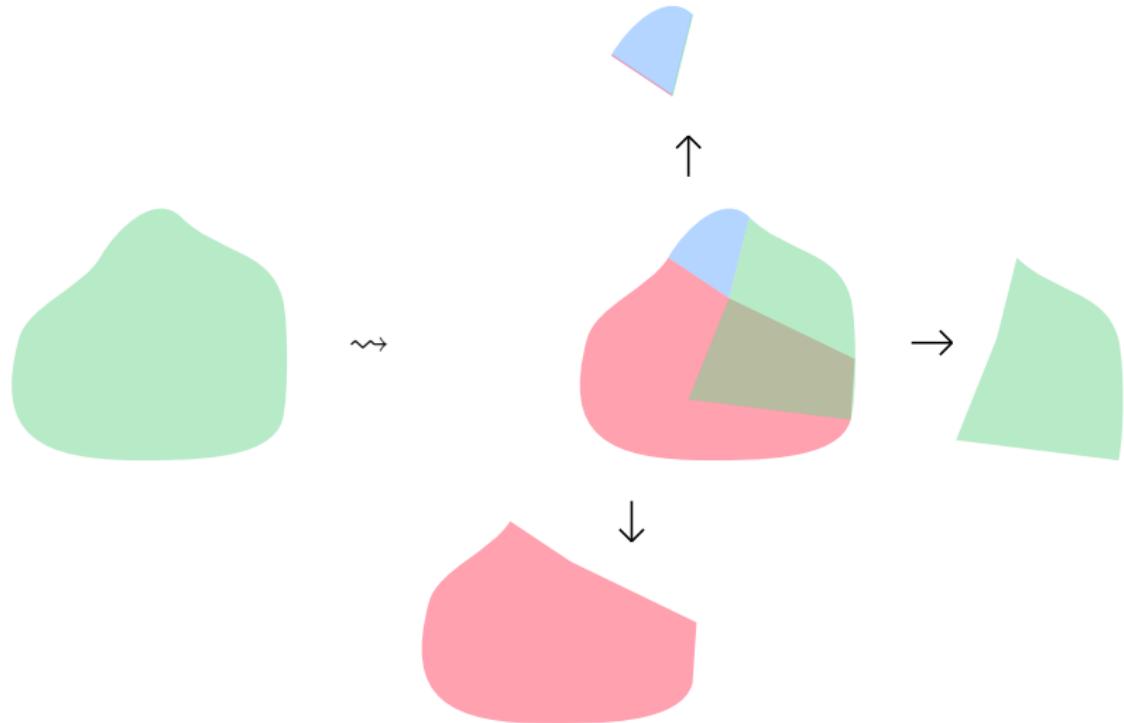


Decompositionality

Decompositionality

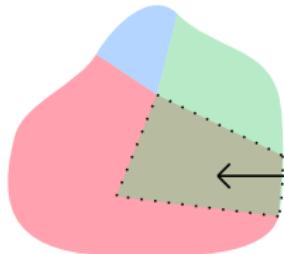


Decompositionality



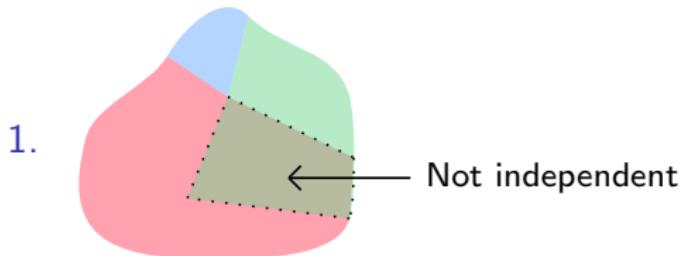
Two problems:

1.

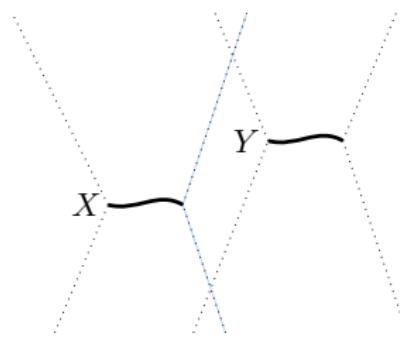


Not independent

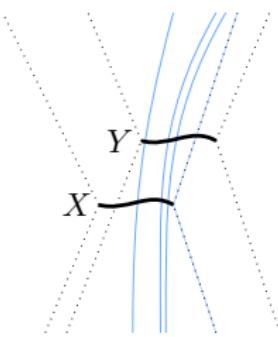
Two problems:



2. Joint system might not be well-defined



$X \otimes Y : \checkmark$



$X \otimes Y : ?$

Monoidal Categories

$$\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

$$I \in \text{Ob}(\mathcal{C})$$

Monoidal Categories

$$\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

$$I \in \text{Ob}(\mathcal{C})$$

$$(A \otimes B) \otimes C \xrightarrow{\alpha} A \otimes (B \otimes C)$$

$$I \otimes A \xrightarrow{\lambda} A \xrightarrow{\rho} A \otimes I$$

[Submitted on 29 Jul 2011]

Causal categories: relativistically interacting processes

[Bob Coecke](#), [Raymond Lal](#)

[Submitted on 30 May 2019]

A Process-Theoretic Church of the Larger Hilbert Space

[Stefano Gogioso](#)

[Submitted on 30 Mar 2020]

Functorial evolution of quantum fields

[Stefano Gogioso](#), [Maria E. Stasinou](#), [Bob Coecke](#)

Partially Monoidal Categories

Definition (Partial Functor)

$$F : \mathcal{C} \rightarrow \mathcal{D}$$

where:

$$\begin{array}{ccc} & \mathcal{S} & \\ F_0 \swarrow & & \searrow F_1 \\ \mathcal{C} & & \mathcal{D} \end{array}$$

\mathcal{S} full, replete subcategory of \mathcal{C} .

Partially Monoidal Categories

$$\begin{aligned}\otimes : \mathcal{C} \times \mathcal{C} &\rightharpoonup \mathcal{C} \\ I \in \text{Ob}(\mathcal{C})\end{aligned}$$

Partially Monoidal Categories

$$\otimes : \mathcal{C} \times \mathcal{C} \rightharpoonup \mathcal{C}$$

$$I \in \text{Ob}(\mathcal{C})$$

$$(A \otimes B) \otimes C \xrightarrow{\alpha} A \otimes (B \otimes C)$$

$$I \otimes A \xrightarrow{\lambda} A \xrightarrow{\rho} A \otimes I$$

Can we “totalise” the tensor?

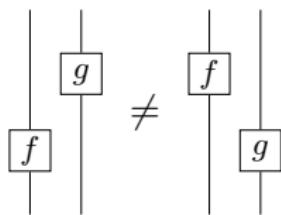
Idea:

1. Premonoidal categories to deal with non-independence of systems

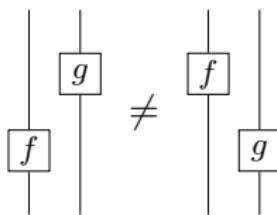
Idea:

1. Premonoidal categories to deal with non-independence of systems
2. Promonoidal categories to deal with ill-defined joint systems

Premonoidal Categories



Premonoidal Categories



$$\otimes : \mathcal{C} \boxtimes \mathcal{C} \rightarrow \mathcal{C}$$

$$I \in \text{Ob}(\mathcal{C})$$

Central isomorphisms:

$$(A \otimes B) \otimes C \xrightarrow{\alpha} A \otimes (B \otimes C)$$

$$I \otimes A \xrightarrow{\lambda} A \xrightarrow{\rho} A \otimes I$$

Promonoidal Categories

Definition (Profunctor)

$P : \mathcal{C} \rightarrow \mathcal{D}$ is a functor $P : \mathcal{D}^{\text{op}} \times \mathcal{C} \rightarrow \text{Set}$, equivalently
 $\hat{P} : \mathcal{C} \rightarrow [\mathcal{D}^{\text{op}}, \text{Set}]$.

Promonoidal Categories

Definition (Profunctor)

$P : \mathcal{C} \rightarrow \mathcal{D}$ is a functor $P : \mathcal{D}^{\text{op}} \times \mathcal{C} \rightarrow \text{Set}$, equivalently
 $\hat{P} : \mathcal{C} \rightarrow [\mathcal{D}^{\text{op}}, \text{Set}]$.

Composition:

$$(Q \circ P)(-, =) = \int^d Q(-, d) \times P(d, =)$$

Promonoidal Categories

Definition (Profunctor)

$P : \mathcal{C} \rightarrow \mathcal{D}$ is a functor $P : \mathcal{D}^{\text{op}} \times \mathcal{C} \rightarrow \text{Set}$, equivalently
 $\hat{P} : \mathcal{C} \rightarrow [\mathcal{D}^{\text{op}}, \text{Set}]$.

Composition:

$$(Q \circ P)(-, =) = \int^d Q(-, d) \times P(d, =)$$

Units:

$$F(-) \cong \int^c Fc \times \mathcal{C}(c, -), \quad G(-) \cong \int^c \mathcal{C}(-, c) \times Gc$$

Promonoidal Categories

$$\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

$$J : \mathcal{C}^{\text{op}} \rightarrow \text{Set}$$

Promonoidal Categories

$$\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

$$J : \mathcal{C}^{\text{op}} \rightarrow \text{Set}$$

$$\otimes(1 \times \otimes) \xrightarrow{\alpha} \otimes(\otimes \times 1)$$

$$\otimes(J \times 1) \xrightarrow{\lambda} 1 \xrightarrow{\rho} \otimes(1 \times J)$$

Promonoidal Categories

Joint systems are given by presheaves

$$(A \otimes B)(-) : \mathcal{C}^{\text{op}} \rightarrow \text{Set}$$

Promonoidal Categories

Joint systems are given by presheaves

$$(A \otimes B)(-) : \mathcal{C}^{\text{op}} \rightarrow \text{Set}$$

When representable

$$(A \otimes B)(-) \cong \mathcal{C}(-, X)$$

we can identify “ $A \otimes B \cong X$ ”

A Toy Category of Slices

Fix \mathcal{M} , a connected time-orientable Lorentzian manifold

A Toy Category of Slices

Fix \mathcal{M} , a connected time-orientable Lorentzian manifold

Definition (Slice)

A closed set $S \subset \mathcal{M}$ where no $x \neq y$ in S are connected by a future-directed causal curve.

A Toy Category of Slices

Fix \mathcal{M} , a connected time-orientable Lorentzian manifold

Definition (Slice)

A closed set $S \subset \mathcal{M}$ where no $x \neq y$ in S are connected by a future-directed causal curve.

Definition (Jointly Spacelike Slices)

X and Y jointly spacelike if $X \cup Y$ is a slice.

A Toy Category of Slices

Definition

Slice category with:

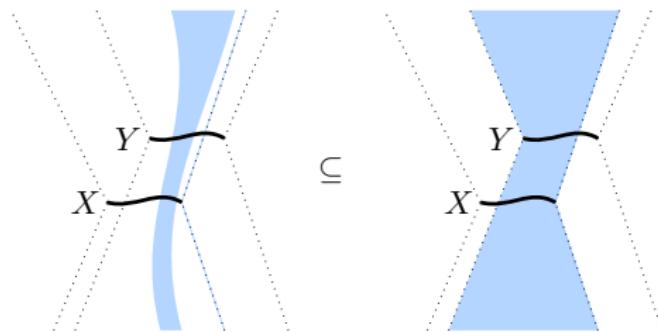
Objects Slices of \mathcal{M}

Morphisms $\gamma : X \rightarrow Y$ set of causal curves through X then Y

Composition $\delta \circ \gamma = \delta \cap \gamma$

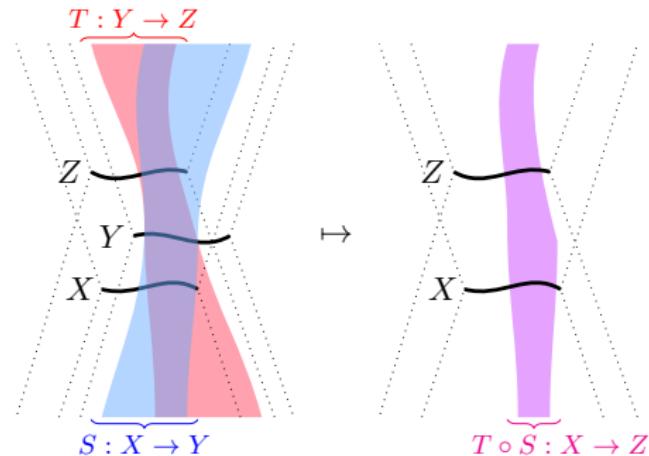
Identities $1_X : X \rightarrow X$ set of all causal curves through X

A Toy Category of Slices



$$f : X \rightarrow Y$$

A Toy Category of Slices

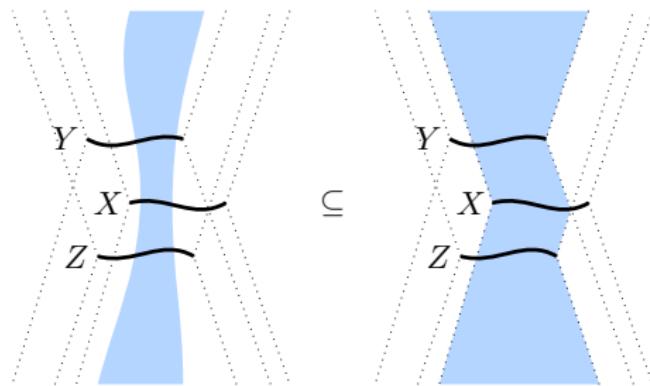


A Toy Category of Slices

$$(X \oslash Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cap \mathcal{C}[Z, Y])$$

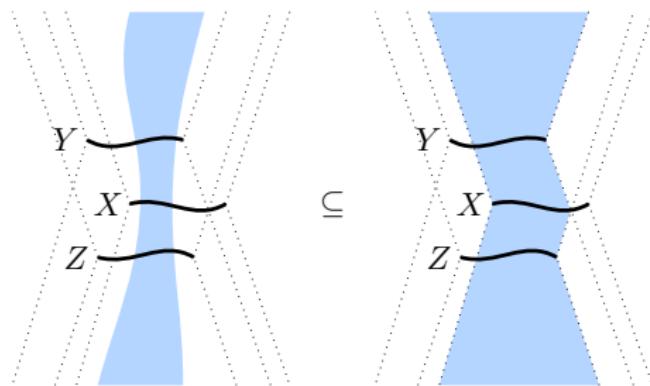
A Toy Category of Slices

$$(X \oslash Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cap \mathcal{C}[Z, Y])$$



A Toy Category of Slices

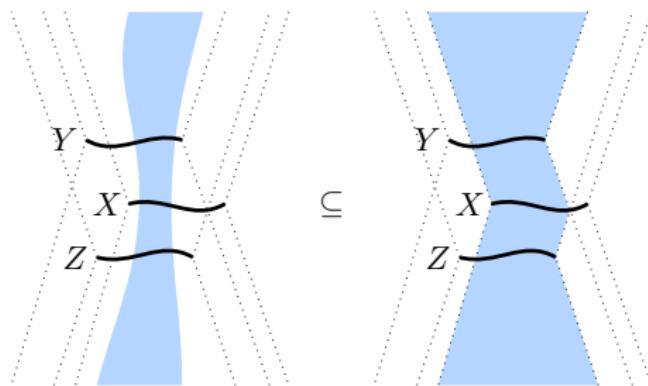
$$(X \oslash Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cap \mathcal{C}[Z, Y])$$



\oslash extends to a profunctor $\oslash : \text{Slice} \times \text{Slice} \rightarrow \text{Slice}$

A Toy Category of Slices

$$(X \oslash Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cap \mathcal{C}[Z, Y])$$



\oslash extends to a profunctor $\oslash : \text{Slice} \times \text{Slice} \rightarrow \text{Slice}$

$$J(-) := \mathcal{P}(\mathcal{C}[-]) : \text{Slice}^{\text{op}} \rightarrow \text{Set}$$

A Toy Category of Slices

Theorem

$(\text{Slice}, \oslash, J)$ is a symmetric promonoidal category.

A Toy Category of Slices

Theorem

$(\text{Slice}, \otimes, J)$ is a symmetric promonoidal category.

Theorem

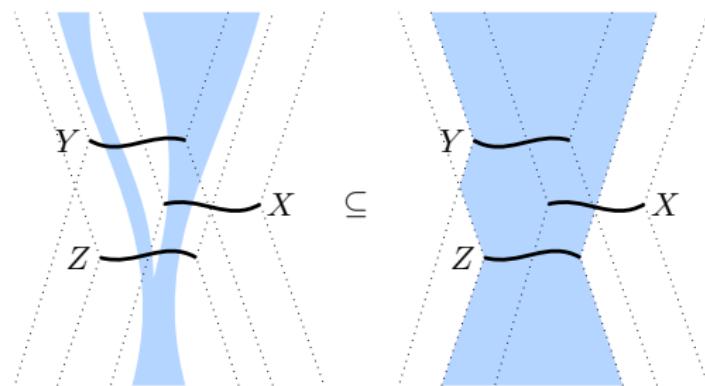
$(X \otimes Y)(-)$ is representable if and only if X and Y are jointly spacelike.

A Toy Category of Slices

$$(X \otimes Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cup \mathcal{C}[Z, Y])$$

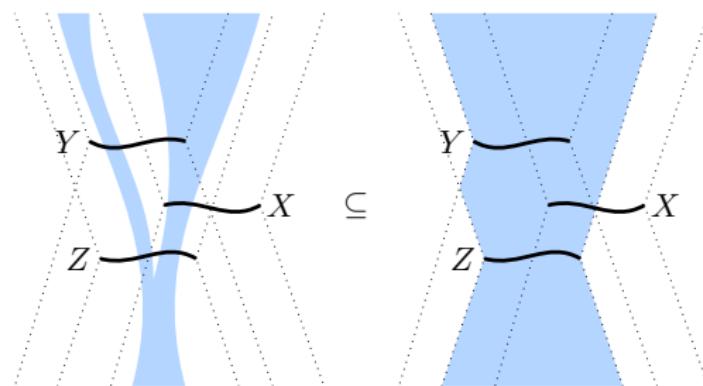
A Toy Category of Slices

$$(X \otimes Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cup \mathcal{C}[Z, Y])$$



A Toy Category of Slices

$$(X \otimes Y)(Z) := \mathcal{P}(\mathcal{C}[Z, X] \cup \mathcal{C}[Z, Y])$$



\otimes extends to a profunctor $\otimes : \text{Slice} \square \text{Slice} \rightarrow \text{Slice}$

A Toy Category of Slices

Conjecture

$(\text{Slice}, \otimes, \text{Slice}(-, \emptyset))$ is a symmetric “pro-premonoidal” category.

A Toy Category of Slices

Conjecture

$(\text{Slice}, \otimes, \text{Slice}(-, \emptyset))$ is a symmetric “pro-premonoidal” category.

Theorem

$(X \otimes Y)(-)$ is representable if and only if X and Y are jointly spacelike.

A Toy Category of Slices

Conjecture

$(\text{Slice}, \otimes, \text{Slice}(-, \emptyset))$ is a symmetric “pro-premonoidal” category.

Theorem

$(X \otimes Y)(-)$ is representable if and only if X and Y are jointly spacelike.

Theorem

For every slice X , $(X \otimes -)(-)$ is a multiplicative kernel for $(\text{Slice}, \otimes, J)$.

Future Work

- ▶ Can we interpret \oslash and \oslash logically?

Future Work

- ▶ Can we interpret \oslash and \oslash logically?
- ▶ Can we formalise “pro-premonoidal” categories? (Pre-print out soon, hopefully!)

Future Work

- ▶ Can we interpret \odot and \oslash logically?
- ▶ Can we formalise “pro-premonoidal” categories? (Pre-print out soon, hopefully!)
- ▶ Can we find similar structures in less “toy” versions of Slice, e.g. with composition given by gluing causal curves? Can we map fields onto such a category like in AQFT?

Future Work

- ▶ Can we interpret \odot and \oslash logically?
- ▶ Can we formalise “pro-premonoidal” categories? (Pre-print out soon, hopefully!)
- ▶ Can we find similar structures in less “toy” versions of Slice, e.g. with composition given by gluing causal curves? Can we map fields onto such a category like in AQFT?
- ▶ How does the story play out with enrichment?