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m Measurements X and contexts ¢/ define a site
with inclusion p as morphism.

m Measurement scenario: sheaf of events
0 £ (X,U)7 - Set, attaching outcomes OY for

each context U € U/ and with restriction p’ as
morphism.

m Empirical models:
B Dy : Set — Set :: OY {ygu}.

g k
d m Non-disturbance p{'[j; = 1S |y;.
An empirical model is non-contextual if

1 (A) = ; p (M) ¢ (AIA) = ; p1) Huﬂg (0" (U, x)(A), ).

Theorem (Fine-Abramsky-Brandenburger)

If & is deterministic (outcome-determinism), then the hidden variables A can be seen as
the global sections of &.

! Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality
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m Set of g-cochains C7(C, F) = [Toen(cyr F (lo);
d7: CI(C, F) - CI*1(C, F), with 4 (w) (¢) = T3 (~1)kp'(
m Complex of extended cochains
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0 a0 i a 0 a2
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H1(C,F) = Z1(C, F)/B(C, F) = ker(d?)/Im(d7~1)
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