CHARACTERIZATION OF CONTEXTUALITY WITH SEMI-MODULE ČECH COHOMOLOGY (ARXIV:2104:1141)

SIDINFY B. MONTANHANO

APPLIED CATEGORY THEORY 2022

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

■ Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

- Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.
- Measurement scenario: sheaf of events $\mathcal{E}: \langle X, \mathcal{U} \rangle^{op} \to \mathbf{Set}$, attaching outcomes O^U for each context $U \in \mathcal{U}$ and with restriction ρ' as morphism.

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

- Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.
- Measurement scenario: sheaf of events $\mathcal{E}: \langle X, \mathcal{U} \rangle^{op} \to \mathbf{Set}$, attaching outcomes O^U for each context $U \in \mathcal{U}$ and with restriction ρ' as morphism.
- Empirical models:

$$\mathcal{D}_R: \textbf{Set} \rightarrow \textbf{Set} :: O^U \mapsto \Big\{\mu_R^{O^U}\Big\}.$$

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

- Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.
- Measurement scenario: sheaf of events $\mathcal{E}: \langle X, \mathcal{U} \rangle^{op} \to \mathbf{Set}$, attaching outcomes O^U for each context $U \in \mathcal{U}$ and with restriction ρ' as morphism.
- Empirical models:

$$\mathcal{D}_R : \mathbf{Set} \to \mathbf{Set} :: O^U \mapsto \left\{ \mu_R^{O^U} \right\}.$$

■ Non-disturbance $\mu_R^{O^j}|_{kj} = \mu_R^{O^k}|_{kj}$.

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

- \blacksquare Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.
- Measurement scenario: sheaf of events $\mathcal{E}: \langle X, \mathcal{U} \rangle^{op} \to \mathbf{Set}$, attaching outcomes O^U for each context $U \in \mathcal{U}$ and with restriction ρ' as morphism.
- Empirical models:

$$\mathcal{D}_R: \textbf{Set} \rightarrow \textbf{Set} :: O^U \mapsto \Big\{\mu_R^{O^U}\Big\}.$$

■ Non-disturbance $\mu_R^{O^j}|_{kj} = \mu_R^{O^k}|_{kj}$.

An empirical model is non-contextual if

$$\mu_{R}^{O^{U}}(A) = \sum_{\Lambda} p\left(\lambda\right) \xi\left(A|\lambda\right) = \sum_{\Lambda} p\left(\lambda\right) \prod_{x \in U} \mu_{R}^{O^{x}}(\rho'(U,x)(A),\lambda).$$

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

- \blacksquare Measurements X and contexts $\mathcal U$ define a site with inclusion ρ as morphism.
- Measurement scenario: sheaf of events $\mathcal{E}: \langle X, \mathcal{U} \rangle^{op} \to \mathbf{Set}$, attaching outcomes O^U for each context $U \in \mathcal{U}$ and with restriction ρ' as morphism.
- Empirical models:

$$\mathcal{D}_R: \textbf{Set} \rightarrow \textbf{Set} :: O^U \mapsto \Big\{\mu_R^{O^U}\Big\}.$$

■ Non-disturbance $\mu_R^{O^j}|_{kj} = \mu_R^{O^k}|_{kj}$.

An empirical model is non-contextual if

$$\mu_{R}^{O^{U}}(A) = \sum_{\Lambda} p\left(\lambda\right) \xi\left(A|\lambda\right) = \sum_{\Lambda} p\left(\lambda\right) \prod_{x \in U} \mu_{R}^{O^{x}}(\rho'(U,x)(A),\lambda).$$

Theorem (Fine-Abramsky-Brandenburger)

If ξ is deterministic (outcome-determinism), then the hidden variables λ can be seen as the global sections of $\mathcal E$.

¹Samson Abramsky, Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality

Ingredients		

Ingredients

■ Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \varnothing$;

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- $\blacksquare \ \mathsf{Map} \ \partial_{j_k} : \mathsf{N}(\mathcal{C})^q \to \mathsf{N}(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q});$

- Nerve N(C) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- $\blacksquare \operatorname{\mathsf{Map}} \partial_{j_k} : \mathsf{N}(\mathcal{C})^q \to \mathsf{N}(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q});$
- $\blacksquare \ \mathsf{Presheaf} \ \mathcal{F} : \mathsf{N}(\mathcal{C}) \to \mathbf{AbGrp} \ \mathsf{satisfiyng}$

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- $\blacksquare \ \mathsf{Map} \ \partial_{j_k} : \mathsf{N}(\mathcal{C})^q \to \mathsf{N}(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q});$
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- $\blacksquare \operatorname{\mathsf{Map}} \partial_{j_k} : \mathsf{N}(\mathcal{C})^q \to \mathsf{N}(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q});$
- \blacksquare Presheaf $\mathcal{F}: \mathsf{N}(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. $\mathcal F$ is "flasque beneath the cover"

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- $\blacksquare \operatorname{\mathsf{Map}} \partial_{j_k} : \mathsf{N}(\mathcal{C})^q \to \mathsf{N}(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q});$
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. \mathcal{F} is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- Map ∂_{j_k} : $N(\mathcal{C})^q \to N(\mathcal{C})^{q-1} :: \sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q})$;
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. \mathcal{F} is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.
- Set of *q*-cochains $C^q(\mathcal{C}, \mathcal{F}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{F}(|\sigma|)$;

- Nerve N(\mathcal{C}) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- Map ∂_{j_k} : $N(C)^q \to N(C)^{q-1}$:: $\sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q})$;
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. \mathcal{F} is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.
- Set of *q*-cochains $C^q(\mathcal{C}, \mathcal{F}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{F}(|\sigma|)$;
- $\blacksquare d^q: C^q(\mathcal{C}, \mathcal{F}) \to C^{q+1}(\mathcal{C}, \mathcal{F}), \text{ with } d^q_+(\omega)(\sigma) = \sum_{k=0}^{q+1} (-1)^k \rho'(|\partial_{i_k} \sigma|, |\sigma|) \omega(\partial_{i_k} \sigma);$

- Nerve N(C) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- Map ∂_{j_k} : $N(C)^q \to N(C)^{q-1}$:: $\sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q})$;
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. \mathcal{F} is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.
- Set of *q*-cochains $C^q(\mathcal{C}, \mathcal{F}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{F}(|\sigma|)$;
- $\blacksquare d^q: C^q(\mathcal{C}, \mathcal{F}) \to C^{q+1}(\mathcal{C}, \mathcal{F}), \text{ with } d^q_+(\omega)(\sigma) = \sum_{k=0}^{q+1} (-1)^k \rho'(|\partial_{i_k} \sigma|, |\sigma|) \omega(\partial_{i_k} \sigma);$
- Complex of extended cochains

$$\mathbf{0} \longrightarrow C^0(\mathcal{C}, \mathcal{F}) \xrightarrow{d^0} C^1(\mathcal{C}, \mathcal{F}) \xrightarrow{d^1} C^2(\mathcal{C}, \mathcal{F}) \xrightarrow{d^2} \dots \tag{1}$$

Ingredients

- Nerve N(C) $\ni \sigma = (C_{j_0}, ..., C_{j_q})$, with $|\sigma| = \bigcap_{k=0}^q C_{j_k} \neq \emptyset$;
- Map ∂_{j_k} : $N(C)^q \to N(C)^{q-1}$:: $\sigma \mapsto (C_{j_0}, ..., \widehat{C_{j_k}}, ..., C_{j_q})$;
- Presheaf $\mathcal{F}: N(\mathcal{C}) \to \mathbf{AbGrp}$ satisfying
 - 1. $\mathcal{F}(\sigma) \neq \emptyset$ for all $\sigma \in \mathsf{N}(\mathcal{C})$
 - 2. \mathcal{F} is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.
- Set of *q*-cochains $C^q(\mathcal{C}, \mathcal{F}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{F}(|\sigma|)$;
- $\blacksquare d^q: C^q(\mathcal{C}, \mathcal{F}) \to C^{q+1}(\mathcal{C}, \mathcal{F}), \text{ with } d^q_+(\omega)(\sigma) = \sum_{k=0}^{q+1} (-1)^k \rho'(|\partial_{j_k} \sigma|, |\sigma|) \omega(\partial_{j_k} \sigma);$
- Complex of extended cochains

$$\mathbf{0} \longrightarrow C^0(\mathcal{C}, \mathcal{F}) \xrightarrow{d^0} C^1(\mathcal{C}, \mathcal{F}) \xrightarrow{d^1} C^2(\mathcal{C}, \mathcal{F}) \xrightarrow{d^2} \dots \tag{1}$$

 $\blacksquare \check{H}^q(\mathcal{C}, \mathcal{F}) = Z^q(\mathcal{C}, \mathcal{F})/B^q(\mathcal{C}, \mathcal{F}) = \ker(d^q)/\operatorname{Im}(d^{q-1})$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

$$\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

$$\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

$$\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$$

$$\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \xrightarrow{p} \mathcal{F}|_{C_i};$$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$
- $\blacksquare p: \mathcal{F} \to \mathcal{F}|_{C_i} :: p_{C_j}: r \mapsto r|_{C_i \cap C_j};$
- $\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \xrightarrow{p} \mathcal{F}|_{C_i};$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$

Recipe

■ Fix s_{j_0} of C_{j_0} ;

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$
- $\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \xrightarrow{p} \mathcal{F}|_{C_i};$

- Fix s_{j_0} of C_{j_0} ;
- There is $\{s_{j_k}\}$ such that $s_{j_0}|_{j_0j_k} = s_{j_k}|_{j_0j_k}$, $k \neq 0$;

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$
- $\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \stackrel{p}{\longrightarrow} \mathcal{F}|_{C_i};$

- Fix s_{j_0} of C_{j_0} ;
- There is $\{s_{j_k}\}$ such that $s_{j_0}|_{j_0j_k} = s_{j_k}|_{j_0j_k}$, $k \neq 0$;
- $\blacksquare \text{ If } c = \left\{ s_{j_k} \right\}_{0 \leq k \leq n} \in C^0(\mathcal{C}, \mathcal{F}) \text{, then } z = dc \in Z^1(\mathcal{C}, \mathcal{F}_{\bar{C}_{j_0}});$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$
- $\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \stackrel{p}{\longrightarrow} \mathcal{F}|_{C_i};$

- Fix s_{j_0} of C_{j_0} ;
- There is $\{s_{j_k}\}$ such that $s_{j_0}|_{j_0j_k} = s_{j_k}|_{j_0j_k}$, $k \neq 0$;
- $\blacksquare \text{ If } c = \left\{ s_{j_k} \right\}_{0 \leq k \leq n} \in C^0(\mathcal{C}, \mathcal{F}) \text{, then } z = dc \in Z^1(\mathcal{C}, \mathcal{F}_{\bar{C}_{j_0}});$
- The obstruction $\gamma(s_{j_0})$ is the cohomological class $[z] \in \check{H}^1(\mathcal{C}, \mathcal{F}_{\check{C}_{j_0}}).$

² Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$

Recipe

- Fix s_{i_0} of C_{i_0} ;
- There is $\{s_{j_k}\}$ such that $s_{j_0}|_{j_0j_k} = s_{j_k}|_{j_0j_k}$, $k \neq 0$;
- $\blacksquare \text{ If } c = \left\{ s_{j_k} \right\}_{0 \le k \le n} \in C^0(\mathcal{C}, \mathcal{F}) \text{, then } z = dc \in Z^1(\mathcal{C}, \mathcal{F}_{\bar{C}_{i_n}});$
- The obstruction $\gamma(s_{j_0})$ is the cohomological class $[z] \in \check{H}^1(\mathcal{C}, \mathcal{F}_{\bar{\mathcal{C}}_z})$.

Proposition

Let \mathcal{C} be connected, $C_{j_0} \in \mathcal{C}$, and $r_{j_0} \in \mathcal{F}(C_{j_0})$. Thus $\gamma(r_{j_0}) = 0$ iff there is a compatible family $\left\{s_{j_k} \in \mathcal{F}(C_{j_k})\right\}_{C_{j_k} \in \mathcal{C}}$ such that $r_{j_0} = s_{j_0}$.

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Relative cohomology

- $\blacksquare \mathcal{F}|_{C_i}(C_j) = \mathcal{F}(C_i \cap C_j);$
- $\blacksquare 0 \longrightarrow \mathcal{F}_{\bar{C}_i} \longrightarrow \mathcal{F} \xrightarrow{p} \mathcal{F}|_{C_i};$

Recipe

- Fix s_{i_0} of C_{i_0} ;
- There is $\{s_{j_k}\}$ such that $s_{j_0}|_{j_0j_k} = s_{j_k}|_{j_0j_k}$, $k \neq 0$;
- $\blacksquare \text{ If } c = \left\{ s_{j_k} \right\}_{0 \leq k \leq n} \in C^0(\mathcal{C}, \mathcal{F}) \text{, then } z = dc \in Z^1(\mathcal{C}, \mathcal{F}_{\bar{C}_{j_0}}) \text{;}$
- The obstruction $\gamma(s_{j_0})$ is the cohomological class $[z] \in \check{H}^1(\mathcal{C}, \mathcal{F}_{\bar{\mathcal{C}}_i})$.

Proposition

Let $\mathcal C$ be connected, $C_{j_0} \in \mathcal C$, and $r_{j_0} \in \mathcal F(C_{j_0})$. Thus $\gamma(r_{j_0}) = 0$ iff there is a compatible family $\left\{s_{j_k} \in \mathcal F(C_{j_k})\right\}_{C_{j_k} \in \mathcal C}$ such that $r_{j_0} = s_{j_0}$.

	00	01	10	11
ab	$1_{\mathbb{B}}$	0	0	$1_{\mathbb{B}}$
bc	$1_{\mathbb{B}}$	0	0	$1_{\mathbb{B}}$
bc	$1_{\mathbb{B}}$	0	0	$1_{\mathbb{B}}$
da	$1_{\mathbb{B}}$	$1_{\mathbb{B}}$	$1_{\mathbb{B}}$	$1_{\mathbb{B}}$

²Samson Abramsky, Shane Mansfield Rui Soares Barbosa (2012): The Cohomology of Non-Locality and Contextuality

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$Z^q = \{c \in C^q | d_+^q(c) = d_-^q(c)\} \text{ e } H^q(\mathcal{C}) = Z^q(\mathcal{C}) / \sim^q.$$

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴ Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q, d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$\cdots \xrightarrow{d_{+}^{q-2}} C^{q-2} \xrightarrow{d_{+}^{q-1}} C^{q} \xrightarrow{d_{+}^{q}} C^{q+1} \xrightarrow{d_{+}^{q+1}} \cdots$$

$$(2)$$

$$Z^{q} = \{c \in C^{q} | d_{+}^{q}(c) = d_{-}^{q}(c)\} \text{ e } H^{q}(C) = Z^{q}(C) / \sim^{q}.$$

Čech cohomology with semi-modules⁴

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q, d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$\cdots \xrightarrow{d_{+}^{q-2}} C^{q-2} \xrightarrow{d_{+}^{q-1}} C^{q} \xrightarrow{d_{+}^{q}} C^{q+1} \xrightarrow{d_{+}^{q+1}} \cdots$$

$$(2)$$

$$Z^q = \left\{c \in C^q \middle| d_+^q(c) = d_-^q(c)\right\} \text{ e } H^q(\mathcal{C}) = Z^q(\mathcal{C})/\sim^q.$$

Čech cohomology with semi-modules⁴

■ Presheaf of *R*-semi-modules *G* satisfying

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$\cdots \xrightarrow{d_{+}^{q-2}} C^{q-2} \xrightarrow{d_{+}^{q-1}} C^{q} \xrightarrow{d_{+}^{q}} C^{q+1} \xrightarrow{d_{+}^{q+1}} \cdots$$

$$(2)$$

$$Z^q = \left\{c \in C^q \middle| d_+^q(c) = d_-^q(c)\right\} \in H^q(\mathcal{C}) = Z^q(\mathcal{C})/\sim^q.$$

Čech cohomology with semi-modules⁴

- Presheaf of R-semi-modules \mathcal{G} satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$\cdots \xrightarrow{d_{+}^{q-2}} C^{q-2} \xrightarrow{d_{+}^{q-1}} C^{q} \xrightarrow{d_{+}^{q}} C^{q+1} \xrightarrow{d_{+}^{q+1}} \cdots$$

$$(2)$$

$$Z^q = \left\{c \in C^q \middle| d_+^q(c) = d_-^q(c)\right\} \in H^q(\mathcal{C}) = Z^q(\mathcal{C})/\sim^q.$$

Čech cohomology with semi-modules⁴

- Presheaf of R-semi-modules \mathcal{G} satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. G is "flasque beneath the cover"

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

$$Z^q = \{c \in C^q | d_+^q(c) = d_-^q(c)\} \text{ e } H^q(\mathcal{C}) = Z^q(\mathcal{C}) / \sim^q.$$

Čech cohomology with semi-modules⁴

- Presheaf of R-semi-modules \mathcal{G} satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in \mathsf{N}(\mathcal{C})$
 - 2. *G* is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_+^{q+1} \circ d_-^q$

 \blacksquare $C^q(\mathcal{C},\mathcal{G}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{G}(|\sigma|);$

$$Z^q = \{c \in C^q | d_+^q(c) = d_-^q(c)\} \text{ e } H^q(\mathcal{C}) = Z^q(\mathcal{C}) / \sim^q.$$

Čech cohomology with semi-modules⁴

- Presheaf of *R*-semi-modules *G* satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. \mathcal{G} is "flasque beneath the cover"
 - any compatible family induces a unique global section.

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q$

$$Z^q = \{c \in C^q | d_+^q(c) = d_-^q(c)\} \text{ e } H^q(C) = Z^q(C) / \sim^q.$$

Čech cohomology with semi-modules4

- Presheaf of R-semi-modules G satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$

unique global section.

- 2. G is "flasque beneath the cover"
- 3. any compatible family induces a

- $\blacksquare C^q(\mathcal{C},\mathcal{G}) = \prod_{\sigma \in \mathbb{N}(\mathcal{C})^q} \mathcal{G}(|\sigma|);$
- $d_+^q(\omega)(\sigma) = \sum_{k=0}^{q+1} \operatorname{gray} \rho'(|\partial_{i_k}\sigma|, |\sigma|)\omega(\partial_{i_k}\sigma)$

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴Jaiung Jun (2017): Čech cohomology of semiring schemes

Semi-modules C^q and d_+^q , d_-^q satisfying $d_+^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q = d_-^{q+1} \circ d_+^q + d_-^{q+1} \circ d_-^q$

$$Z^q = \{c \in C^q | d_+^q(c) = d_-^q(c)\} \text{ e } H^q(\mathcal{C}) = Z^q(\mathcal{C}) / \sim^q.$$

Čech cohomology with semi-modules4

- Presheaf of R-semi-modules G satisfying
 - 1. $\mathcal{G}(\sigma) \neq \emptyset$ for all $\sigma \in N(\mathcal{C})$
 - 2. G is "flasque beneath the cover"
 - 3. any compatible family induces a unique global section.

- $d_+^q(\omega)(\sigma) = \sum_{k=0}^{q+1} \rho'(|\partial_{j_k}\sigma|, |\sigma|) \omega(\partial_{j_k}\sigma)$
- $d_-^q(\omega)(\sigma) = \sum_{i=0}^{q+1} \rho'(|\partial_{ik}\sigma|, |\sigma|)\omega(\partial_{ik}\sigma).$

³Alex Patchkoria (2006): On exactness of long sequences of homology semimodules

⁴ Jaiung Jun (2017): Čech cohomology of semiring schemes

- $[h,c] \sim [g,c]$ if $gd_+^n(c) = hd_+^n(c)$;

- $[h,c] \sim [g,c]$ if $gd_+^n(c) = hd_+^n(c)$;
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;

- $\blacksquare g[\sigma]d_+^n(c)(\sigma) = d_-^n(c)(\sigma);$
- $[h,c] \sim [g,c]$ if $gd_+^n(c) = hd_+^n(c)$;
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(C, G) \mapsto [g_n, c]$

- $[h,c] \sim [g,c]$ if $gd_+^n(c) = hd_+^n(c)$;
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $[h,c] \sim [g,c]$ if $gd_+^n(c) = hd_+^n(c)$;
- If $[Id,c] = [g_n,c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $g[\sigma]d_+^n(c)(\sigma) = d_-^n(c)(\sigma);$
- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
 - If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n] :: c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $p_C: C^q(\mathcal{C}, \mathcal{G}) \to C^q(\mathcal{C}, \mathcal{G}|_C) :: [g, c] \mapsto [g|_C, p_C(c)].$

- $g[\sigma]d_+^n(c)(\sigma) = d_-^n(c)(\sigma);$
- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n] :: c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $\blacksquare 0 \longrightarrow \mathcal{G}_{\bar{C}} \longrightarrow \mathcal{G} \stackrel{p}{\longrightarrow} \mathcal{G}|_{C};$

Recipe

- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n] :: c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

$$p_C: C^q(\mathcal{C}, \mathcal{G}) \to C^q(\mathcal{C}, \mathcal{G}|_C) :: [g, c] \mapsto [g|_C, p_C(c)].$$

Recipe

■ Fix $c_{j_0} \in C^0(\mathcal{C}, \mathcal{G})$;

- $\blacksquare g[\sigma]d_+^n(c)(\sigma) = d_-^n(c)(\sigma);$
- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $\blacksquare 0 \longrightarrow \mathcal{G}_{\bar{C}} \longrightarrow \mathcal{G} \stackrel{p}{\longrightarrow} \mathcal{G}|_{C};$

Recipe

- Fix $c_{j_0} \in C^0(\mathcal{C}, \mathcal{G})$;
- There is $c = \{c_{j_k}\}$ such that $c_{j_0}|_{j_0j_k} = c_{j_k}|_{j_0j_k}$ for all k;

- $g[\sigma]d_+^n(c)(\sigma) = d_-^n(c)(\sigma);$
- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

$C^{0}(\mathcal{C},\mathcal{G}) \xrightarrow{d^{0}_{+}} C^{1}(\mathcal{C},\mathcal{G})$ $\downarrow [g_{0}]$ $C^{1}(\mathcal{C},\mathcal{G})$

Relative cohomology

$$\blacksquare 0 \longrightarrow \mathcal{G}_{\bar{C}} \longrightarrow \mathcal{G} \stackrel{p}{\longrightarrow} \mathcal{G}|_{C};$$

Recipe

- Fix $c_{j_0} \in C^0(\mathcal{C}, \mathcal{G})$;
- There is $c = \{c_{j_k}\}$ such that $c_{j_0}|_{j_0j_k} = c_{j_k}|_{j_0j_k}$ for all k;
- $\gamma(c_{j_0}) = [g_{C_{j_0}}, c]$ is the obstruction of c_{j_0} ;

- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(\mathcal{C}, \mathcal{G}) \mapsto [g_n, c]$

Relative cohomology

- $p_C: C^q(\mathcal{C}, \mathcal{G}) \to C^q(\mathcal{C}, \mathcal{G}|_C) :: [g, c] \mapsto [g|_C, p_C(c)].$

Recipe

- Fix $c_{j_0} \in C^0(\mathcal{C}, \mathcal{G})$;
- There is $c = \{c_{j_k}\}$ such that $c_{j_0}|_{j_0j_k} = c_{j_k}|_{j_0j_k}$ for all k;
- $\gamma(c_{j_0}) = [g_{C_{j_0}}, c]$ is the obstruction of c_{j_0} ;

Theorem

Let C be connected, $C_{j_0} \in C$, and $c_{j_0} \in \mathcal{G}(C_{j_0})$. The obstruction $\gamma(c_{j_0})$ is trivial iff there is a compatible

family $\{r_{j_k} \in \mathcal{G}(C_{j_k})\}_{C_{i_k} \in \mathcal{C}}$ such that

$$c_{j_0}=r_{j_0}.$$

- $[h,c] \sim [g,c] \text{ if } gd_+^n(c) = hd_+^n(c);$
- If $[Id, c] = [g_n, c]$, then $d_+^n c = d_-^n c$;
- Difference operator $[g_n]$:: $c \in C^n(C, G) \mapsto [g_n, c]$

Relative cohomology

- $\blacksquare 0 \longrightarrow \mathcal{G}_{\bar{C}} \longrightarrow \mathcal{G} \stackrel{p}{\longrightarrow} \mathcal{G}|_{C}$:
- $\blacksquare p_C: C^q(\mathcal{C},\mathcal{G}) \to C^q(\mathcal{C},\mathcal{G}|_C) :: [g,c] \mapsto$ $[g|_{C}, p_{C}(c)].$

Recipe

- Fix $c_{i_0} \in C^0(\mathcal{C}, \mathcal{G})$;
- There is $c = \{c_{j_k}\}$ such that $c_{j_0}|_{j_0j_k} = c_{j_k}|_{j_0j_k}$ for all
- $\gamma(c_{j_0}) = [g_{\tilde{C}_{j_0}}, c]$ is the obstruction of c_{j_0} ;

Theorem

 $c_{i_0} = r_{i_0}$.

 $c_{i_0} \in \mathcal{G}(C_{i_0})$. The obstruction $\gamma(c_{i_0})$ is trivial iff there is a compatible family $\{r_{j_k} \in \mathcal{G}(C_{j_k})\}_{C_{i, \in C}}$ such that

Let C be connected, $C_{i_0} \in C$, and

Corollary (Characterization)

An empirical model is contextual iff there is a section of G with non-trivial obstruction.

Thank you