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Doing two things at once

e Multiphysics is the simultaneous simulation of different physical aspects of
a single system

 Example: conjugate convective heat transfer

e d solid body sitting inside a moving fluid, to which we introduce a heat
source

 heat transfer is modelled by e.g. the Laplace equation
e fluid convection is modelled by e.g. Navier—Stokes and energy equations

e but these two physical phenomena interact



Doing two things at once

IS sometimes harder than just doing two things at once

 The problem is that ODE/PDE solvers are often ad hoc and “just code”
e the colimit of solvers is not a solver for the colimit of the problems

e This is the practical motivation for the paper

one maths

two codes q one code



Doing two things at once

e Analytic reduction
* Sometimes multiphysics problems can be reduced “purely formally”
* ..SOmetimes

e The problem of heat exchange between two fluid streams in boundary
layer flow separated by a flat plate is considered. A general analysis
applicable to cocurrent or countercurrent, laminar or turbulent flow is
presented. An exact solution for the temperature distribution and the
heat transfer along the plate is obtained for the special case of constant
property, cocurrent, inviscid flow. (DOI:10.1016/0017-9310(71)90180-3)



https://doi.org/10.1016/0017-9310(71)90180-3

Doing two things at once

e Naive nhumerical method

e Solving just for the body (resp. just for the fluid) gives a boundary
condition for the fluid (resp. for the body)

e Guess some initial boundary conditions, and use to solve for one
part, then use the solution to solve for the other part, giving new
boundary conditions, and... iterate

e Problem: rate of convergence depends on initial guess, and there is
no systematic way beyond trial and error



Doing two things at once

IS sometimes harder than just doing two things at once

e Category theory

e ..Just use a limit or something?



Doing two things at once

« We will see that limits (e.g. equalisers) are too blunt

e they give universal solutions, whereas we care about specific
solutions

e also force us to work in sufficiently nice categories (e.g. diffeologies
instead of smooth manifolds)

e This is the theoretical motivation for the paper



Multiphysics simulation with Decapodes.|

All the stuff I'm going to talk about has actually been implemented
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Multiphysics simulation with Decapodes.|

All the stuff I'm going to talk about has actually been implemented
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Multiphysics simulation with Decapodes.|

All the stuff I'm going to talk about has actually been implemented
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2, Can we clo multiphysics

“connpositionally”?




Constituent components of diffusion

Understanding equations as conjunctions of principles

o Diffusion of a substance on a 3-manifold is governed by physical
quantities

e concentration C €
e (negative) diffusion flux ¢ € Q2
o diffusivity k € Q°

e ... Which satisfy

e 0.C=*dgp = d(kx)dC



Constituent components of diffusion

e 0,C =% d¢p = * d(kx)dC

e This is really the conjunction of two physical principles:
e Fick’sfirstlaw: ¢ =k x dC
e Conservation of mass: 0.C = x d¢

e Informally, both of these give us holes in which we can plug the same two
variables: C and ¢

e We can formalise this using decorated multispans and undirected wiring
diagrams



Constituent components of diffusion

Understanding equations as conjunctions of principles

Decorated multispans (components)

dC:Qf — > ¢:Qf -—9---- {——>¢:5? }

Fick’s first law

[ C:0 <--J ----- - O o G ) S dg O
Td
{ ¢: <“} ——————————————————————————— 6 : Q2

Conservation of mass

UWD (schema)

Transport
flux

Mass
conservatlon

Kmﬁ

Composition pattern for diffusion




Constituent components of diffusion

e Now we can extend or replace individual components

e E.g.to describe advection instead of diffusion, we can just plug o
different diagram into the “Transport flux” box: replace Fick’s first law
with one that describes flux due to advection along a moving field

C:Q0 —*y C:.Q3




Constituent components of diffusion

Understanding equations as conjunctions of principles

Multispans (components)

dC:Qf — > ¢:Qf -—9---- {——>¢:5? }

Fick’s first law

UWD (schema)

Transport
flux

Mass
conservatlon

{ C:0 <--J ----- - O o G ) S dg O
Td
{ ¢: <“} ——————————————————————————— 6 : Q2

KMJ

Conservation of mass

Composition pattern for diffusion




Constituent components of diffusion

Understanding equations as conjunctions of principles

Multispans (components) UWD (schema)

Transport Mass
flux conservatlon
¢ Q2

Composition pattern for diffusion

Conservation of mass



Constituent components of diffusion

Understanding equations as conjunctions of principles

Multispans (components)

UWD (schema)

T ransport
flux

Mass
conservatlon

¢: Q

Conservation of mass

Composition pattern for diffusion




Constituent components of diffusion

Understanding equations as conjunctions of principles

e This modularity is really also hierarchicality [sic]

 Two levels: combine diffusion with advection by operadic composition of UWDs

[lefusmn \

\/‘ﬁl QZ

[Advectlon]—/ Mass
conservation
.o Flux .o
b2 L4 superposition ¢

Composition pattern for advection-diffusion

e Three levels: advection-diffusion-reaction

e More levels: operad!
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Maxwell’'s house

The general philosophy of “Tonti diagrams”

e The main idea: an arrow T e -

f ¢ ----- b Fo S S o

Xy o N

asserts the equation ™| 5 =) Tl T 7"
flx) =y i =P i 7

d : |

» The main problem: e B - ﬁ N /‘ < ﬂ o

inconsistent & informal O/ ____________ T P N

conventions, even ] i i v i i

within a single diagram + 0--------- T

Left: exterior calculus, from Bossavit
Right: vector calculus, from Cortes Garcia et al.
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Diagrams, formally

e Adiagram in a category € is a functor D: # — € where the shape 7 is a small
category

e for our purposes, ¢ is usuadlly some category of “geometric sheaves” on a space,
e.g. wedge products of the (co)tangent bundle of a manifold (so sections are
differential forms and vector fields)

e Given a category € and an object S € €, the category Elg(¥) of generalised
elements of shape S is the coslice category Ely(%) = S/€

o Alift of adiagram D: # — ¢ through a functor z: & — ¢ is a functor D:  — & such

thatzeD =D

E
A
C

O

7/

\

e we generally take z to be a discrete opfibration |
—

D



Oy o
Solutions C:) —= C: &

oC
The heat equation:- — = kVC

ot

e Note that the diagram presenting an equation does not commute
o if it did, then this would say that everything is a solution to the equation!

« Maybe surprisingly, we do not just take the limit (e.g. equaliser) of a
diagram

e this would give us universal solutions, but in (P)DEs, we're often just
interested in single solutions (by design)

» (we would also have to leave the categories of classical differential
geometry in order for the relevant limits to exist)



Oy o
Solutions C:) —= C: &

oC
The heat equation: E =kVC

e Instead, solutions correspond to lifts of the diagram D through the
codomain functor cod: El(€) - €

« when working with (P)DEs, we usually take S = R (the constant sheaf
of R on M), since morphisms R — & of sheaves (of real vector
spaces on M) are in bijection with global sections of #

e Note that we can recover limits from lifts, since a lift through cod is
exactly a cone over D with apex S



Morphisms of diagrams

e Given a category @, the backwards category of diagrams in ¢ has objects (7,D: # - ¥) and
morphisms (R: #'— #,p: D+ R = D’); the forwards category has morphisms
(R: F > F,p: D= D' oR)

cf. Perrone and Tholen

R
J < X J’ J s J’
p . p N
D D D D
C C
Forwards Backwards

e If p is the identity, then we recover (the opposite of) the slice category Cat/&
 Morphisms in the backwards category send solutions to solutions

e thus these tend to go in the direction of increasing generality, e.g. from static Maxwell-
Faraday with potentials to static Maxwell-Faraday without potentials



Purpose of morphisms

« We can use morphisms for a few things, e.g.
o steady states of diffusion processes
o different presentations of the same physics (but this is subtle!)
e boundary (and initial) value problems

e this is the really nice one!



BVPs (and IVPs)

* An extension of a diagram D,: #, — € along a Jo f » C
functor R: 7, —» ZisadiagramD: £ - €anda  « /.-
(backwards) morphism (R, p): (£, D) = (£, Dy) e

e Glven

. an extension of D, along R Jo \7 j
o NN
2. alift D, of D, through some functor z: & - @ J——C
the extension lifting problem is to find an extension
(R,p): (¥,D) - (£, D, of D,along R such that Dis a B P

lift of D through = in a “2-compatible way”




BVPs (and IVPs)

e Drepresents the whole system

e D, represents the boundary of the system

e D — D, projects the system onto its boundary
o Alift D, of D,is a choice of boundary data

e N.B. unlike in “classical” algebraic topology, we allow extension-lifting
problems to be non-strict, I.e. to have non-trivial 2-cells



BVPs (and IVPs)

Pretty important for actually solving and modelling stuff

dC: QM) +=— C:QXM) ---2*2--) Cp:00M)
Lo
kx C : QM)
v -
¢:02(M) —4— d¢p: Q3(M) obp : Q2(OM)
e TROERL b e o EEe . (0
Cresom
réSom,t=0
Neumann BVP for diffusion . P . -
dC: QM) < C:QUM) ---—+5--> Co:QUM) —;
lat re;a;[ : res;-o
hx C: Q%M) Cy : Q0(0M)
| [
¢: Q7 M) —— d: QM)

Dirichlet BVP for diffusion
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Coneclusion

. Categorical framework for talking about equations and their
solutions

2. Julia implementation (+ DEC + simplicial complexes) for
multiphysics simulation




n

tneory”

ory



Some things we use and discuss

 Diagram categories in the presence of cartesian/symmetric monoidal structures

e these let us talk about more complicated physics, e.g. Maxwell’'s house, Navier—Stokes
« Homotopical structure of diagram categories

o weak equivalences of are defined so that “w.e. implies bijective solutions”

« we give a sufficient (but not necessary) condition in terms of initial functors; these generalise
to something more 2-categorical: relatively initial functors

 The framework is “independent of geometry”

e most of our examples are in PDEs, but there’'s nothing stopping us from talking about e.g. finite
difference equations, or probabilistic/statistical things (e.g. structural equation models)

e Tonti's desired classification of physical theories?



