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Idea:
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Markov categories

The category FinStoch

e Objects are finite sets (or natural numbers);

e Morphisms are stochastic matrices p : X — Y of entries p(y|x);

qgop(zlx) = alzly) p(y|x)

y
The category Stoch

e Objects are measurable spaces;
e Morphisms are Markov kernels k : X — Y of entries p(B|x);

hok(Clx) = [ h(Cly) kldylx)
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Markov categories
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Deterministic morphisms:

e In FinStoch, these are the matrices with only entries 0 and 1.




Markov categories

Deterministic morphisms:

e In FinStoch, these are the matrices with only entries 0 and 1.

e |n Stoch, these are the kernels indexing measures with only values
0 and 1 for each measurable set.




Markov categories

Almost-sure equality:

4 A4

e In FinStoch, this means that f = g on the support of p.
e |n Stoch,

| F(E o) = [ g(B1x)p(e0)
i.e. f and g differ only on a set of p-measure zero.
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Markov categories

Conditionals, Bayesian inverses, disintegrations:

e In FinStoch: p(x) f(y|x) = q(y) fp+(X|Y)
e In Stoch:

/ F(Bx) p(dx) = /B £+(Aly) a(dy).

A




Markov categories

Conditionals, Bayesian inverses, disintegrations:

o |f fp+ exists for all p and deterministic f, we say that X satisfies a
disintegration theorem. (E.g. if X is standard Borel.) In Stoch,
conditional expectations assemble to a regular conditional.
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Dynamical systems with Markov categories

Invariant states:

X
P
/ lm In Stoch these are the invariant measures.
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Dynamical systems with Markov categories

Invariant states:

X
P
/ / lm In Stoch these are the invariant measures.

Invariant (deterministic) observables:
x In Stoch these correspond to invariant sets
l S (especially for S = 2).
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Dynamical systems with Markov categories

Markov colimits:

\ In Stoch, if m acts deterministically,
e 57 e Xm'v is given by the sigma-algebra
/ of invariant sets.
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Dynamical systems with Markov categories

Markov colimits:

X i .
\ & In Stoch, if m acts deterministically,

e Xy -3 5 Xy is given by the sigma-algebra
/ of invariant sets.

X S

Ergodic states:
An invariant stat | 2 X is ergodic if and only if for each invariant
observable s,

I s Xx =5y

is deterministic. In Stoch: zero-one on invariant sets!
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Main statement

Theorem:
Let C be a Markov category. Let X be a deterministic dynamical

system in C with monoid M. Suppose that
e The underlying object X of C has disintegrations;
e The Markov colimit Xi,, of the dynamical system exists.

Then every invariant state of X can be written as a composition ko g
such that k is g-almost surely ergodic.

12 of 15 _



Main statement

Theorem:

Let C be a Markov category. Let X be a deterministic dynamical
system in C with monoid M. Suppose that

e The underlying object X of C has disintegrations;

e The Markov colimit Xi,, of the dynamical system exists.

Then every invariant state of X can be written as a composition ko g
such that k is g-almost surely ergodic.

Corollary:

Let X be a measurable dynamical system on a space that admits
disintegrations. Then every invariant measure on X can be written as
a mixture of ergodic ones.
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Main statement

Proof:

X Xinv |
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Main statement

Xinv X Xinv X Xinv X )<inv X Xinv X
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Conclusion

This is the first step into ergodic theory with Markov categories

The definition of ergodic measure is very natural in this framework

e Convex mixtures of measures are just categorical composition

The ergodic decomposition theorem has a conceptual proof in
terms of string diagrams. Measure theory is “outsourced” to
e.g. the disintegration requirement.

Coming next: ergodic theorems, stochastic dynamical systems!
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