

A category-theoretic proof of the Ergodic Decomposition Theorem

Paolo Perrone
Joint work with Sean Moss

University of Oxford,
Dept. of Computer Science

Applied Category Theory 2022

Ergodicity

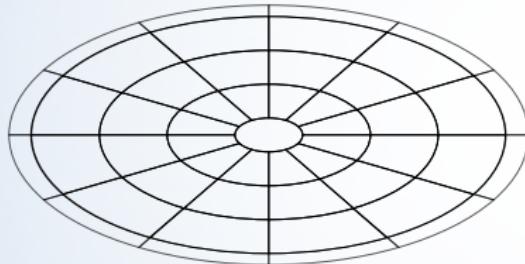
Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

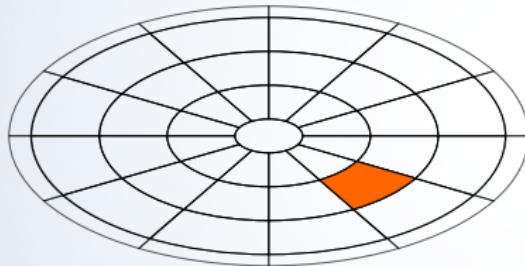


- M monoid acting measurably on (X, Σ_X)

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

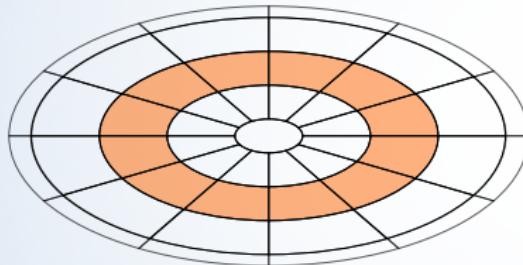


- M monoid acting measurably on (X, Σ_X)

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

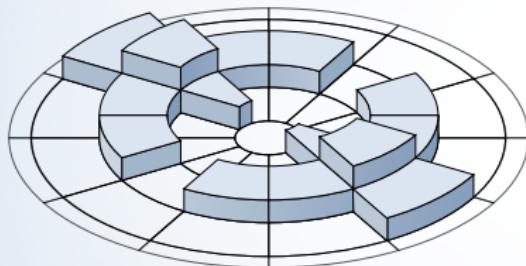


- M monoid acting measurably on (X, Σ_X)
- Orbit of x : $\{mx : m \in M\}$

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

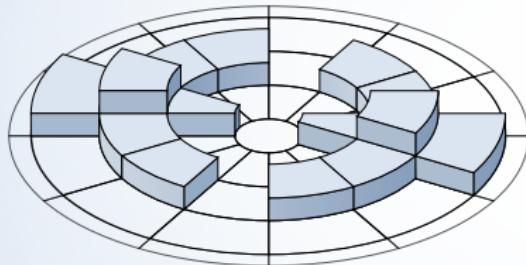


- M monoid acting measurably on (X, Σ_X)
- Orbit of x :
 $\{mx : m \in M\}$
- Action on measures:
 $m_* p(A) = p(m^{-1}(A))$
for each $A \in \Sigma_X$

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.

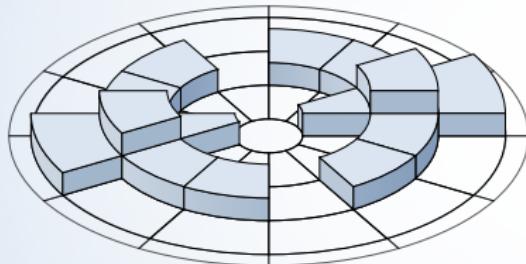


- M monoid acting measurably on (X, Σ_X)
- Orbit of x :
 $\{mx : m \in M\}$
- Action on measures:
 $m_* p(A) = p(m^{-1}(A))$
for each $A \in \Sigma_X$

Ergodicity

Idea:

An *ergodic system* is a situation where “all the mass is well mixed”.



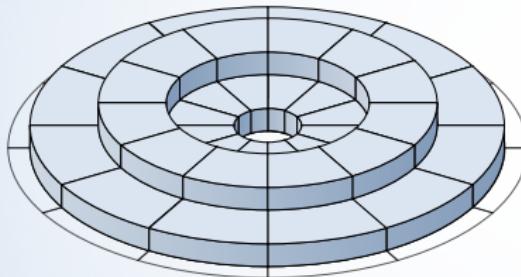
- M monoid acting measurably on (X, Σ_X)
- Orbit of x :
 $\{mx : m \in M\}$
- Action on measures:
 $m_* p(A) = p(m^{-1}(A))$
for each $A \in \Sigma_X$

Ergodicity

Idea:

A *ergodic system* is a situation where “all the mass is well mixed”.

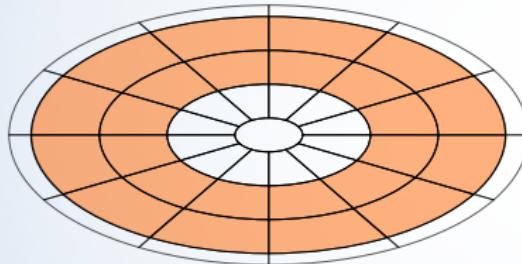
- p invariant measure:
 $m_*p = p$



Ergodicity

Idea:

A *ergodic system* is a situation where “all the mass is well mixed”.

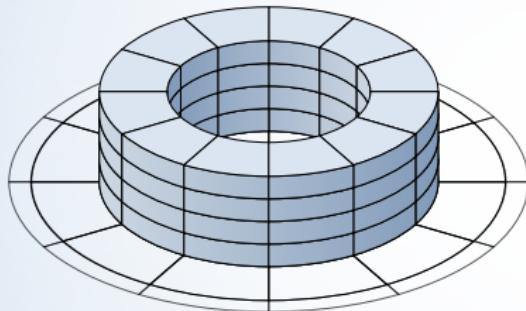


- p invariant measure:
 $m_*p = p$
- A invariant set:
 $x \in A \Leftrightarrow mx \in A$,
equivalently $m^{-1}(A) = A$

Ergodicity

Idea:

A *ergodic system* is a situation where “all the mass is well mixed”.

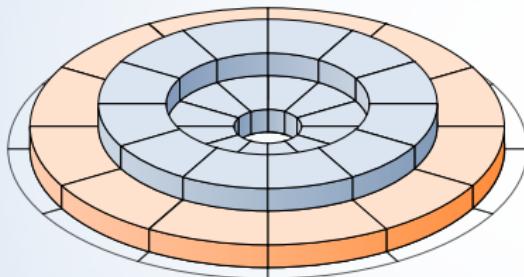


- ρ invariant measure:
 $m_*\rho = \rho$
- A invariant set:
 $x \in A \Leftrightarrow mx \in A$,
equivalently $m^{-1}(A) = A$
- ρ ergodic measure:
invariant, and $\rho(A) = 0$
or $\rho(A) = 1$ for inv. A

Ergodicity

Idea:

A *ergodic system* is a situation where “all the mass is well mixed”.

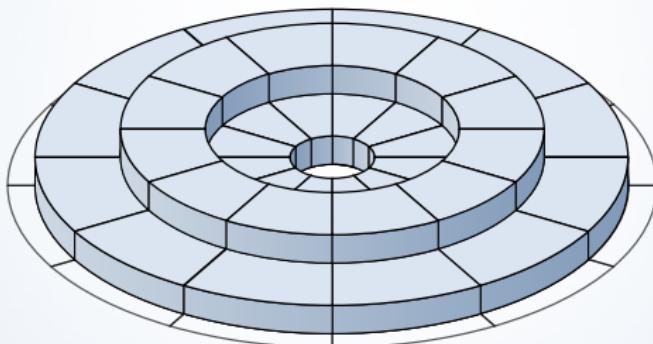


- ρ invariant measure:
 $m_*\rho = \rho$
- A invariant set:
 $x \in A \Leftrightarrow mx \in A$,
equivalently $m^{-1}(A) = A$
- ρ ergodic measure:
invariant, and $\rho(A) = 0$
or $\rho(A) = 1$ for inv. A

Ergodicity

Ergodic Decomposition Theorem:

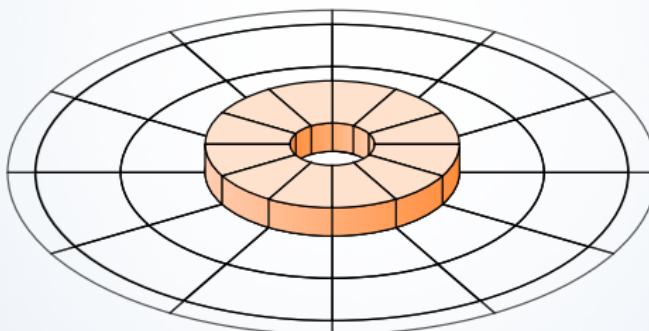
Every invariant measure is a mixture of ergodic ones.



Ergodicity

Ergodic Decomposition Theorem:

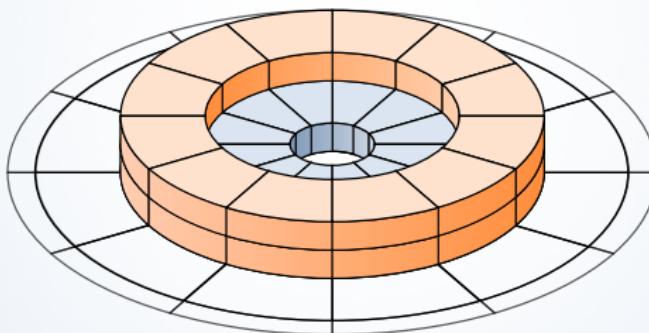
Every invariant measure is a mixture of ergodic ones.



Ergodicity

Ergodic Decomposition Theorem:

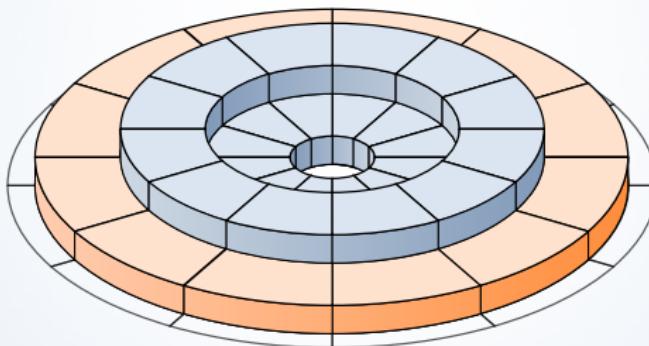
Every invariant measure is a mixture of ergodic ones.



Ergodicity

Ergodic Decomposition Theorem:

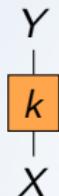
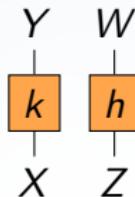
Every invariant measure is a mixture of ergodic ones.



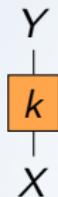
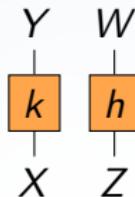
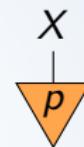
Markov categories

Markov categories

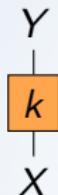
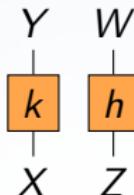
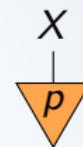
Markov categories



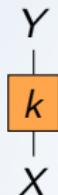
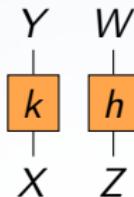
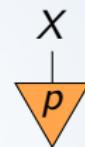
Markov categories



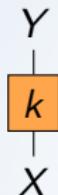
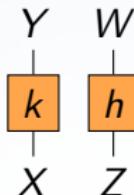
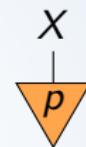
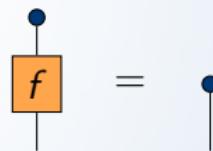
Markov categories



Markov categories



Markov categories



Markov categories

The category FinStoch

- Objects are finite sets (or natural numbers);
- Morphisms are stochastic matrices $p : X \rightarrow Y$ of entries $p(y|x)$;

$$q \circ p(z|x) = \sum_y q(z|y) p(y|x)$$

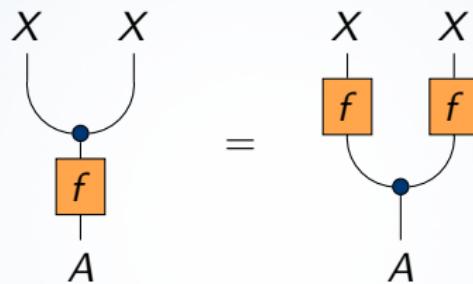
The category Stoch

- Objects are measurable spaces;
- Morphisms are Markov kernels $k : X \rightarrow Y$ of entries $p(B|x)$;

$$h \circ k(C|x) = \int_Y h(C|y) k(dy|x)$$

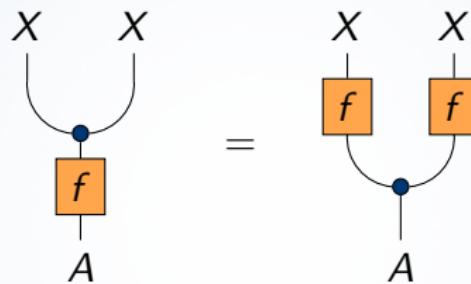
Markov categories

Deterministic morphisms:



Markov categories

Deterministic morphisms:



- In FinStoch, these are the matrices with only entries 0 and 1.

Markov categories

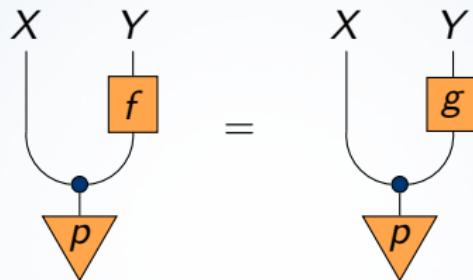
Deterministic morphisms:

$$\begin{array}{ccc} X & & X \\ \cup & & \cup \\ & \bullet & \\ & \boxed{f} & \\ & A & \end{array} = \begin{array}{ccc} X & & X \\ & \downarrow f & \downarrow f \\ & \cup & \\ & \bullet & \\ & A & \end{array}$$

- In FinStoch, these are the matrices with only entries 0 and 1.
- In Stoch, these are the kernels indexing measures with only values 0 and 1 for each measurable set.

Markov categories

Almost-sure equality:



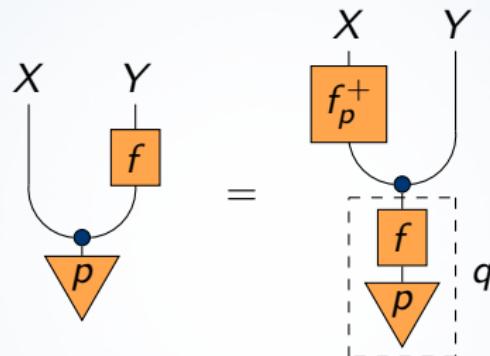
- In FinStoch, this means that $f = g$ on the support of p .
- In Stoch,

$$\int_A f(B|x) p(dx) = \int_A g(B|x) p(dx)$$

i.e. f and g differ only on a set of p -measure zero.

Markov categories

Conditionals, Bayesian inverses, disintegrations:

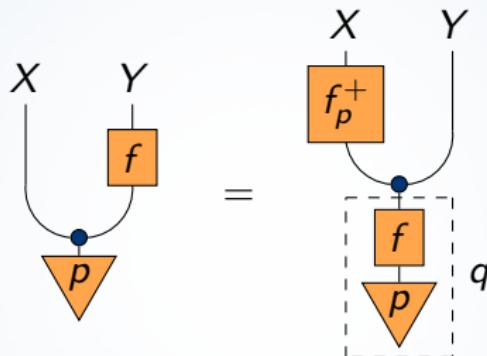


- In FinStoch: $p(x) f(y|x) = q(y) f_p^+(x|y)$
- In Stoch:

$$\int_A f(B|x) p(dx) = \int_B f_p^+(A|y) q(dy).$$

Markov categories

Conditionals, Bayesian inverses, disintegrations:



- If f_p^+ exists for all p and deterministic f , we say that X satisfies a *disintegration theorem*. (E.g. if X is standard Borel.) In Stoch, conditional expectations assemble to a *regular conditional*.

Markov categories

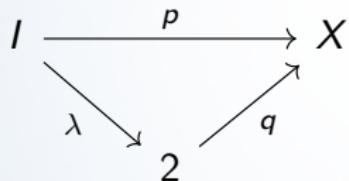
Decomposition of states:

$$p(x) = \lambda_1 q_1(x) + \lambda_2 q_2(x) \quad \lambda_i \geq 0, \quad \lambda_1 + \lambda_2 = 1$$

Markov categories

Decomposition of states:

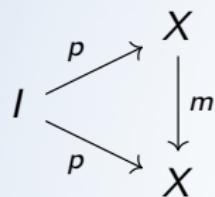
$$p(x) = \lambda_1 q_1(x) + \lambda_2 q_2(x) \quad \lambda_i \geq 0, \quad \lambda_1 + \lambda_2 = 1$$



$$p(x) = \sum_{i \in 2} q(x|i) \lambda(i)$$

Dynamical systems with Markov categories

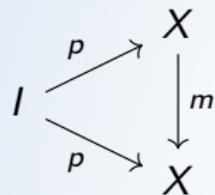
Invariant states:



In Stoch these are the invariant measures.

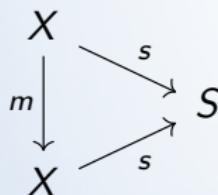
Dynamical systems with Markov categories

Invariant states:



In Stoch these are the invariant measures.

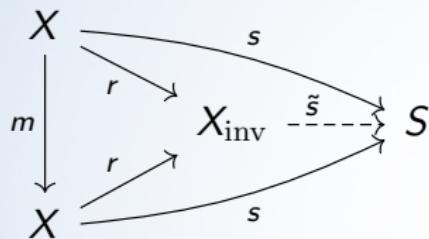
Invariant (deterministic) observables:



In Stoch these correspond to invariant sets
(especially for $S = 2$).

Dynamical systems with Markov categories

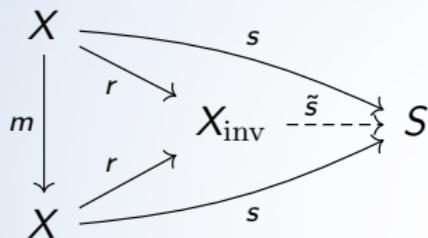
Markov colimits:



In Stoch, if m acts deterministically, X_{inv} is given by the *sigma-algebra of invariant sets*.

Dynamical systems with Markov categories

Markov colimits:



In Stoch, if m acts deterministically, X_{inv} is given by the *sigma-algebra of invariant sets*.

Ergodic states:

An invariant stat $I \xrightarrow{p} X$ is *ergodic* if and only if for each invariant observable s ,

$$I \xrightarrow{p} X \xrightarrow{s} Y$$

is deterministic. In Stoch: zero-one on invariant sets!

Main statement

Theorem:

Let C be a Markov category. Let X be a deterministic dynamical system in C with monoid M . Suppose that

- The underlying object X of C has disintegrations;
- The Markov colimit X_{inv} of the dynamical system exists.

Then every invariant state of X can be written as a composition $k \circ q$ such that k is q -almost surely ergodic.

Main statement

Theorem:

Let C be a Markov category. Let X be a deterministic dynamical system in C with monoid M . Suppose that

- The underlying object X of C has disintegrations;
- The Markov colimit X_{inv} of the dynamical system exists.

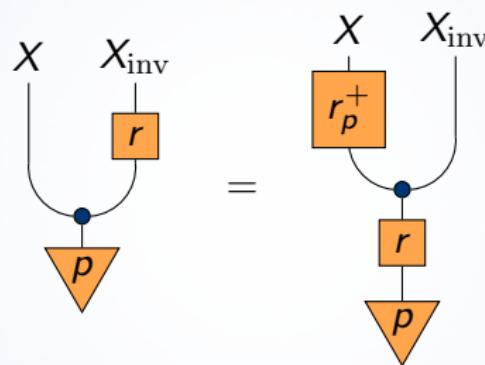
Then every invariant state of X can be written as a composition $k \circ q$ such that k is q -almost surely ergodic.

Corollary:

Let X be a measurable dynamical system on a space that admits disintegrations. Then every invariant measure on X can be written as a mixture of ergodic ones.

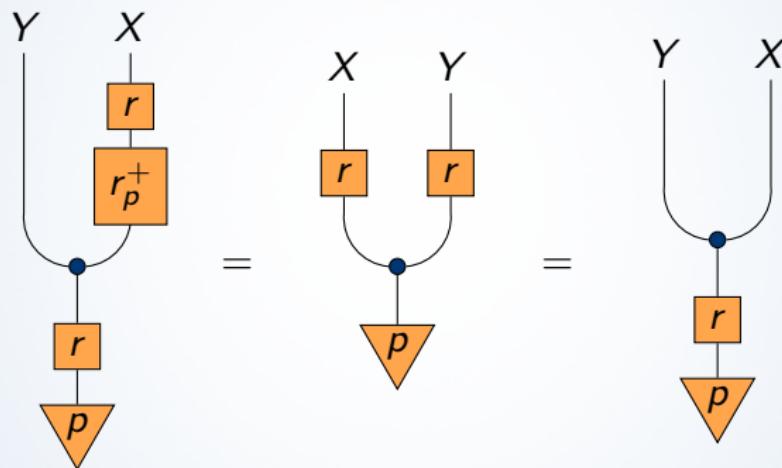
Main statement

Proof:



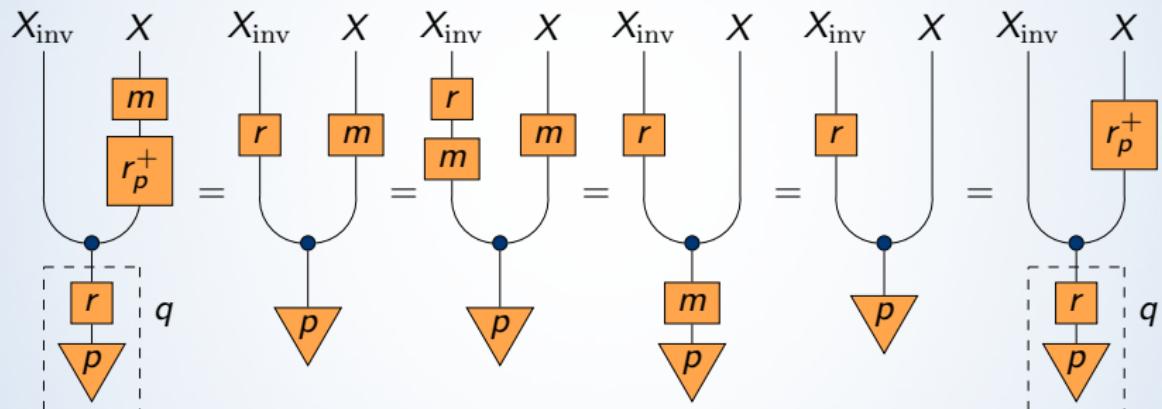
Main statement

Proof:



Main statement

Proof:



Conclusion

- This is the first step into ergodic theory with Markov categories
- The definition of ergodic measure is very natural in this framework
- Convex mixtures of measures are just categorical composition
- The ergodic decomposition theorem has a conceptual proof in terms of string diagrams. Measure theory is “outsourced” to e.g. the disintegration requirement.
- Coming next: ergodic theorems, stochastic dynamical systems!

Some references

- Behrisch, M., Kerkhoff, S., Pöschel, R., Schneider, F. M., and Siegmund, S. (2017).
Dynamical systems in categories.
Applied Categorical Structures, 25:29–57.
- Cho, K. and Jacobs, B. (2019).
Disintegration and Bayesian inversion via string diagrams.
Math. Structures Comput. Sci., 29:938–971.
arXiv:1709.00322.
- Fritz, T. (2020).
A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.
Adv. Math., 370:107239.
arXiv:1908.07021.
- Fritz, T., Gonda, T., and Perrone, P. (2021).
De Finetti's theorem in categorical probability.
Journal of Stochastic Analysis, 2(4).
- Fritz, T. and Rischel, E. F. (2020).
The zero-one laws of Kolmogorov and Hewitt–Savage in categorical probability.
Compositionality, 2:3.
compositionality-journal.org/papers/compositionality-2-3.
- Moss, S. and Perrone, P. (2022a).
A category-theoretic proof of the ergodic decomposition theorem.
Submitted, preprint available.
arxiv.org/abs/2207.07353.
- Moss, S. and Perrone, P. (2022b).
Probability monads with submonads of deterministic states.
In *2022 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)*. IEEE Computer Society.

Contents

Front Page

Ergodicity

Markov categories

Dynamical systems with Markov categories

Main statement

Conclusion

References