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Ergodicity

Idea:
An ergodic system is a situation where “all the mass is well mixed”.

• M monoid acting
measurably on (X ,ΣX )

• Orbit of x :
{mx : m ∈ M}

• Action on measures:
m∗p(A) = p(m−1(A))
for each A ∈ ΣX
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Ergodicity

Idea:
A ergodic system is a situation where “all the mass is well mixed”.

• p invariant measure:
m∗p = p

• A invariant set:
x ∈ A⇔ mx ∈ A,
equivalently m−1(A) = A

• p ergodic measure:
invariant, and p(A) = 0
or p(A) = 1 for inv. A
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Ergodicity

Ergodic Decomposition Theorem:

Every invariant measure is a mixture of ergodic ones.
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Markov categories
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Markov categories

The category FinStoch

• Objects are finite sets (or natural numbers);

• Morphisms are stochastic matrices p : X → Y of entries p(y |x);

q ◦ p(z |x) =
∑
y

q(z |y) p(y |x)

The category Stoch

• Objects are measurable spaces;

• Morphisms are Markov kernels k : X → Y of entries p(B|x);

h ◦ k(C |x) =

∫
Y
h(C |y) k(dy |x)
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Markov categories

Deterministic morphisms:

f f
=

f

X XX X

AA

• In FinStoch, these are the matrices with only entries 0 and 1.

• In Stoch, these are the kernels indexing measures with only values
0 and 1 for each measurable set.
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Markov categories

Almost-sure equality:

f

YX

=

p

g

YX

p

• In FinStoch, this means that f = g on the support of p.

• In Stoch, ∫
A
f (B|x) p(dx) =

∫
A
g(B|x) p(dx)

i.e. f and g differ only on a set of p-measure zero.
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Markov categories

Conditionals, Bayesian inverses, disintegrations:

f

X Y

f

f +p

X Y

=

p
p

q

• In FinStoch: p(x) f (y |x) = q(y) f +p (x |y)

• In Stoch: ∫
A
f (B|x) p(dx) =

∫
B
f +p (A|y) q(dy).
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Markov categories

Conditionals, Bayesian inverses, disintegrations:

f

X Y

f

f +p

X Y

=

p
p

q

• If f +p exists for all p and deterministic f , we say that X satisfies a
disintegration theorem. (E.g. if X is standard Borel.) In Stoch,
conditional expectations assemble to a regular conditional.
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Markov categories

Decomposition of states:

p(x) = λ1 q1(x) + λ2 q2(x) λi ≥ 0, λ1 + λ2 = 1

I X

2
λ

p

q
p(x) =

∑
i∈2

q(x |i)λ(i)
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Dynamical systems with Markov categories

Invariant states:

X

I

X

m

p

p

In Stoch these are the invariant measures.

Invariant (deterministic) observables:

X

S

X

m

s

s

In Stoch these correspond to invariant sets
(especially for S = 2).
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Dynamical systems with Markov categories

Markov colimits:

X

Xinv S

X

m
r

s

s̃

r

s

In Stoch, if m acts deterministically,
Xinv is given by the sigma-algebra
of invariant sets.

Ergodic states:

An invariant stat I
p−→ X is ergodic if and only if for each invariant

observable s,

I X Y
p s

is deterministic. In Stoch: zero-one on invariant sets!
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Main statement

Theorem:
Let C be a Markov category. Let X be a deterministic dynamical
system in C with monoid M. Suppose that

• The underlying object X of C has disintegrations;

• The Markov colimit Xinv of the dynamical system exists.

Then every invariant state of X can be written as a composition k ◦ q
such that k is q-almost surely ergodic.

Corollary:

Let X be a measurable dynamical system on a space that admits
disintegrations. Then every invariant measure on X can be written as
a mixture of ergodic ones.
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Main statement

Proof:

r

X Xinv
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Conclusion

• This is the first step into ergodic theory with Markov categories

• The definition of ergodic measure is very natural in this framework

• Convex mixtures of measures are just categorical composition

• The ergodic decomposition theorem has a conceptual proof in

terms of string diagrams. Measure theory is “outsourced” to

e.g. the disintegration requirement.

• Coming next: ergodic theorems, stochastic dynamical systems!
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