
Typed and Stratified Models with Slice Categories

Sophie Libkind, Evan Patterson, James Fairbanks, Andrew Baas, Micah Halter

ACT 2022

Stratified Models

wu et al., 2021

Comparing metapopulation dynamics of infectious diseases under different models of human movement

Daniel T. Citron^{a,1}[®], Carlos A. Guerra^b[®], Andrew J. Dolgert^a[®], Sean L. Wu^c[®], John M. Henry^a, Héctor M. Sánchez C.^c[®], and David L. Smith^a[®]

disease models

$$-SIR \qquad \frac{dS}{dt} = -\beta \frac{SI}{N} \qquad -flux$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I.$$

$$\frac{dR}{dt} = \gamma I \qquad \frac{dS_i}{dt} = -\beta_i \frac{S_i I_i}{N_i} - \sum_{j=1}^{K} f_{i,j} S_j + \sum_{j=1}^{K} f_{j,i} S_j$$

$$\frac{dI_i}{dt} = \beta_i \frac{S_i I_i}{N_i} - \gamma I_i - \sum_{j=1}^{K} f_{i,j} I_i + \sum_{j=1}^{K} f_{j,i} I_j.$$

$$\frac{dR_i}{dt} = \gamma I_i - \sum_{j=1}^{K} f_{i,j} R_i + \sum_{j=1}^{K} f_{j,i} R_j$$

movement models

 $-f \mid \mathcal{U} \times \frac{dN_i}{dt} = -\sum_{j=1}^{K} f_{i,j} N_i + \sum_{j=1}^{K} f_{j,i} N_j,$

Comparing metapopulation dynamics of infectious diseases under different models of human movement

Daniel T. Citron^{a,1}[®], Carlos A. Guerra^b[®], Andrew J. Dolgert^a[®], Sean L. Wu^c[®], John M. Henry^a, Héctor M. Sánchez C.^c[®], and David L. Smith^a[®]

 $-SIR \qquad \frac{dS}{dt} = -\beta \frac{SI}{N}$ -flux $\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I.$ $\frac{dR}{dt} = \gamma I \qquad \frac{dS_{i,i}}{dt} = -\beta_i \frac{S_{i,i} \sum_{k=1}^{K} I_{k,i}}{\sum_{k=1}^{K} N_{k,i}} - \sum_{k=1}^{K} \phi_{i,k} S_{i,i} + \sum_{k=1}^{K} \tau_{i,k} S_{i,k}$ $\frac{dS_{i,j}}{dt} = -\beta_j \frac{S_{i,j} \sum_{k=1}^{K} I_{k,j}}{\sum_{k=1}^{K} N_{k,i}} + \phi_{i,j} S_{i,i} - \tau_{i,j} S_{i,j}$ $\frac{dI_{i,i}}{dt} = \beta_i \frac{\mathsf{S}_{i,i} \sum_{k=1}^{K} I_{k,i}}{\sum_{k=1}^{K} N_{k,i}} - \gamma I_{i,i} - \sum_{i=1}^{K} \phi_{i,k} I_{i,i} + \sum_{i=1}^{K} \tau_{i,k} I_{i,k}$ $\frac{dI_{i,j}}{dt} = \beta_j \frac{\mathsf{S}_{i,j} \sum_{k=1}^{K} I_{k,j}}{\sum_{k=1}^{K} N_{k,i}} - \gamma I_{i,j} + \phi_{i,j} I_{i,i} - \tau_{i,j} I_{i,j}$ $\frac{dR_{i,i}}{dt} = \gamma I_{i,i} - \sum_{i=1}^{K} \phi_{i,k} R_{i,i} + \sum_{i=1}^{K} \tau_{i,k} R_{i,k}$ $\frac{dR_{i,j}}{dt} = \gamma I_{i,j} + \phi_{i,j}R_{i,i} - \tau_{i,j}I_{i,j}$

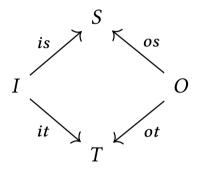
movement models

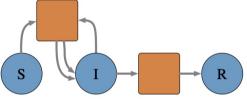
- flux - simple trip $\frac{dN_{i,i}}{dt} = -\sum_{j=1}^{K} \phi_{i,j} N_{i,i} + \sum_{j=1}^{K} \tau_{i,j} N_{i,j}$ $\frac{dN_{i,j}}{dt} = -\tau_{i,j} N_{i,j} + \phi_{i,j} N_{i,i}$

3

Comparing metapopulation dynamics of infectious diseases under different models of human movement

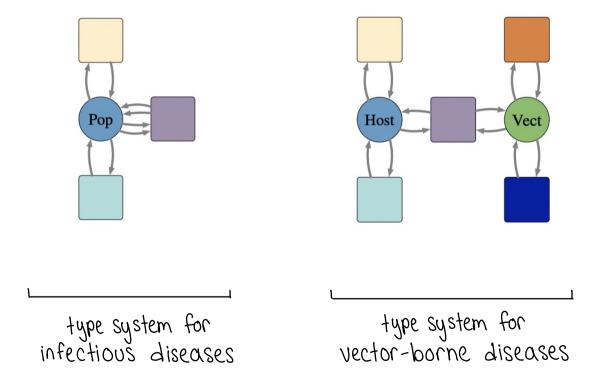
Daniel T. Citron^{a,1}[®], Carlos A. Guerra^b[®], Andrew J. Dolgert^a[®], Sean L. Wu^c[®], John M. Henry^a, Héctor M. Sánchez C.^c[®], and David L. Smith^a[®]

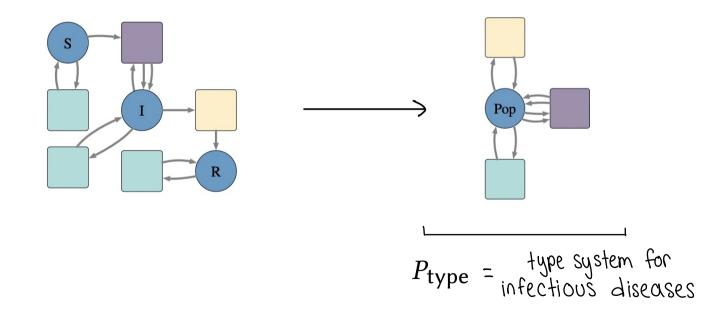

disease models


- -SIR
- S IS
- Ross-Macdonald
 - •
 - •
 - .

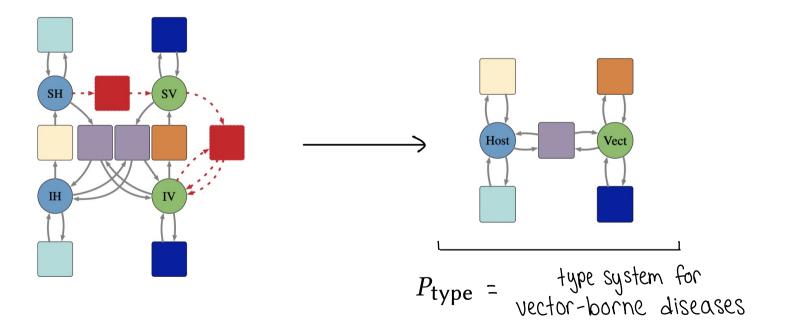
movement models

- -flux
- -simple trip
 - •
 - •
- •

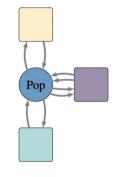

The category of whole-grain Petri nets (Petri) has - objects: diagrams of finite sets

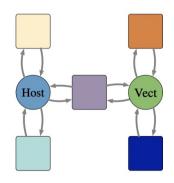


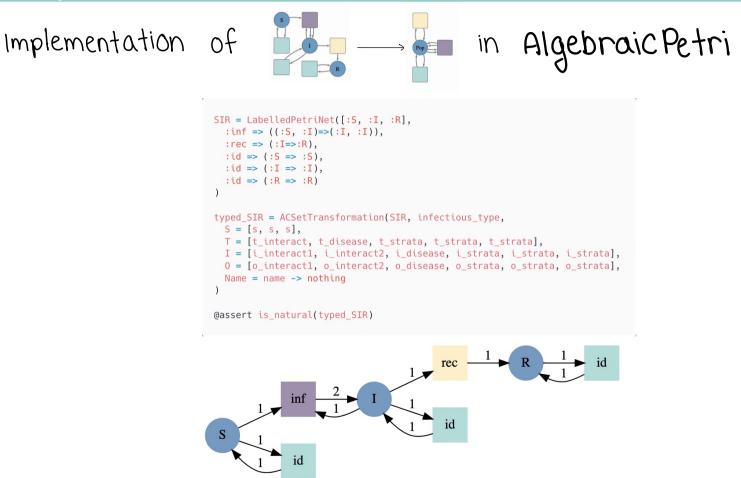
-morphisms: etale maps (Kock, 2020)


A Petri net can represent a domain-specific type system

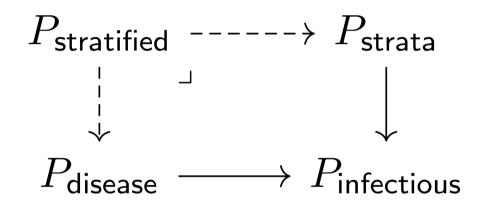
A typed Petri net is an object of the slice category $Petri/P_{type}$

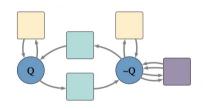


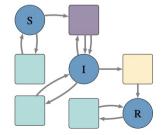

A typed Petri net is an object of the slice category $Petri/P_{type}$

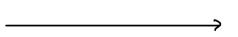


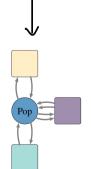
Advantages:

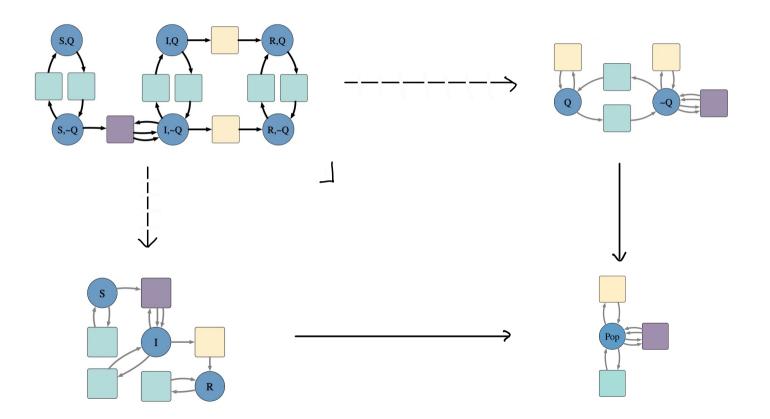

- 1. model checking
- 2. facilitate high-level critiques
- 3. features of type system imply features of model
- 4. guardrails for composition

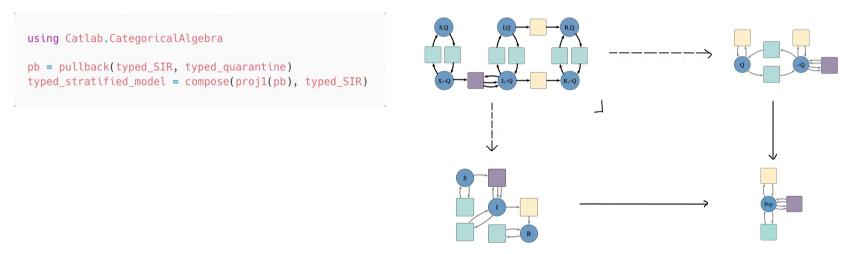


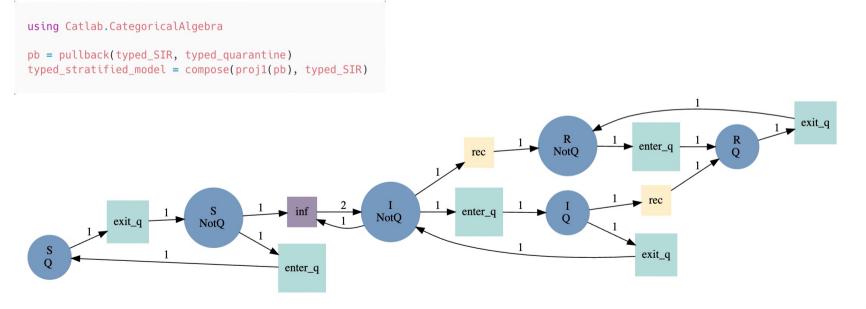


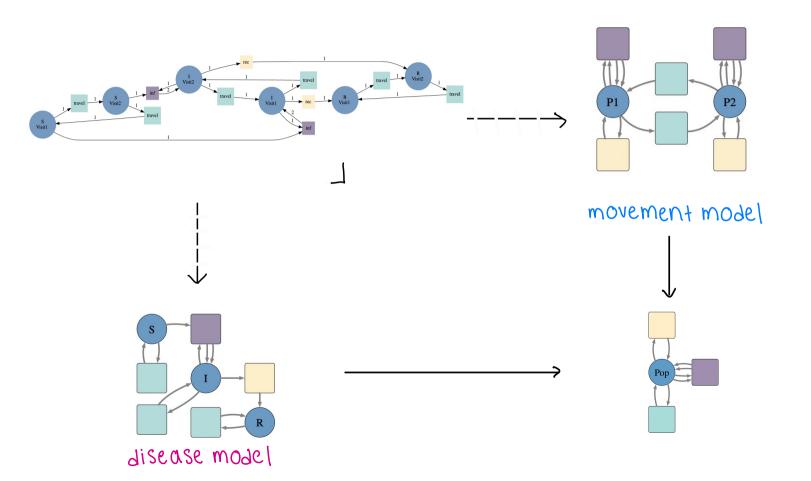


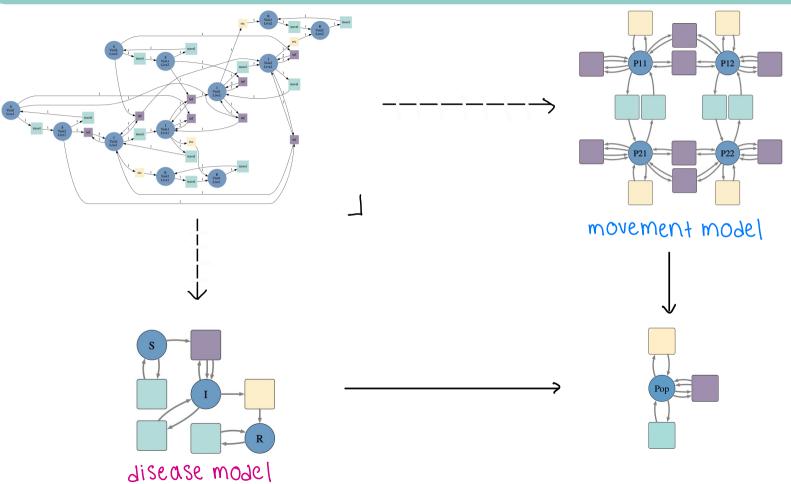

A product in Petri/Ptype is a stratified Petri net

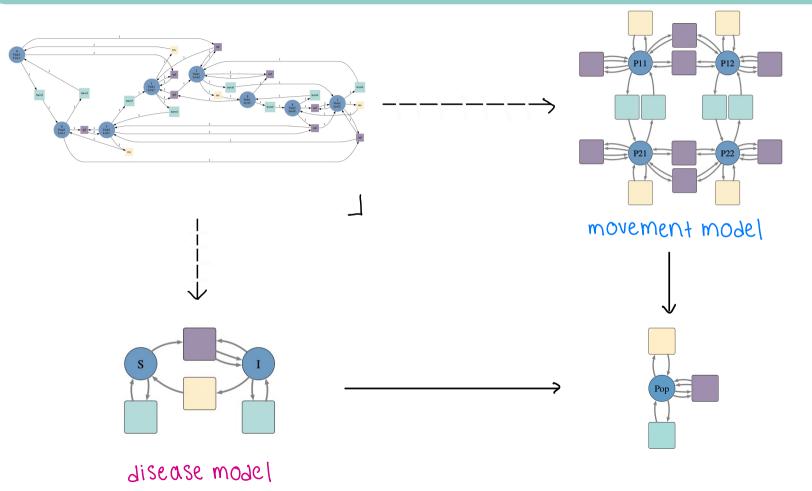









Implementation in Algebraic Julia



Implementation in Algebraic Julia

Acknowledgements

James Fairbanks

University of Florida

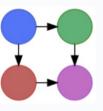
Andrew Baas

GTRI

Kris Brown University of Florida

Thanks also to

John Baez and Sean Wu



Utrecht University

Owen Lynch

Micah Halter

Balena

AlgebraicJulia

https://www.algebraiciulia.org

Paper

• Libkind, Sophie, Andrew Baas, Micah Halter, Evan Patterson, and James Fairbanks. "An algebraic framework for structured epidemic modeling." arXiv preprint arXiv:2203.16345 (2022).

Demo

https://github.com/AlgebraicJulia/Structured-Epidemic-Modeling