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Tomáš Jakl, Dan Marsden, Nihil Shah

University of Oxford

July 21, 2022



The setting 2

Let σ be a set of relational symbols with positive arities, we can
define a category of σ-structures R(σ):
▶ Objects are A = (A, {RA}R∈σ) where RA ⊆ Ar for r-ary

relation symbol R.

▶ Morphisms f : A → B are relation preserving set functions
f : A→ B

RA(a1, . . . , ar)⇒ RB(f(a1), . . . , f(ar))

▶ Embeddings f : A ↣ B are injective functions which reflect
relations:

RA(a1, . . . , ar)⇐ RB(f(a1), . . . , f(ar))

Setting for graph theory, database theory, and descriptive
complexity
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Category theory vs. model theory 3

Category theorists look at structures “as they really are”; i.e.
up to isomorphism A ∼= B

Model theorists look at structures with the “blurry lens” of a
logic L:

A ≡L B := ∀ϕ ∈ L,A ⊨ ϕ⇔ B ⊨ ϕ

A ∼= B ⇒ A ≡L B

A⇛L B := ∀ϕ ∈ L,A ⊨ ϕ⇒ B ⊨ ϕ
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For a logic J , ≡J may satisfy Feferman-Vaught-Mostowski
(FVM) theorems

If Ai ≡J Bi for all i ∈ I, then

▶ Products: A1 ×A2 ≡J B1 × B2 and
∏

iAi ≡J
∏

i Bi
▶ Coproducts: A1 +A2 ≡J B1 + B2 and

∐
iAi ≡L

∐
i Bi

For an operation H : C1 × C2 · · · × Cn → D and logics
J1, . . . ,Jn,J :

Ai ≡Ji Bi implies H(A1, . . . ,An) ≡J H(B1, . . . , Bn)

with Ai,Bi ∈ Ci where Ci,D are relevant categories of models.

Key ingredient in Courcelle’s theorems and other algorithmic
metatheorems

How can we prove such statements categorically?
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▶ In every round i, of the k-round game EFk(A,B):
▶ Spoiler chooses an element ai ∈ A or bi ∈ B
▶ Duplicator responds with bi ∈ B or ai ∈ A

Duplicator wins the round if the relation
γi = {(aj , bj) | j ≤ i} is a partial isomorphism

Theorem
Duplicator has a winning strategy in EFk(A,B) iff A ≡Lk

B
One-sided variant: A⇛∃+Lk

B. No alternation between
structures. Partial homomorphism

Bijection variant: A ≡#Lk
B. Duplicator chooses a bijection

before Spoiler’s choice and responds using bijection

#Lk has quantifiers of the from ∃≤nx,∃≥nx
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Ehrenfeucht-Fräıssé comonad 6

Given a σ-structure A, we can create σ-structure EkA on
non-empty sequences of elements in A of length ≤ k

Let εA : EkA → A return the last move of the play
[a1, . . . , an] 7→ an.

REkA(s1, . . . , sr)⇔ si ⊑ sj or sj ⊑ si for i, j ∈ [r]

and RA(εA(s1), . . . , εA(sr))

Comultiplication δ : EkA → EkEkA where

δ([a1, . . . , an]) = [[a1], [a1, a2], . . . , [a1, . . . , an]]
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Theorem (Abramsky+S 21)

▶ A →Ek
B ⇔ A⇛∃+Lk

B
▶ A ∼=Kl(Ek) B ⇔ A ≡#Lk

B (with A,B finite)

A →Ek
B means there exists a Kleisli morphism f : EkA → B

A ∼=Kl(Ek) B means there exists a Kleisli isomorphism between
A and B

∃+Lk and #Lk as logics without equality.

7 / 19



Universe of A1 ⊎A2 = {(i, ai) | i = {1, 2}, ai ∈ Ai} and relations
defined in obvious way

RA1⊎A2((i1, a1), . . . , (in, an))⇔ ∃i ∈ {1, 2}∀j ∈ [n], ij = i

and RAi(a1, . . . , an)

For every A1,A2 there are

κ : Ek(A1 ⊎ A2)→ EkA1 ⊎ EkA2

κ([(i1, a1), . . . , (in, a1)] =

{
[aj | ij = 1] if in = 1

[aj | ij = 2] if in = 2
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If Ai →Ek
Bi, then fi : EkAi → Bi and gi : EkBi → Ai for

i ∈ {1, 2}

Ek(A1 ⊎ A2)
κA1,A2−−−−→ EkA1 ⊎ EkA2

f1⊎f2−−−→ B1 ⊎ B2

So A1 ⊎ A2 →Ek
B1 ⊎ B2 and A1 ⊎ A2 ⇛∃+Lk

B1 ⊎ B2

For ≡#Lk
: if fi, gi are inverses for i ∈ {1, 2}, then

f1 ⊎ f2 ◦ κ, g1 ⊎ g2 ◦ κ are inverses.

Equivalent to κ : Ek(A1 ⊎ A2)→ EkA1 ⊎ EkA2 being Kleisli law

εA1 ⊎ εA2 = κ ◦ εA1⊎A2 δA1 ⊎ δA2 ◦ κ = κ ◦ Ekκ ◦ δA1⊎A2
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Theorem
Given

▶ operation H : C1 × · · · × Cn → D,

▶ comonads C1, . . . ,Cn,D capturing logics J1, . . . ,Jn,J
▶ Kleisli law κ : D(H(A1, . . . , An))→ H(C1(A1), . . . ,Cn(An))

Then:

Ai ⇛∃+Ji
Bi implies H(A1, . . . ,An) ⇛∃+J H(B1, . . . ,Bn)

Ai ≡#Ji
Bi implies H(A1, . . . ,An) ≡#J H(B1, . . . ,Bn)
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Define semantics for Lk in terms of EM(Ek)

EM(Ek) represent forest-shaped covers of objects in R(σ) of
height ≤ k

Cofree coalgebra functor FEk : R(σ)→ EM(Ek) where
A 7→ (EkA, δA)

For (A, α : A → EkA), we obtain an order ⊑α on A compatible
with the relations

a ⊑α a′ ⇔ α(a) is prefix of α(a′)

Subcategory of paths (P, π) ∈ P ⊆ EM(Ek) where ⊑π is a finite
chain

Embeddings (P, π) ↣ (A, α) pick out paths, and
(P, π) ↣ FEkA pick out plays.
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A ↔Ek
B if there exists a span in EM(Ek)

FEk(A) f←− (X,χ)
g−→ FEk(A)

where f, g are

▶ Pathwise embeddings e : (P, π) ↣ (X,χ) implies
f ◦ e : (P, π) ↣ FEk(A)

▶ Open maps, a path which can be extended in the
codomain, can be extended in the domain.
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(P, π) (Q, ρ)

(X,χ) FEk(A)
f

(P, π) (Q, ρ)

(X,χ) FEk(A)
f

Theorem (Abramsky+S 21)

A ↔Ek
B ⇔ A ≡Lk

B

where Lk is first-order logic up to quantifier rank ≤ k without
equality.
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Compute a span of right type to obtain a FVM theorem for ⊎
and ≡Lk

need a lifting ⊎̂ : EM(Ek)×EM(Ek)→ EM(Ek):

(X,χ)

FEk(A1)⊎̂FEk(A2) FEk(B1)⊎̂FEk(B2)

FEk(A1 ⊎ A2) FEk(B1 ⊎ B2)

f1⊎̂f2 g1⊎̂g2

if fi, gi, then f1 ⊎ f2, g1 ⊎ g2 are OPEs follows from:

(S1) If f1, f2 are embeddings, then f1⊎̂f2 is embedding

(S2) e : (P, π) ↣ (A1, α1)⊎̂(A2, α2), then there exists a ‘minimal
decomposition’

e = e1⊎̂e2 ◦ e0
where ei : (Pi, πi) ↣ (Ai, αi) for i ∈ {1, 2}
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Compute (A1, α1)⊎̂(A2, α2) as the equaliser in EM(Ek)

(A1, α1)⊎̂(A2, α2) FEk(A1 ⊎ A2) FEk(EkA1 ⊎ EkA2)
ι

F (κ)◦δ

F (α1⊎α2)

▶ Take the cofree substructure on FEk(A1 ⊎ A2)

▶ Substructure compatible with (Ai, αi), i.e. the words
[(i1, a1), . . . , (in, an)] ∈ FEk(A1 +A2):

[aj | ij = 1] ∈ im(α1) [aj | ij = 2] ∈ im(α2)

+̂ is a ‘interleaving’ sum of paths in (A1, α1) and (A2, α2)

Diagram is dual to the quotient construction of a tensor
product of vector spaces V ⊗W
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Dualising ideas about bilinear maps from (commutative) monad
theory, we reformulate axioms about ⊎̂ to axioms about ⊎
1. If ⊎ preserves embeddings, then ⊎̂ preserves embeddings.

2. For every (P, π) ∈ P, (Ai, αi) ∈ EM(Ek) and
f : P → A1 +A2 such the following diagram commutes:

P A1 +A2

Ek(P ) Ek(A1 ⊎ A2) Ek(A1) ⊎ Ek(A2)

f

π α1⊎α2

Ek(f) κ

(1)

then f has minimal decomposition as f = e1 ⊎ e2 ◦ e0 where
ei : (Pi, πi) ↣ (Ai, αi)
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Theorem
Given n-ary operation H that preserves embeddings, comonads
C1, . . . ,Cn,D capturing J1, . . . ,Jn,J and
κ : D(H(A1, . . . ,An))→ H(C1(A1), . . . ,Cn(An)) satisfying a
similar diagram:

Ai ≡Ji Bi implies H(A1, . . . ,An) ≡J H(B1, . . . , Bn)
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To add equality, we consider a functor tI : R(σ)→ R(σI) where

σI has additional binary relation I and tI(A) interprets I tI(A)

as equality on A ∈ R(σ)

Consider Ek ◦ tI : R(σ)→ R(σI) as a relative comonad over tI .

As tI(A1 ⊎ A2) ∼= tI(A1) ⊎ tI(A2)

Study other enrichments such as first-order logic with a
connectivity relation conn by considering a tconn
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Products are easiers since right adjoints, such as the
cofree-coalgebra functor, preserve limits!

Many other comonads to explore:

▶ k-variable logic (Abramsky+Dawar+Wang 17)

▶ modal logic graded by depth

▶ guarded logics (Abramsky+Marsden 20)

▶ hybrid/bounded logics (Abramsky+Marsden 21)

▶ logics with generalised quantifiers (O’Conghaile+Dawar 20)

▶ logics with restricted conjunction (Montacute+S 22)

All of these are examples of arboreal covers which are studied
axiomatically in Abramsky+Reggio 21
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