

Comonadic Account of Feferman-Vaught-Mostowski Theorems

Tomáš Jakl, Dan Marsden, Nihil Shah
University of Oxford

July 21, 2022

Let σ be a set of relational symbols with positive arities, we can define a category of σ -structures $\mathcal{R}(\sigma)$:

- ▶ Objects are $\mathcal{A} = (A, \{R^{\mathcal{A}}\}_{R \in \sigma})$ where $R^{\mathcal{A}} \subseteq A^r$ for r -ary relation symbol R .
- ▶ Morphisms $f : \mathcal{A} \rightarrow \mathcal{B}$ are relation preserving set functions $f : A \rightarrow B$

$$R^{\mathcal{A}}(a_1, \dots, a_r) \Rightarrow R^{\mathcal{B}}(f(a_1), \dots, f(a_r))$$

- ▶ Embeddings $f : A \rightarrow B$ are injective functions which reflect relations:

$$R^{\mathcal{A}}(a_1, \dots, a_r) \Leftarrow R^{\mathcal{B}}(f(a_1), \dots, f(a_r))$$

Setting for graph theory, database theory, and descriptive complexity

Category theorists look at structures “as they really are”; i.e. up to isomorphism $\mathcal{A} \cong \mathcal{B}$

Model theorists look at structures with the “blurry lens” of a logic \mathcal{L} :

$$\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} := \forall \phi \in \mathcal{L}, \mathcal{A} \models \phi \Leftrightarrow \mathcal{B} \models \phi$$

$$\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} \equiv^{\mathcal{L}} \mathcal{B}$$

$$\mathcal{A} \Rightarrow^{\mathcal{L}} \mathcal{B} := \forall \phi \in \mathcal{L}, \mathcal{A} \models \phi \Rightarrow \mathcal{B} \models \phi$$

For a logic \mathcal{J} , $\equiv_{\mathcal{J}}$ may satisfy Feferman-Vaught-Mostowski (FVM) theorems

If $\mathcal{A}_i \equiv_{\mathcal{J}} \mathcal{B}_i$ for all $i \in I$, then

- ▶ Products: $\mathcal{A}_1 \times \mathcal{A}_2 \equiv_{\mathcal{J}} \mathcal{B}_1 \times \mathcal{B}_2$ and $\prod_i \mathcal{A}_i \equiv_{\mathcal{J}} \prod_i \mathcal{B}_i$
- ▶ Coproducts: $\mathcal{A}_1 + \mathcal{A}_2 \equiv_{\mathcal{J}} \mathcal{B}_1 + \mathcal{B}_2$ and $\coprod_i \mathcal{A}_i \equiv_{\mathcal{L}} \coprod_i \mathcal{B}_i$

For an operation $H: \mathcal{C}_1 \times \mathcal{C}_2 \cdots \times \mathcal{C}_n \rightarrow \mathcal{D}$ and logics

$\mathcal{J}_1, \dots, \mathcal{J}_n, \mathcal{J}$:

$$\mathcal{A}_i \equiv^{\mathcal{J}_i} \mathcal{B}_i \text{ implies } H(\mathcal{A}_1, \dots, \mathcal{A}_n) \equiv^{\mathcal{J}} H(\mathcal{B}_1, \dots, \mathcal{B}_n)$$

with $\mathcal{A}_i, \mathcal{B}_i \in \mathcal{C}_i$ where $\mathcal{C}_i, \mathcal{D}$ are relevant categories of models.

Key ingredient in Courcelle's theorems and other algorithmic metatheorems

How can we prove such statements categorically?

- ▶ In every round i , of the k -round game $\mathbf{EF}_k(\mathcal{A}, \mathcal{B})$:
 - ▶ Spoiler chooses an element $a_i \in \mathcal{A}$ or $b_i \in \mathcal{B}$
 - ▶ Duplicator responds with $b_i \in \mathcal{B}$ or $a_i \in \mathcal{A}$

Duplicator wins the round if the relation

$\gamma_i = \{(a_j, b_j) \mid j \leq i\}$ is a partial isomorphism

Theorem

Duplicator has a winning strategy in $\mathbf{EF}_k(\mathcal{A}, \mathcal{B})$ iff $\mathcal{A} \equiv_{\mathcal{L}_k} \mathcal{B}$

One-sided variant: $\mathcal{A} \Rightarrow_{\exists^+ \mathcal{L}_k} \mathcal{B}$. No alternation between structures. Partial homomorphism

Bijection variant: $\mathcal{A} \equiv_{\# \mathcal{L}_k} \mathcal{B}$. Duplicator chooses a bijection before Spoiler's choice and responds using bijection

$\#\mathcal{L}_k$ has quantifiers of the form $\exists_{\leq n} x, \exists_{\geq n} x$

Given a σ -structure \mathcal{A} , we can create σ -structure $\mathbb{E}_k\mathcal{A}$ on non-empty sequences of elements in A of length $\leq k$

Let $\varepsilon_{\mathcal{A}} : \mathbb{E}_k\mathcal{A} \rightarrow \mathcal{A}$ return the last move of the play
 $[a_1, \dots, a_n] \mapsto a_n$.

$$R^{\mathbb{E}_k\mathcal{A}}(s_1, \dots, s_r) \Leftrightarrow s_i \sqsubseteq s_j \text{ or } s_j \sqsubseteq s_i \text{ for } i, j \in [r]$$

and $R^{\mathcal{A}}(\varepsilon_{\mathcal{A}}(s_1), \dots, \varepsilon_{\mathcal{A}}(s_r))$

Comultiplication $\delta : \mathbb{E}_k\mathcal{A} \rightarrow \mathbb{E}_k\mathbb{E}_k\mathcal{A}$ where

$$\delta([a_1, \dots, a_n]) = [[a_1], [a_1, a_2], \dots, [a_1, \dots, a_n]]$$

Theorem (Abramsky+S 21)

- ▶ $\mathcal{A} \rightarrow_{\mathbb{E}_k} \mathcal{B} \Leftrightarrow \mathcal{A} \Rightarrow_{\exists^+ \mathcal{L}_k} \mathcal{B}$
- ▶ $\mathcal{A} \cong_{\mathbf{KI}(\mathbb{E}_k)} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv_{\# \mathcal{L}_k} \mathcal{B}$ (with \mathcal{A}, \mathcal{B} finite)

$\mathcal{A} \rightarrow_{\mathbb{E}_k} \mathcal{B}$ means there exists a Kleisli morphism $f: \mathbb{E}_k \mathcal{A} \rightarrow \mathcal{B}$

$\mathcal{A} \cong_{\mathbf{KI}(\mathbb{E}_k)} \mathcal{B}$ means there exists a Kleisli isomorphism between \mathcal{A} and \mathcal{B}

$\exists^+ \mathcal{L}_k$ and $\# \mathcal{L}_k$ as logics *without equality*.

Universe of $\mathcal{A}_1 \uplus \mathcal{A}_2 = \{(i, a_i) \mid i = \{1, 2\}, a_i \in A_i\}$ and relations defined in obvious way

$$R^{\mathcal{A}_1 \uplus \mathcal{A}_2}((i_1, a_1), \dots, (i_n, a_n)) \Leftrightarrow \exists i \in \{1, 2\} \forall j \in [n], i_j = i \text{ and } R^{\mathcal{A}_i}(a_1, \dots, a_n)$$

For every $\mathcal{A}_1, \mathcal{A}_2$ there are

$$\kappa: \mathbb{E}_k(\mathcal{A}_1 \uplus \mathcal{A}_2) \rightarrow \mathbb{E}_k \mathcal{A}_1 \uplus \mathbb{E}_k \mathcal{A}_2$$

$$\kappa([(i_1, a_1), \dots, (i_n, a_1)]) = \begin{cases} [a_j \mid i_j = 1] & \text{if } i_n = 1 \\ [a_j \mid i_j = 2] & \text{if } i_n = 2 \end{cases}$$

If $\mathcal{A}_i \rightarrow_{\mathbb{E}_k} \mathcal{B}_i$, then $f_i: \mathbb{E}_k \mathcal{A}_i \rightarrow \mathcal{B}_i$ and $g_i: \mathbb{E}_k \mathcal{B}_i \rightarrow \mathcal{A}_i$ for $i \in \{1, 2\}$

$$\mathbb{E}_k(\mathcal{A}_1 \uplus \mathcal{A}_2) \xrightarrow{\kappa_{\mathcal{A}_1, \mathcal{A}_2}} \mathbb{E}_k \mathcal{A}_1 \uplus \mathbb{E}_k \mathcal{A}_2 \xrightarrow{f_1 \uplus f_2} \mathcal{B}_1 \uplus \mathcal{B}_2$$

So $\mathcal{A}_1 \uplus \mathcal{A}_2 \rightarrow_{\mathbb{E}_k} \mathcal{B}_1 \uplus \mathcal{B}_2$ and $\mathcal{A}_1 \uplus \mathcal{A}_2 \Rightarrow_{\exists + \mathcal{L}_k} \mathcal{B}_1 \uplus \mathcal{B}_2$

For $\equiv_{\# \mathcal{L}_k}$: if f_i, g_i are inverses for $i \in \{1, 2\}$, then
 $f_1 \uplus f_2 \circ \kappa, g_1 \uplus g_2 \circ \kappa$ are inverses.

Equivalent to $\kappa: \mathbb{E}_k(\mathcal{A}_1 \uplus \mathcal{A}_2) \rightarrow \mathbb{E}_k \mathcal{A}_1 \uplus \mathbb{E}_k \mathcal{A}_2$ being Kleisli law

$$\varepsilon_{\mathcal{A}_1} \uplus \varepsilon_{\mathcal{A}_2} = \kappa \circ \varepsilon_{\mathcal{A}_1 \uplus \mathcal{A}_2} \quad \delta_{\mathcal{A}_1} \uplus \delta_{\mathcal{A}_2} \circ \kappa = \kappa \circ \mathbb{E}_k \kappa \circ \delta_{\mathcal{A}_1 \uplus \mathcal{A}_2}$$

Theorem

Given

- ▶ operation $H: C_1 \times \dots \times C_n \rightarrow D$,
- ▶ comonads $\mathbb{C}_1, \dots, \mathbb{C}_n, \mathbb{D}$ capturing logics $\mathcal{J}_1, \dots, \mathcal{J}_n, \mathcal{J}$
- ▶ Kleisli law $\kappa: \mathbb{D}(H(A_1, \dots, A_n)) \rightarrow H(\mathbb{C}_1(A_1), \dots, \mathbb{C}_n(A_n))$

Then:

$\mathcal{A}_i \Rightarrow_{\exists^+ \mathcal{J}_i} \mathcal{B}_i$ implies $H(\mathcal{A}_1, \dots, \mathcal{A}_n) \Rightarrow_{\exists^+ \mathcal{J}} H(\mathcal{B}_1, \dots, \mathcal{B}_n)$

$\mathcal{A}_i \equiv_{\# \mathcal{J}_i} \mathcal{B}_i$ implies $H(\mathcal{A}_1, \dots, \mathcal{A}_n) \equiv_{\# \mathcal{J}} H(\mathcal{B}_1, \dots, \mathcal{B}_n)$

Define semantics for \mathcal{L}_k in terms of $\mathbf{EM}(\mathbb{E}_k)$

$\mathbf{EM}(\mathbb{E}_k)$ represent forest-shaped covers of objects in $\mathcal{R}(\sigma)$ of height $\leq k$

Cofree coalgebra functor $F^{\mathbb{E}_k}: \mathcal{R}(\sigma) \rightarrow \mathbf{EM}(\mathbb{E}_k)$ where
 $\mathcal{A} \mapsto (\mathbb{E}_k \mathcal{A}, \delta_{\mathcal{A}})$

For $(\mathcal{A}, \alpha: \mathcal{A} \rightarrow \mathbb{E}_k \mathcal{A})$, we obtain an order \sqsubseteq_{α} on \mathcal{A} compatible with the relations

$$a \sqsubseteq_{\alpha} a' \Leftrightarrow \alpha(a) \text{ is prefix of } \alpha(a')$$

Subcategory of paths $(P, \pi) \in \mathcal{P} \subseteq \mathbf{EM}(\mathbb{E}_k)$ where \sqsubseteq_{π} is a finite chain

Embeddings $(P, \pi) \rightarrow (\mathcal{A}, \alpha)$ pick out paths, and $(P, \pi) \rightarrow F^{\mathbb{E}_k} \mathcal{A}$ pick out plays.

$\mathcal{A} \leftrightarrow_{\mathbb{E}_k} \mathcal{B}$ if there exists a span in $\mathbf{EM}(\mathbb{E}_k)$

$$F^{\mathbb{E}_k}(\mathcal{A}) \xleftarrow{f} (X, \chi) \xrightarrow{g} F^{\mathbb{E}_k}(\mathcal{A})$$

where f, g are

- ▶ Pathwise embeddings $e: (P, \pi) \rightarrow (X, \chi)$ implies $f \circ e: (P, \pi) \rightarrow F^{\mathbb{E}_k}(\mathcal{A})$
- ▶ Open maps, a path which can be extended in the codomain, can be extended in the domain.

$$\begin{array}{ccc}
 (\mathbf{P}, \pi) & \longrightarrow & (\mathbf{Q}, \rho) \\
 \downarrow & & \downarrow \\
 (X, \chi) & \xrightarrow{f} & F^{\mathbb{E}_k}(\mathcal{A})
 \end{array}$$

$$\begin{array}{ccc}
 (\mathbf{P}, \pi) & \longrightarrow & (\mathbf{Q}, \rho) \\
 \downarrow & & \downarrow \\
 (X, \chi) & \xrightarrow{f} & F^{\mathbb{E}_k}(\mathcal{A}) \\
 & \swarrow & \nearrow
 \end{array}$$

Theorem (Abramsky+S 21)

$$\mathcal{A} \leftrightarrow_{\mathbb{E}_k} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv_{\mathcal{L}_k} \mathcal{B}$$

where \mathcal{L}_k is first-order logic up to quantifier rank $\leq k$ without equality.

Compute a span of right type to obtain a FVM theorem for \uplus and $\equiv_{\mathcal{L}_k}$ need a lifting $\hat{\uplus}: \mathbf{EM}(\mathbb{E}_k) \times \mathbf{EM}(\mathbb{E}_k) \rightarrow \mathbf{EM}(\mathbb{E}_k)$:

$$\begin{array}{ccc}
 & (X, \chi) & \\
 f_1 \hat{\uplus} f_2 & \swarrow & \searrow g_1 \hat{\uplus} g_2 \\
 F^{\mathbb{E}_k}(\mathcal{A}_1) \hat{\uplus} F^{\mathbb{E}_k}(\mathcal{A}_2) & & F^{\mathbb{E}_k}(\mathcal{B}_1) \hat{\uplus} F^{\mathbb{E}_k}(\mathcal{B}_2) \\
 \parallel & & \parallel \\
 F^{\mathbb{E}_k}(\mathcal{A}_1 \uplus \mathcal{A}_2) & & F^{\mathbb{E}_k}(\mathcal{B}_1 \uplus \mathcal{B}_2)
 \end{array}$$

if f_i, g_i , then $f_1 \uplus f_2, g_1 \uplus g_2$ are OPEs follows from:

- (S1) If f_1, f_2 are embeddings, then $f_1 \hat{\uplus} f_2$ is embedding
- (S2) $e: (P, \pi) \rightarrow (\mathcal{A}_1, \alpha_1) \hat{\uplus} (\mathcal{A}_2, \alpha_2)$, then there exists a ‘minimal decomposition’

$$e = e_1 \hat{\uplus} e_2 \circ e_0$$

where $e_i: (P_i, \pi_i) \rightarrow (\mathcal{A}_i, \alpha_i)$ for $i \in \{1, 2\}$

Compute $(\mathcal{A}_1, \alpha_1) \hat{\oplus} (\mathcal{A}_2, \alpha_2)$ as the equaliser in $\mathbf{EM}(\mathbb{E}_k)$

$$(\mathcal{A}_1, \alpha_1) \hat{\oplus} (\mathcal{A}_2, \alpha_2) \xrightarrow{\iota} F^{\mathbb{E}_k}(\mathcal{A}_1 \uplus \mathcal{A}_2) \xrightarrow[F(\alpha_1 \uplus \alpha_2)]{F(\kappa) \circ \delta} F^{\mathbb{E}_k}(\mathbb{E}_k \mathcal{A}_1 \uplus \mathbb{E}_k \mathcal{A}_2)$$

- ▶ Take the cofree substructure on $F^{\mathbb{E}_k}(\mathcal{A}_1 \uplus \mathcal{A}_2)$
- ▶ Substructure compatible with $(\mathcal{A}_i, \alpha_i)$, i.e. the words $[(i_1, a_1), \dots, (i_n, a_n)] \in F^{\mathbb{E}_k}(\mathcal{A}_1 + \mathcal{A}_2)$:

$$[a_j \mid i_j = 1] \in \mathbf{im}(\alpha_1) \quad [a_j \mid i_j = 2] \in \mathbf{im}(\alpha_2)$$

$\hat{+}$ is a ‘interleaving’ sum of paths in $(\mathcal{A}_1, \alpha_1)$ and $(\mathcal{A}_2, \alpha_2)$

Diagram is dual to the quotient construction of a tensor product of vector spaces $V \otimes W$

Dualising ideas about bilinear maps from (commutative) monad theory, we reformulate axioms about $\hat{\oplus}$ to axioms about \oplus

1. If \oplus preserves embeddings, then $\hat{\oplus}$ preserves embeddings.
2. For every $(P, \pi) \in \mathcal{P}$, $(\mathcal{A}_i, \alpha_i) \in \mathbf{EM}(\mathbb{E}_k)$ and $f: P \rightarrow \mathcal{A}_1 + \mathcal{A}_2$ such the following diagram commutes:

$$\begin{array}{ccc}
 P & \xrightarrow{f} & \mathcal{A}_1 + \mathcal{A}_2 \\
 \downarrow \pi & & \downarrow \alpha_1 \oplus \alpha_2 \\
 \mathbb{E}_k(P) & \xrightarrow{\mathbb{E}_k(f)} & \mathbb{E}_k(\mathcal{A}_1 \oplus \mathcal{A}_2) \xrightarrow{\kappa} \mathbb{E}_k(\mathcal{A}_1) \oplus \mathbb{E}_k(\mathcal{A}_2)
 \end{array} \quad (1)$$

then f has minimal decomposition as $f = e_1 \oplus e_2 \circ e_0$ where $e_i: (P_i, \pi_i) \rightarrowtail (\mathcal{A}_i, \alpha_i)$

Theorem

Given n -ary operation H that preserves embeddings, comonads $\mathbb{C}_1, \dots, \mathbb{C}_n, \mathbb{D}$ capturing $\mathcal{J}_1, \dots, \mathcal{J}_n, \mathcal{J}$ and $\kappa: \mathbb{D}(H(\mathcal{A}_1, \dots, \mathcal{A}_n)) \rightarrow H(\mathbb{C}_1(\mathcal{A}_1), \dots, \mathbb{C}_n(\mathcal{A}_n))$ satisfying a similar diagram:

$$\mathcal{A}_i \equiv_{\mathcal{J}_i} \mathcal{B}_i \text{ implies } H(\mathcal{A}_1, \dots, \mathcal{A}_n) \equiv_{\mathcal{J}} H(\mathcal{B}_1, \dots, \mathcal{B}_n)$$

To add equality, we consider a functor $\mathbf{t}^I: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma^I)$ where σ^I has additional binary relation I and $\mathbf{t}^I(\mathcal{A})$ interprets $I^{\mathbf{t}^I(\mathcal{A})}$ as equality on $\mathcal{A} \in \mathcal{R}(\sigma)$

Consider $\mathbb{E}_k \circ \mathbf{t}^I: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma^I)$ as a relative comonad over \mathbf{t}^I .

As $\mathbf{t}^I(\mathcal{A}_1 \uplus \mathcal{A}_2) \cong \mathbf{t}^I(\mathcal{A}_1) \uplus \mathbf{t}^I(\mathcal{A}_2)$

Study other enrichments such as first-order logic with a connectivity relation **conn** by considering a $\mathbf{t}^{\mathbf{conn}}$

Products are easier since right adjoints, such as the cofree-coalgebra functor, preserve limits!

Many other comonads to explore:

- ▶ k -variable logic (Abramsky+Dawar+Wang 17)
- ▶ modal logic graded by depth
- ▶ guarded logics (Abramsky+Marsden 20)
- ▶ hybrid/bounded logics (Abramsky+Marsden 21)
- ▶ logics with generalised quantifiers (O'Conghaile+Dawar 20)
- ▶ logics with restricted conjunction (Montacute+S 22)

All of these are examples of arboreal covers which are studied axiomatically in Abramsky+Reggio 21