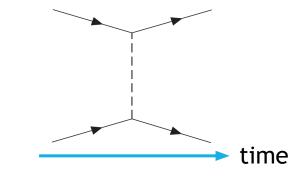
Categorical Semantics for Feynman Diagrams

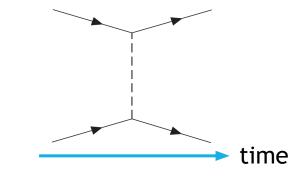
Razin A. Shaikh and Stefano Gogioso

Quantum field theory (QFT) provides the best current model of the universe



Quantum field theory (QFT) provides the best current model of the universe

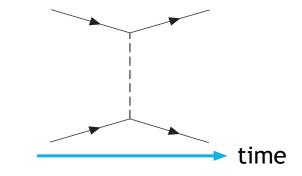
▶ In QFT, Feynman diagrams represent probability amplitudes of interactions



Quantum field theory (QFT) provides the best current model of the universe

▶ In QFT, Feynman diagrams represent probability amplitudes of interactions

How do Feynman diagrams formally arise from field operators?



- Quantum field theory (QFT) provides the best current model of the universe
- ▶ In QFT, Feynman diagrams represent probability amplitudes of interactions
- How do Feynman diagrams formally arise from field operators?
- Can we compose Feynman diagrams?

Overview

Categorical quantum fields

Categorical Feynman diagrams

Composing Feynman diagrams

Scalar Classical Fields

Scalar Classical Fields

Simple harmonic oscillators at each point of momentum space

Scalar Classical Fields

Simple harmonic oscillators at each point of momentum space

To quantise the field, quantize the harmonic oscillators

► We cannot use the category Hilb - no cups, caps or spiders

Quantization

► We cannot use the category Hilb - no cups, caps or spiders

> We use *fHilb - category of hyperfinite-dimensional Hilbert space

Quantization

▶ We cannot use the category Hilb - no cups, caps or spiders

► We use *fHilb - category of hyperfinite-dimensional Hilbert space

*fHilb is dagger compact - has cups, caps and spiders

Quantization

▶ We cannot use the category Hilb - no cups, caps or spiders

► We use *fHilb - category of hyperfinite-dimensional Hilbert space

*fHilb is dagger compact - has cups, caps and spiders

▶ The results from *fHilb can be transferred to Hilb using a functor

> Described by an object \mathcal{H}^{κ} , for some hyperfinite natural number κ

> Described by an object \mathcal{H}^{κ} , for some hyperfinite natural number κ

Creation operator

$$a_{\kappa}^{\dagger}: \mathcal{H}^{\kappa} \to \mathcal{H}^{\kappa+1}$$

 $|n\rangle \mapsto \sqrt{n+1} |n+1$

b Described by an object \mathcal{H}^{κ} , for some hyperfinite natural number κ

Creation operator

Annihilation operator

$$\begin{array}{ll} a_{\kappa}^{\dagger}:\mathcal{H}^{\kappa} \to \mathcal{H}^{\kappa+1} & a_{\kappa}:\mathcal{H}^{\kappa} \to \mathcal{H}^{\kappa-1} \\ & |n\rangle \mapsto \sqrt{n+1} \, |n+1\rangle & |n\rangle \mapsto \sqrt{n} \, |n-1\rangle \end{array}$$

Scalar Quantum Fields

Scalar quantum field \rightarrow quantum harmonic oscillators at each point of momentum space Ω

Scalar Quantum Fields

Scalar quantum field \rightarrow quantum harmonic oscillators at each point of momentum space Ω

Scalar Quantum Fields

Scalar quantum field \rightarrow quantum harmonic oscillators at each point of momentum space Ω

The Fock basis \rightarrow Particle number for each momentum point:

$$|\beta_{\underline{n}}\rangle := \bigotimes_{\underline{p}\in\Omega} |n_{\underline{p}}\rangle$$

Ingredients required for Feynman diagrams

Ingredients required for Feynman diagrams

Creation and annihilation operators of the field

Ingredients required for Feynman diagrams

Creation and annihilation operators of the field

Feynman propagator

Field Operators

Creation and annihilation operators for fields

Field Operators

Creation and annihilation operators for fields

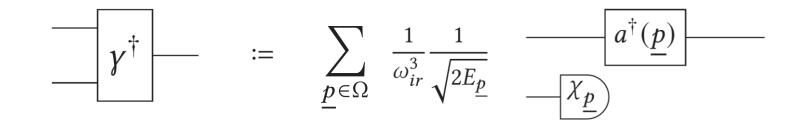
Field Operators

Creation and annihilation operators for fields

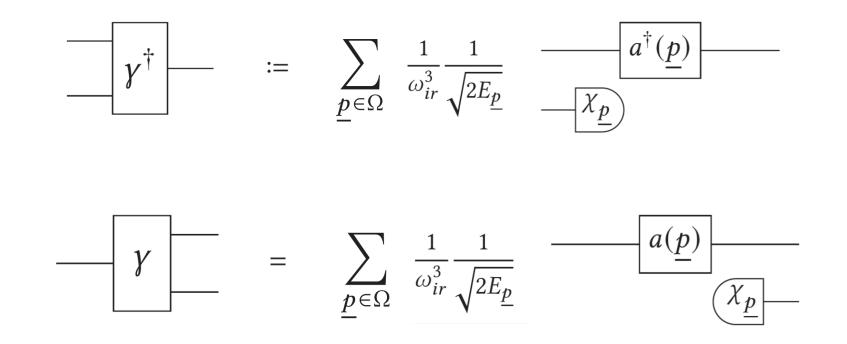
$$\begin{array}{rcccc} a_{\tau}(\underline{p}): & \mathcal{H}^{(\tau)} & \longrightarrow & \mathcal{H}^{(\tau-\delta_{\underline{p}})} \\ & & & |\beta_{\underline{n}}\rangle & \mapsto & \sqrt{\omega_{ir}^3}\sqrt{n_{\underline{p}}} & |\beta_{\underline{n}}-\delta_{\underline{p}}\rangle \end{array}$$

We package the field operators into coherently-controlled versions:

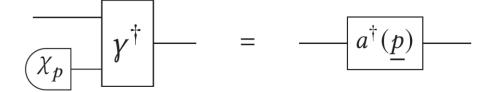
We package the field operators into coherently-controlled versions:

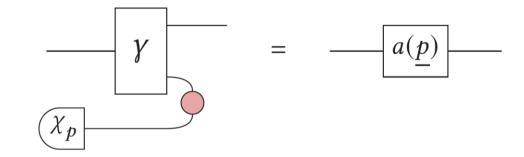


We package the field operators into coherently-controlled versions:

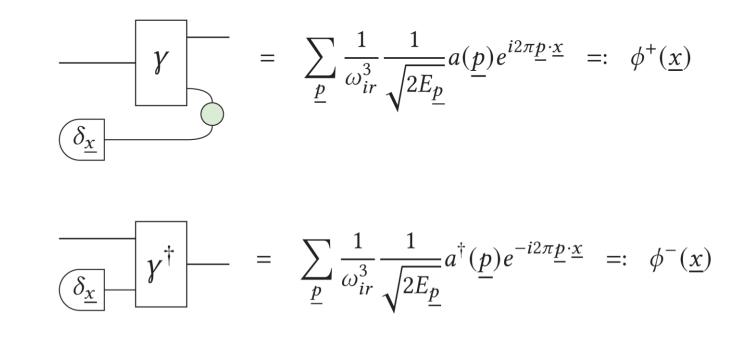


Plug in momentum basis state \rightarrow recover original momentum-space field operators





Plug in position basis state \rightarrow Fourier transform of momentum-space operators, i.e. position-space operators

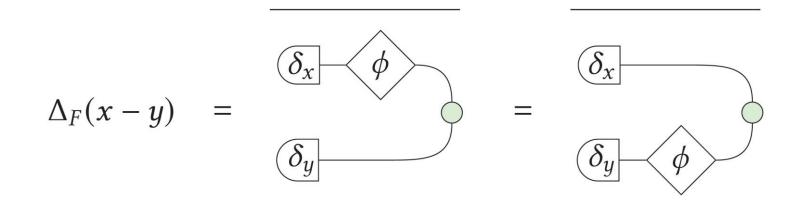


Feynman propagator

Probability of a particle travelling from spacetime point x to y

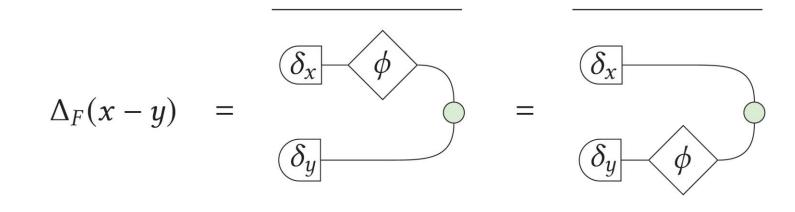
Feynman propagator

Probability of a particle travelling from spacetime point x to y



Feynman propagator

Probability of a particle travelling from spacetime point x to y



$$\Delta_F(x-y) = \begin{cases} D(x-y) & x_0 > y_0 \\ D(y-x) & y_0 > x_0 \end{cases}$$
$$D(x-y) \coloneqq \left[\phi^+(x), \phi^-(y)\right]$$

Overview

Categorical quantum fields

Categorical Feynman diagrams

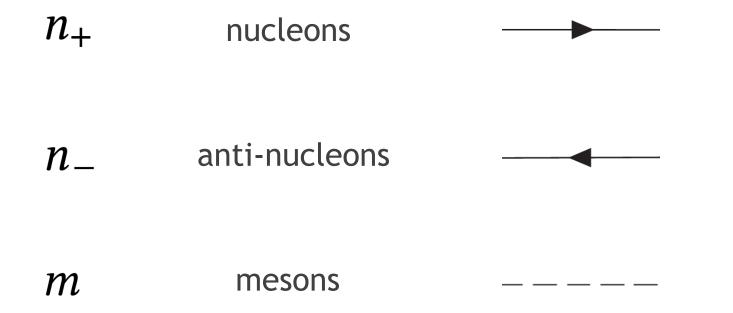
Composing Feynman diagrams

Scalar Yukawa Theory

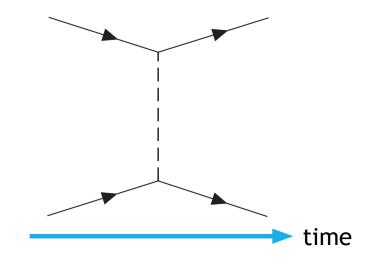
Simplified version of the theory of strong force between nucleons

Scalar Yukawa Theory

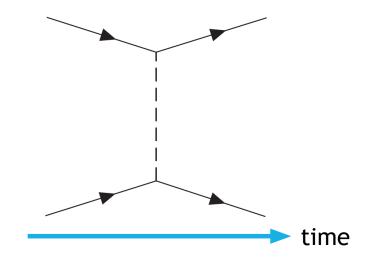
- Simplified version of the theory of strong force between nucleons
- We adopt the following notation:



Interaction of two nucleons mediated by a virtual meson:



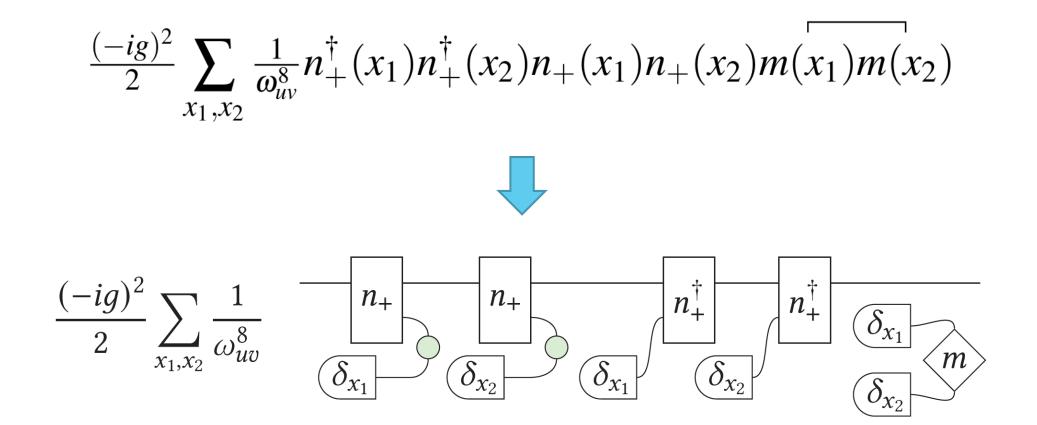
Interaction of two nucleons mediated by a virtual meson:



Corresponding Wick's expansion term:

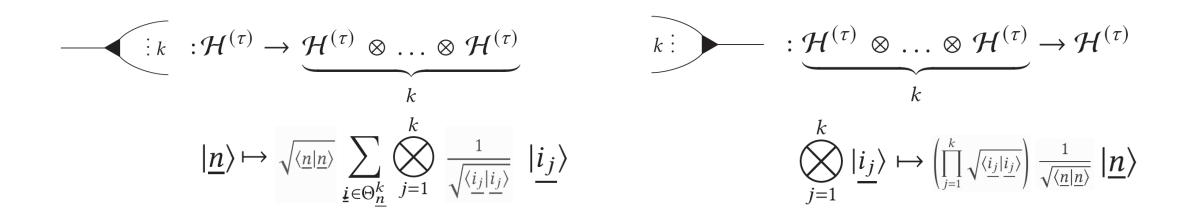
$$\frac{(-ig)^2}{2} \sum_{x_1, x_2} \frac{1}{\omega_{uv}^8} n_+^{\dagger}(x_1) n_+^{\dagger}(x_2) n_+(x_1) n_+(x_2) m(x_1) m(x_2)$$

$$\frac{(-ig)^2}{2} \sum_{x_1, x_2} \frac{1}{\omega_{uv}^8} n_+^{\dagger}(x_1) n_+^{\dagger}(x_2) n_+(x_1) n_+(x_2) m(x_1) m(x_2)$$

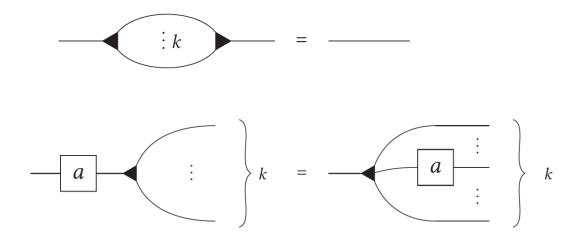


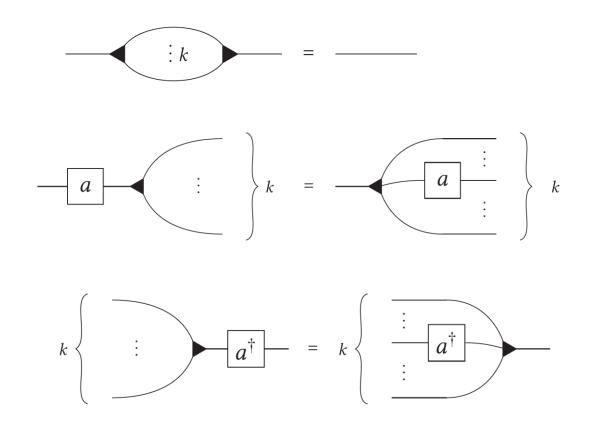
$$\underbrace{:k} : \mathcal{H}^{(\tau)} \to \underbrace{\mathcal{H}^{(\tau)} \otimes \ldots \otimes \mathcal{H}^{(\tau)}}_{k} \\ |\underline{n}\rangle \mapsto \sqrt{\langle \underline{n} | \underline{n} \rangle} \sum_{\underline{i} \in \Theta_{\underline{n}}^{k}} \bigotimes_{j=1}^{k} \frac{1}{\sqrt{\langle \underline{i}_{j} | \underline{i}_{j} \rangle}} |\underline{i}_{j}|$$

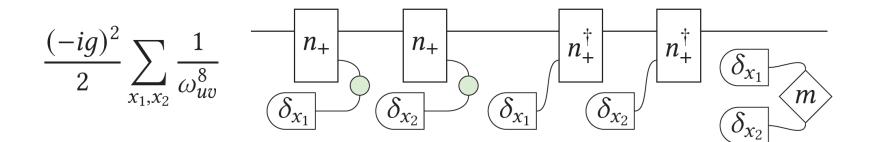
 $\Theta_{\underline{n}}^k := \text{ all ways of partitioning particles of } |\underline{n}\rangle \text{ in k partitions}$

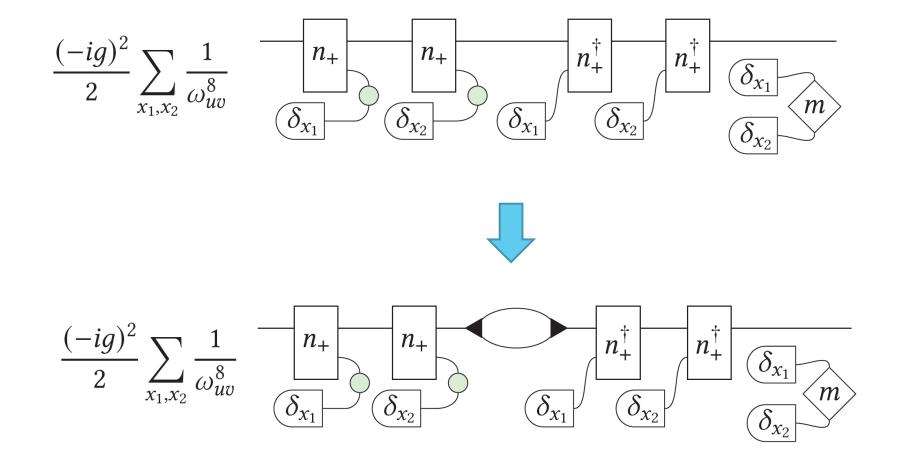


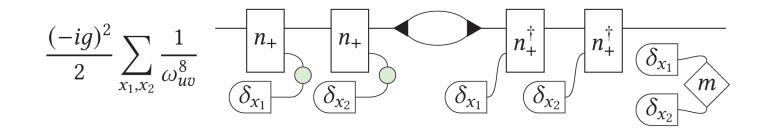
$$\Theta_{\underline{n}}^k \coloneqq$$
 all ways of partitioning particles of $|\underline{n}
angle$ in k partitions

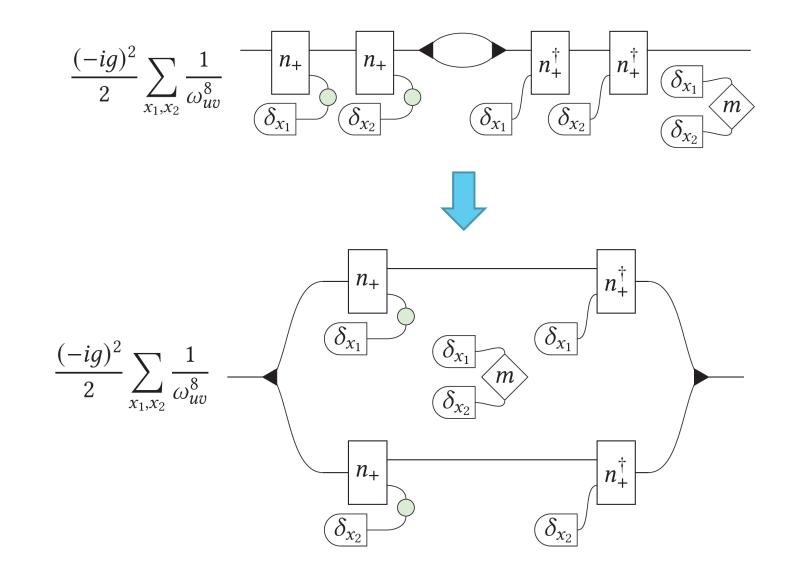


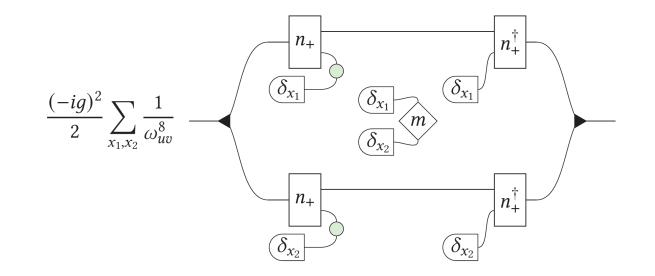


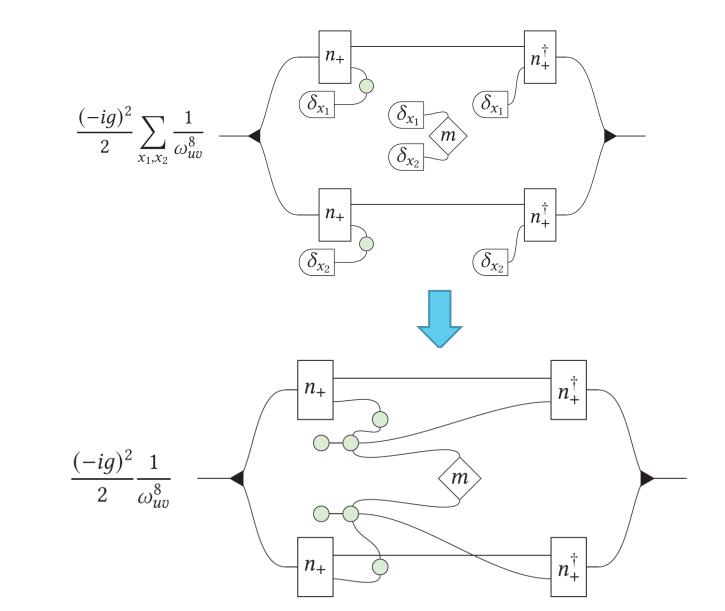


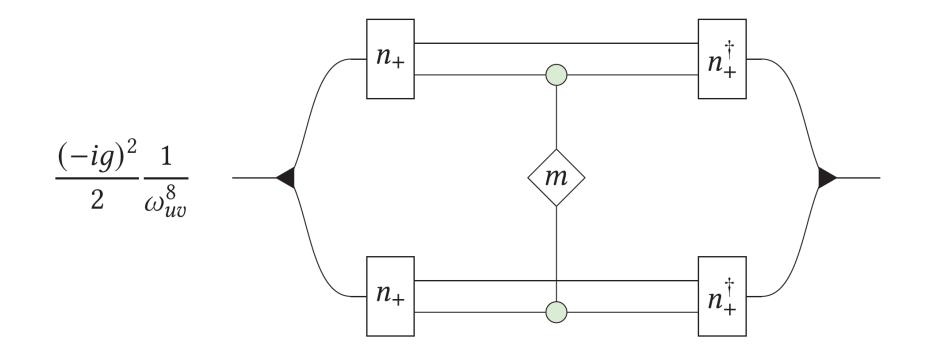


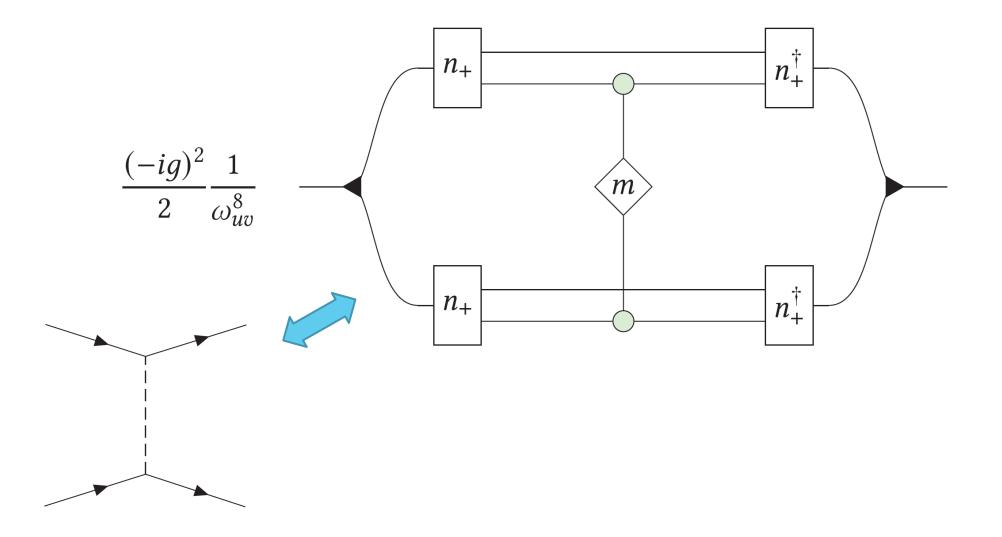


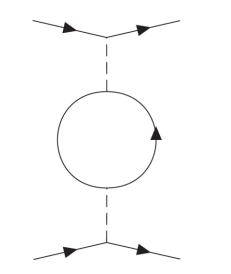


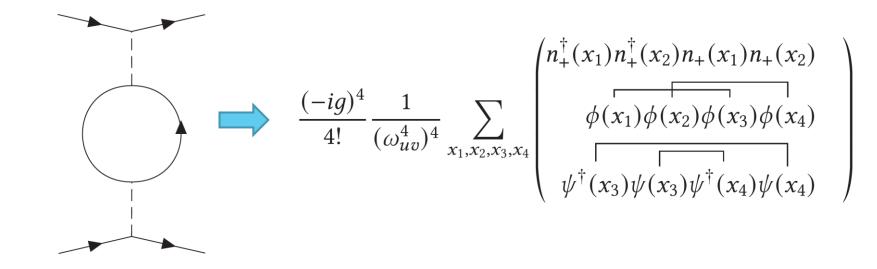


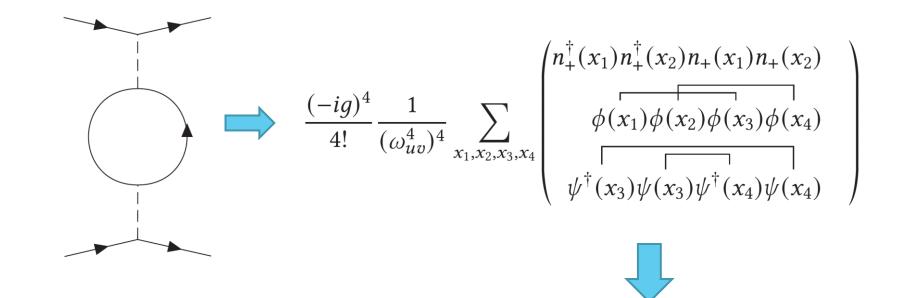


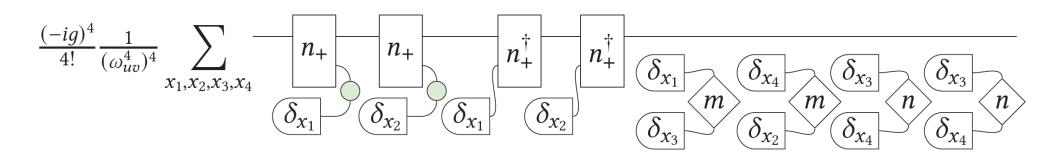


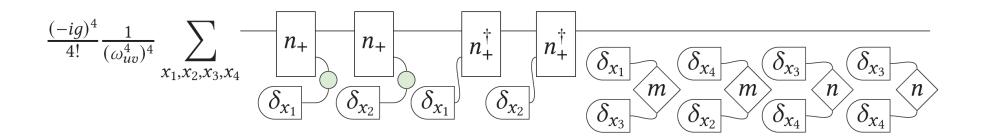


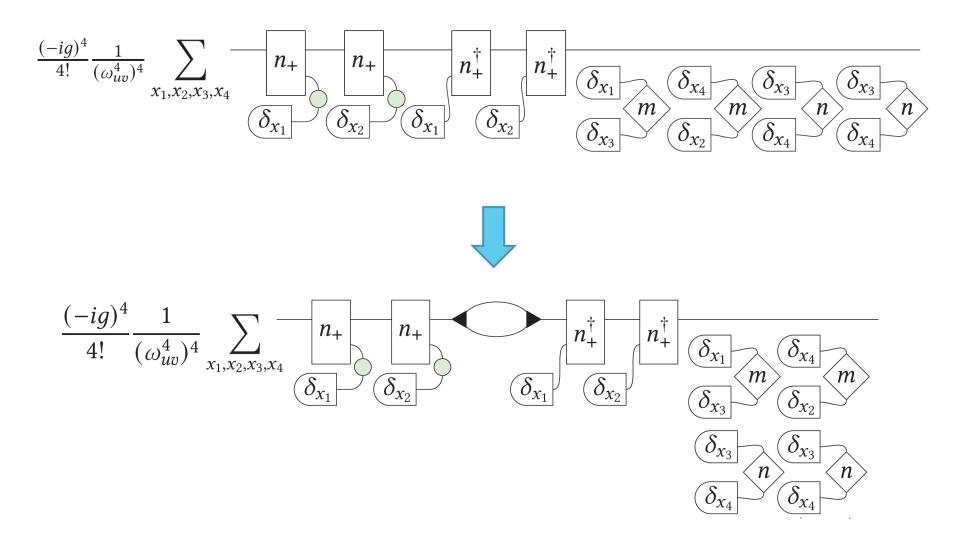


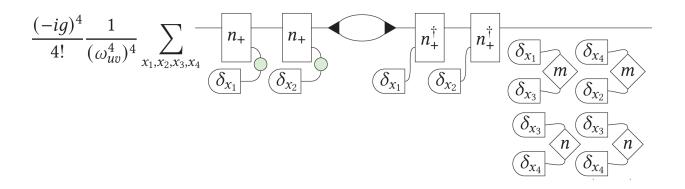


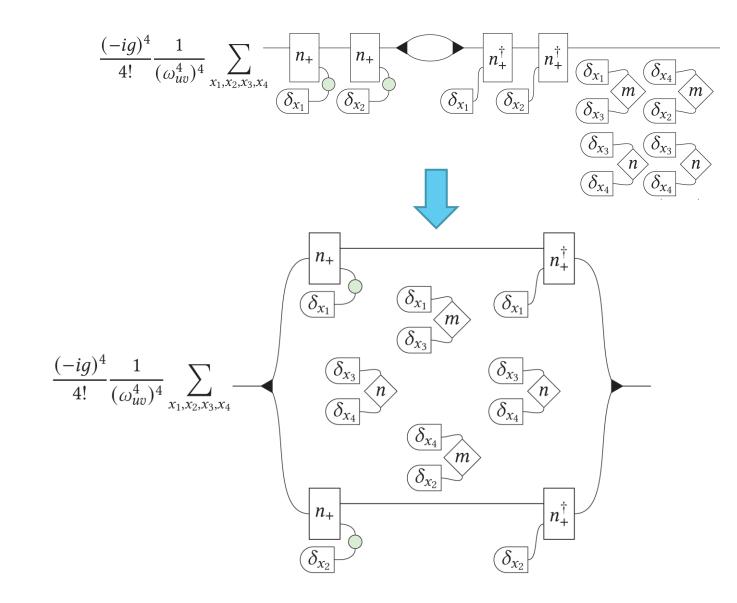


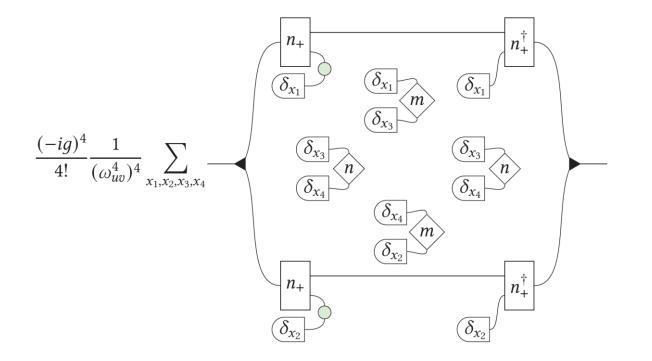


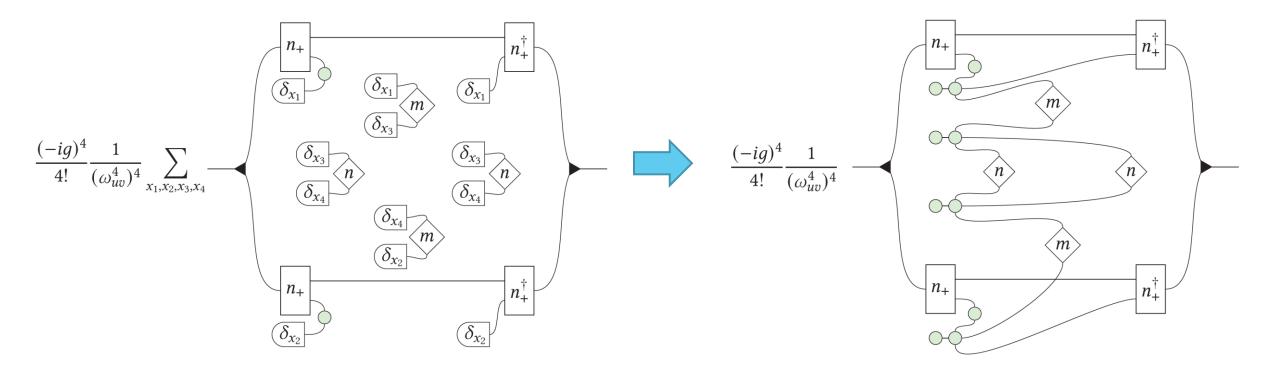


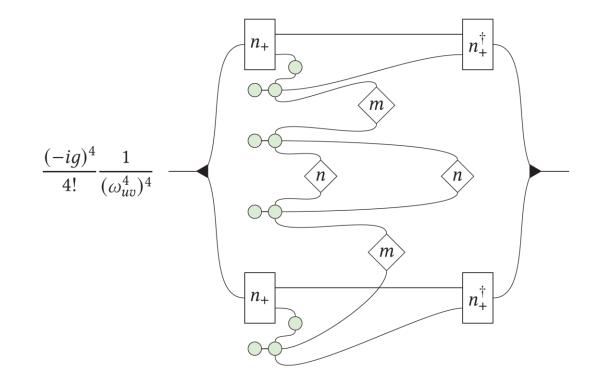


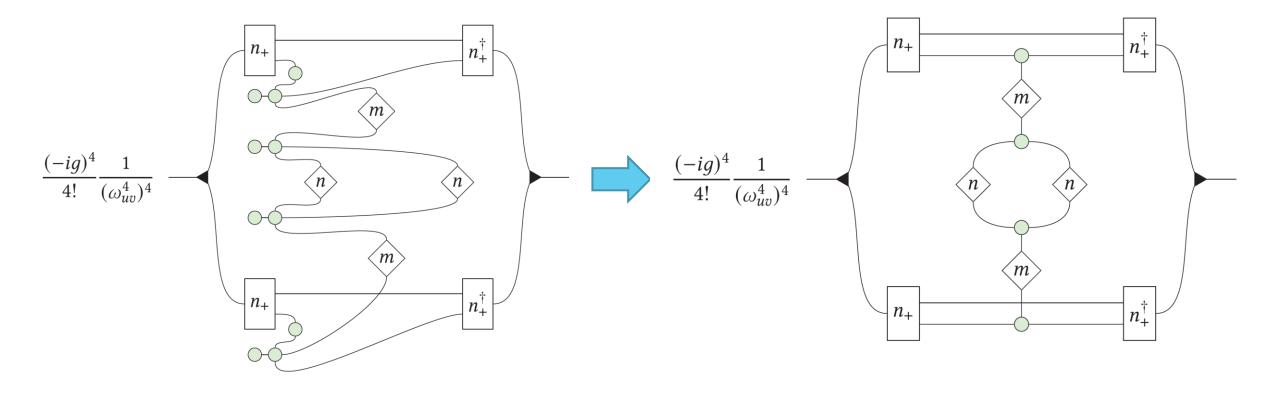


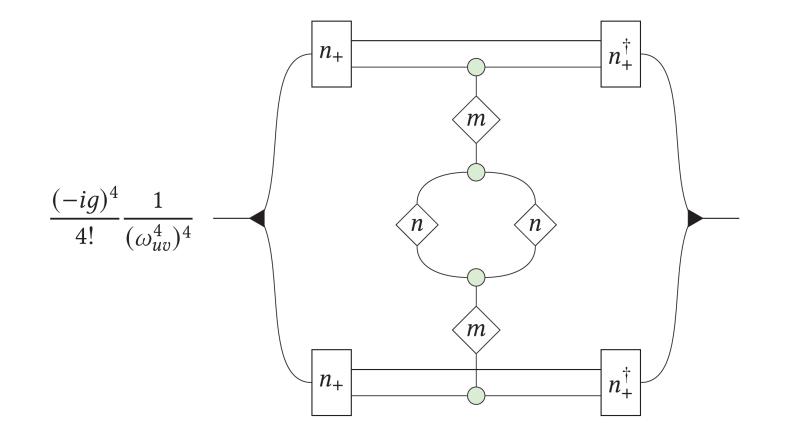


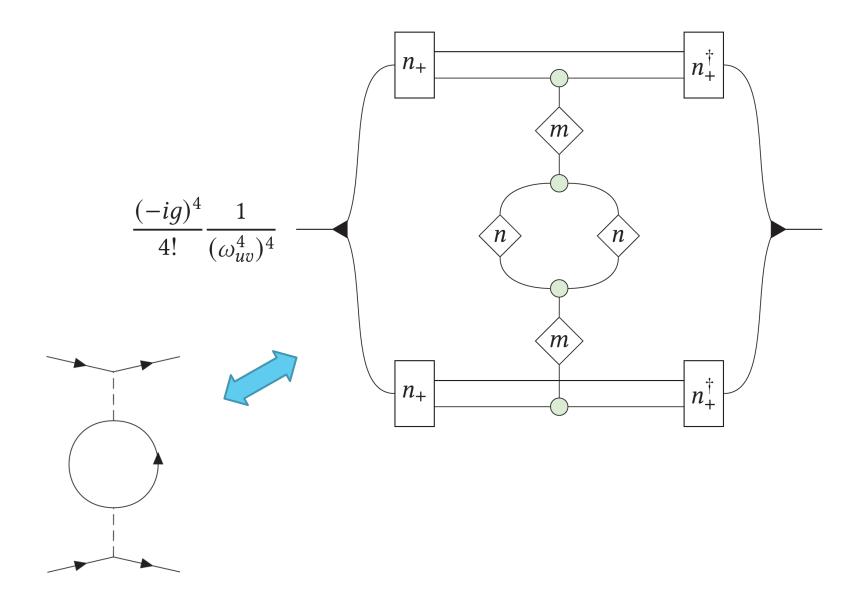




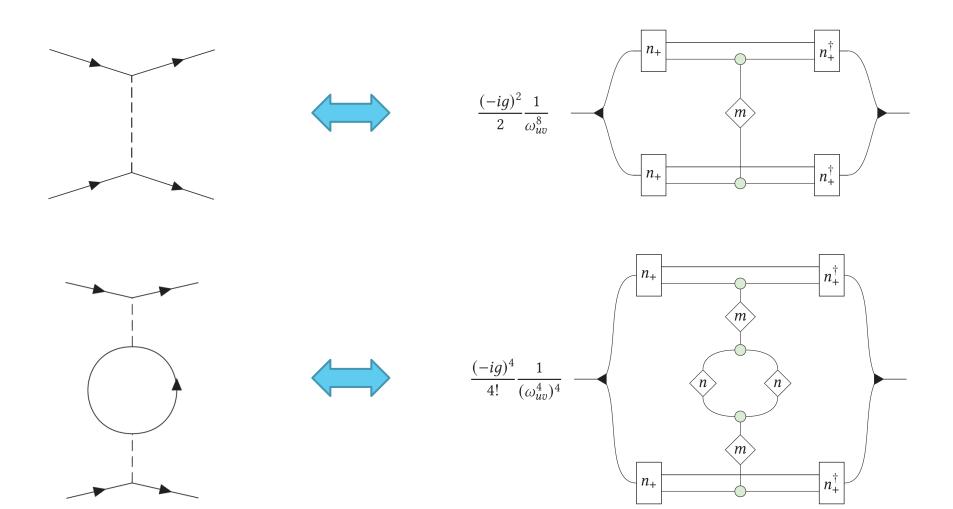




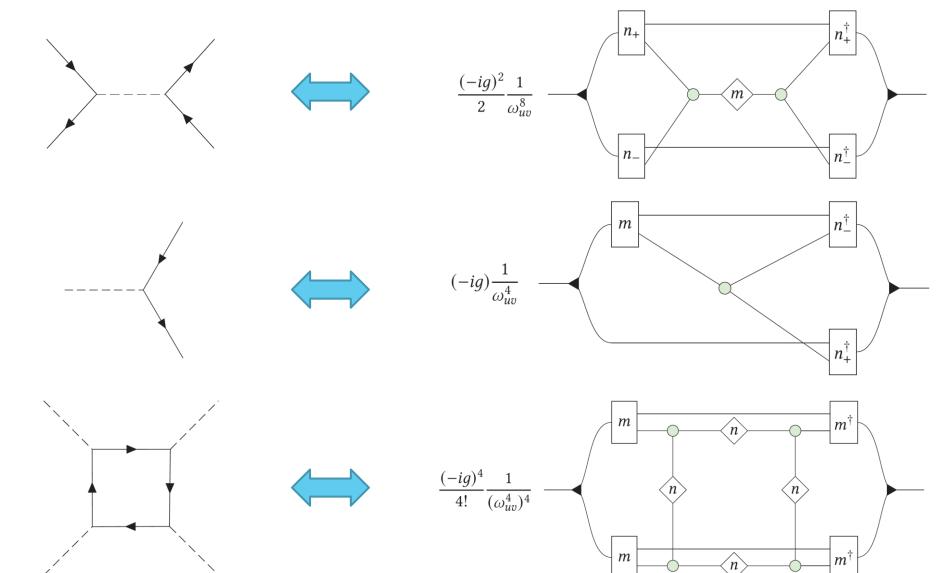




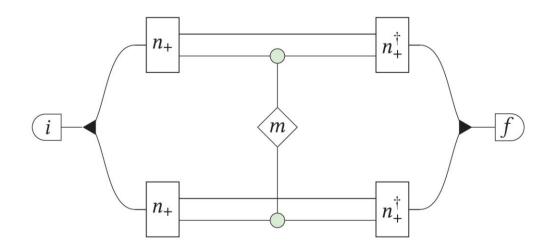
Example Gallery



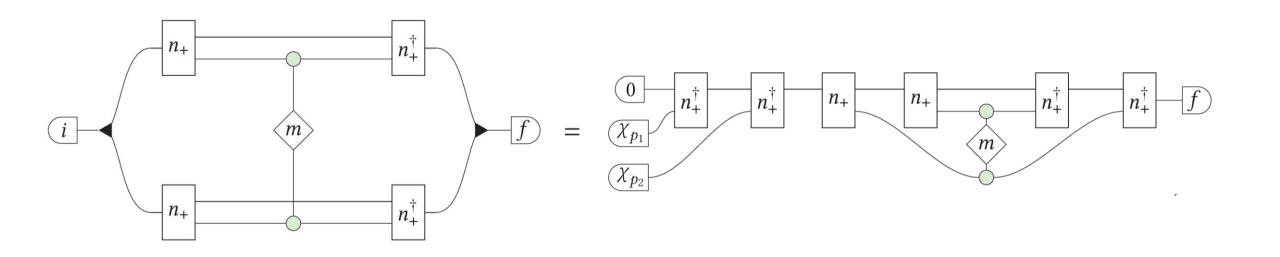
Example Gallery

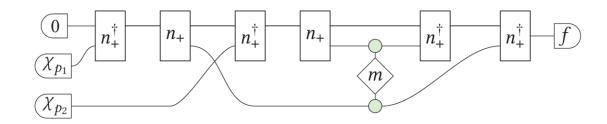


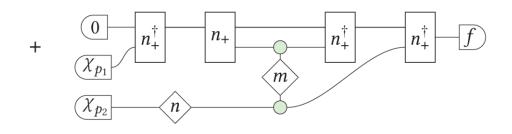
$$|i\rangle = |p_1, p_2\rangle = n_+^{\dagger}(p_1)n_+^{\dagger}(p_2) |0\rangle$$
$$|f\rangle = |p_1', p_2'\rangle = n_+^{\dagger}(p_1')n_+^{\dagger}(p_2') |0\rangle$$

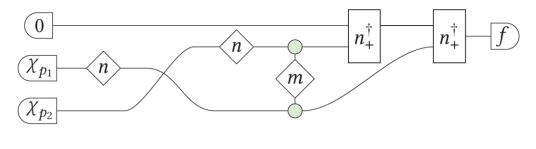


$$|i\rangle = |p_1, p_2\rangle = n_+^{\dagger}(p_1)n_+^{\dagger}(p_2) |0\rangle$$
$$|f\rangle = |p_1', p_2'\rangle = n_+^{\dagger}(p_1')n_+^{\dagger}(p_2') |0\rangle$$

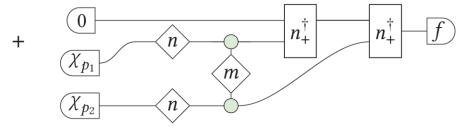


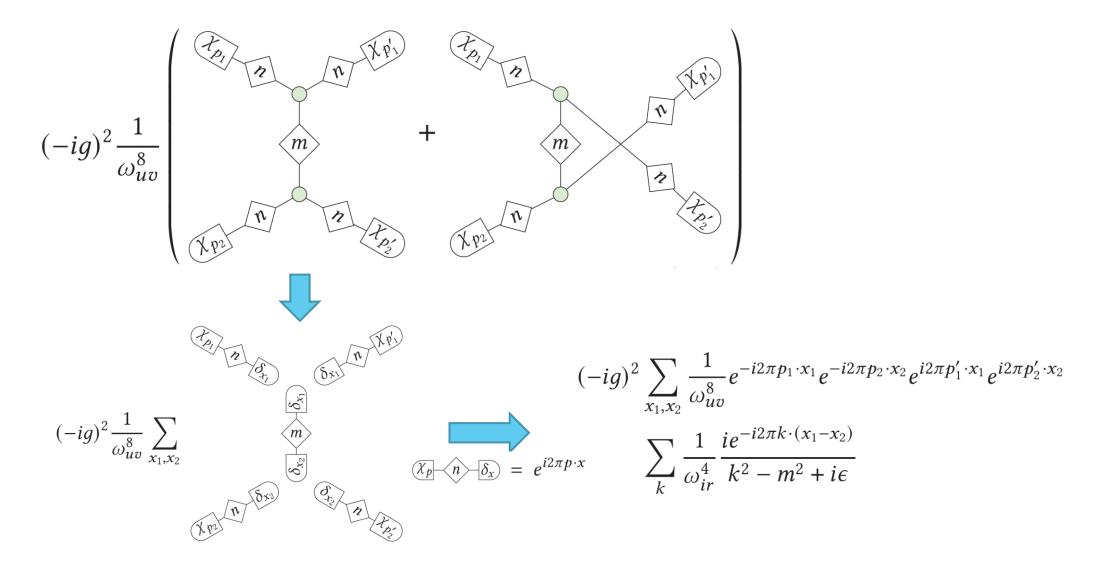


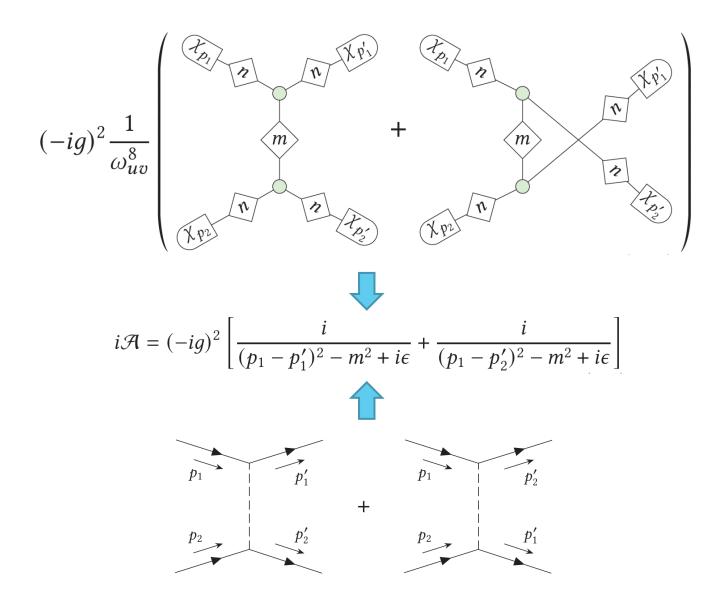




=





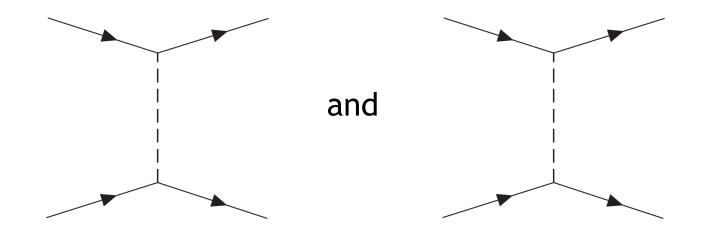


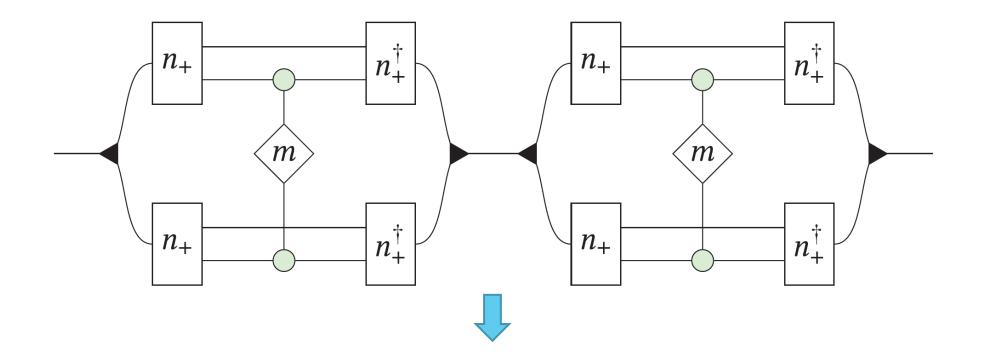
Overview

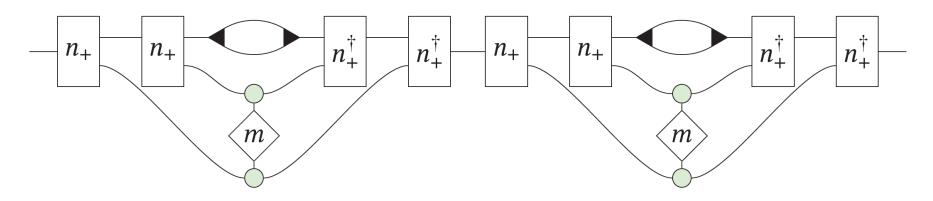
Categorical quantum fields

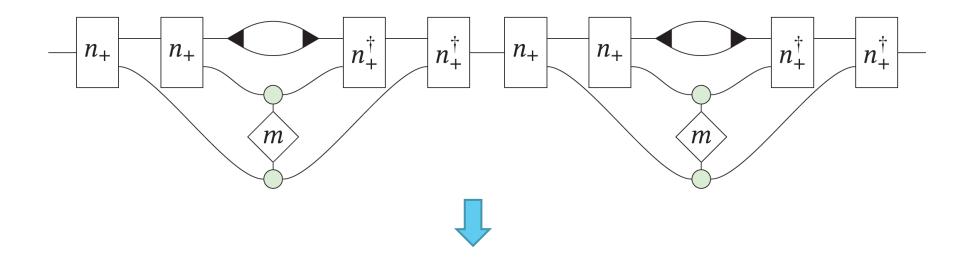
Categorical Feynman diagrams

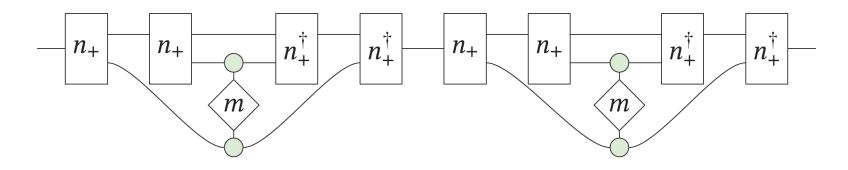
We compose categorical versions of

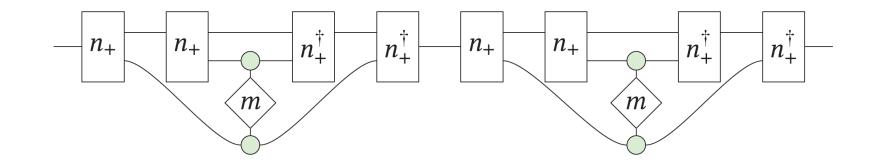


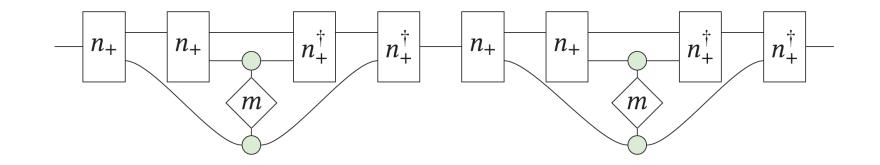




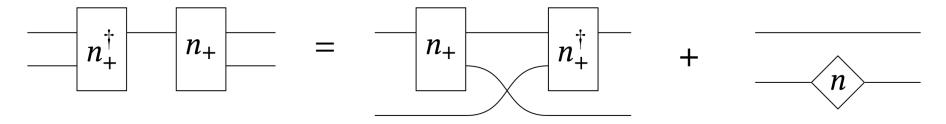


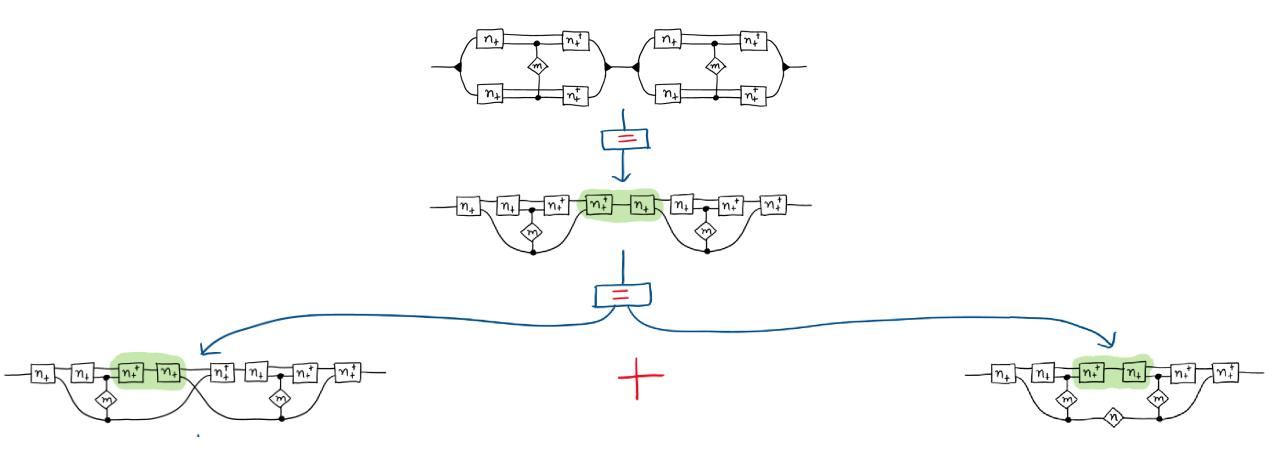


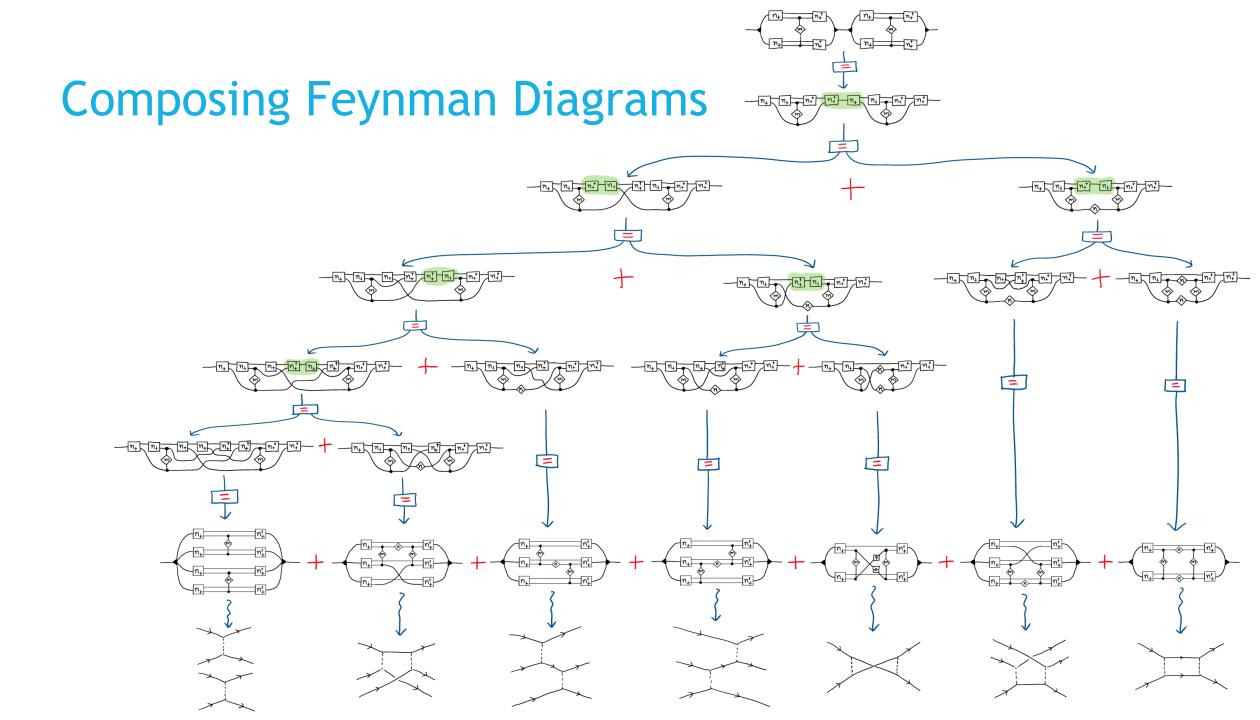


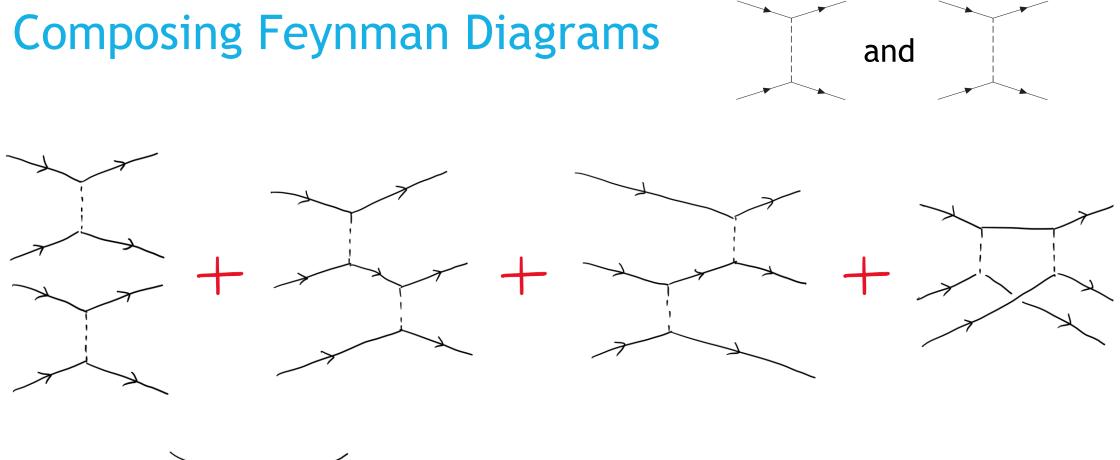


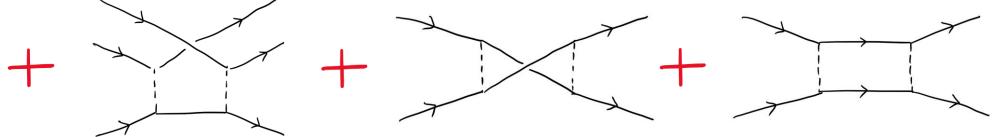
Apply commutation rule:











Categorical Feynman diagrams represent interaction processes instead of amplitudes

- Categorical Feynman diagrams represent interaction processes instead of amplitudes
- Amplitudes can be obtained by plugging in initial and final states

- Categorical Feynman diagrams represent interaction processes instead of amplitudes
- Amplitudes can be obtained by plugging in initial and final states
- Shift from syntactic, graph-theoretic compositionality to semantic, categorical-diagrammatic compositionality

- Categorical Feynman diagrams represent interaction processes instead of amplitudes
- Amplitudes can be obtained by plugging in initial and final states
- Shift from syntactic, graph-theoretic compositionality to semantic, categorical-diagrammatic compositionality
- Composition of categorical diagrams gives the superposition of all graph-theoretic combinations

Future work

Quantum simulation of particle physics

Compile categorical Feynman diagrams to quantum circuits

Future work

Quantum simulation of particle physics

Compile categorical Feynman diagrams to quantum circuits

Extend to fermions and vector bosons

Future work

Quantum simulation of particle physics

Compile categorical Feynman diagrams to quantum circuits

Extend to fermions and vector bosons

Thanks for listening!