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Motivation

 Quantum field theory (QFT) provides the best current model of the universe

 In QFT, Feynman diagrams represent probability amplitudes of interactions

 How do Feynman diagrams formally arise from field operators?

 Can we compose Feynman diagrams?
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To quantise the field, quantize the harmonic oscillators
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Quantization

 We cannot use the category Hilb – no cups, caps or spiders

 We use             – category of hyperfinite-dimensional Hilbert space

 is dagger compact – has cups, caps and spiders

 The results from            can be transferred to Hilb using a functor
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Quantum Harmonic Oscillator

 Described by an object , for some hyperfinite natural number 𝜅

Annihilation operatorCreation operator
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Scalar quantum field  → quantum harmonic oscillators at each point of 

momentum space Ω

The Fock basis  →  Particle number for each momentum point:

Scalar Quantum Fields
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Ingredients required for Feynman diagrams

 Creation and annihilation operators of the field

 Feynman propagator
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We package the field operators into coherently-controlled versions:



Coherently-controlled Field Operators

Plug in momentum basis state  → recover original momentum-space 

. field operators



Coherently-controlled Field Operators

Plug in position basis state  → Fourier transform of momentum-space             

. operators, i.e. position-space operators
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Probability of a particle travelling from spacetime point 𝑥 to 𝑦
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Scalar Yukawa Theory

 Simplified version of the theory of strong force between nucleons

 We adopt the following notation:

nucleons

anti-nucleons

mesons
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Example 1: Nucleon-Nucleon Scattering

Interaction of two nucleons mediated by a virtual meson:

Corresponding Wick’s expansion term:

time
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Split and Merge Maps

For our Feynman diagrams, we need three properties:
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We compose categorical versions of

and
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Composing Feynman Diagrams

Apply commutation rule:
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Composing Feynman Diagrams and
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Conclusion

 Categorical Feynman diagrams represent interaction processes 

instead of amplitudes

 Amplitudes can be obtained by plugging in initial and final states

 Shift from  syntactic, graph-theoretic compositionality                

to   semantic, categorical-diagrammatic compositionality

 Composition of categorical diagrams gives the superposition of all 

graph-theoretic combinations
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 Compile categorical Feynman diagrams to quantum circuits

 Extend to fermions and vector bosons

Thanks for listening!


