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FinStoch

FinStoch is the category with finite sets as objects and
stochastic matrices as morphisms.

FinSet ↪→ FinStoch.

Since FinStoch consists of “modified functions” we look for a
monad D on FinSet such that FinStoch ≃ Kℓ(D).

Rows summing to 1 indicates D(X ) consists of nonnegative
real functions on X that sum to 1.

If |X | ≥ 2, D(X ) is infinite, so it has to be defined on Set.
Then FinStoch ↪→ Kℓ(D) is the full subcategory on finite
sets.

We cannot handle probabilities such as sequences of
independent coin flips on 2N or Lebesgue measure on [0, 1]
this way. We need a different category to play the role of Set.
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Compact Hausdorff spaces and C∗-algebras

First attempt: 2N and [0, 1] are examples of compact
Hausdorff spaces.

Why concentrate on them? They have a good duality theory.

If X is compact Hausdorff space C (X ) = Top(X ,C) is a
(commutative unital) C∗-algebra.

A unital C∗-algebra is an internal *-monoid in Ban1 with the
(nontrivial) extra condition that ∥a∗a∥ = ∥a∥2.
But the important part is C : CHaus → CC∗Algop is an
equivalence, where morphisms in CC∗Algop are unital
*-homomorphisms. (Gel’fand Duality).

Spec : CC∗Algop → CHaus is the inverse where
Spec(A) = CC∗Alg(A,C).
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Positive Unital Maps

C∗-algebras have a positive cone, on C (X ) it is the set of
functions with values in [0,∞) ⊆ C.

A positive unital map is a linear map that preserves the
positive cone (equivalent to monotonicity w.r.t. the order)
and unit.

CC∗AlgPU has positive unital maps as morphisms, CC∗Alg is
a subcategory.

The state space S(A) = CC∗AlgPU(A,C).
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The Radon Monad

R(X ) = S(C (X )) = CC∗AlgPU(C (X ),C) is a compact
Hausdorff space (the space of Radon probability measures). It
is a monad on CHaus.

Example: On [0, 1] define ϕ : C ([0, 1]) → C

ϕ(a) =

∫ 1

0
a(x) dx

The Riesz representation theorem puts regular probability
measures on X in bijection with elements ϕ ∈ R(X ).

Kℓ(R) is like Kℓ(D) but with continuity.
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Probabilistic Gel’fand Duality

We can extend C to a functor CPU : Kℓ(R) → CC∗AlgopPU.

On f : X → R(Y ) we define CPU(f ) : C (Y ) → C (X ) by

C (f )(b)(x) = f (x)(b)

i.e. swapping the arguments of a curried function.

CPU is an equivalence. [FJ15]
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Probabilistic Gel’fand Duality II

Kℓ(R)
CPU //

GR
��

CC∗AlgopPU

C◦S
��

CHaus
C
//

FR ⊣

OO

CC∗Algop,
?�

⊣

OO

CC∗AlgPU is therefore the coKleisli category of a comonad on
CC∗Alg.
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Conditional Probability Maps for D

Given a finite set X and ϕ ∈ D(X ), and a function Y : X → Y we
can define a function e : Y → D(X )

e(y)(x) = P(X = x | Y = y) =
P(X = x ,Y = y)

P(Y = y)

=
ϕ(x)[[[Y(x) = y]]]∑
x ′∈Y−1(y)

ϕ(x ′)

(where X : X → X is the identity function)
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Conditional Probability Maps in General

This conditional probability map satisfies two properties:

1 e is a “probabilistic section” of Y:

Y
e //

idY ��

X

FD(Y)

��

Y
e //

ηY !!

D(X )

D(Y)
��

Y D(Y )

(or e(y) is supported on Y−1(y))
2 ϕ is mapped back to itself by the maps the other way

1
ϕ //

ϕ

��

X 1
ϕ //

ϕ
��

D(X )

X
FD(Y)

// Y

e

OO

D(X )
D(Y)

// D(Y )

µX ◦D(e)

OO

(marginal probability and conditional probability reproduce
joint probability)
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Problems

We can use this to define what a conditional probability map
in Kℓ(R) should be.

But there are surjective maps with no probabilistic section,
e.g. the binary digits map 2N → [0, 1].

We might try using the Giry monad G on measurable spaces.
But even on standard Borel spaces there are surjective maps
with no probabilistic section.

A modification of this notion where we only require a
probabilistic section “almost everywhere” exists for standard
Borel spaces and is known as a regular conditional probability.

Idea

How about working in a category of measure spaces that ignores
null sets to begin with?
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Approach

When trying to make this work, it helps to use probabilistic
Gel’fand duality.

Under probabilistic Gel’fand duality, a conditional probability
map corresponds to the notion of a conditional expectation
from operator algebra [Tom57, Tak72].

This is not a coincidence (but no Kleisli categories were used
in defining it originally).

We need the measure theoretic analogue of C , which is L∞.
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L∞ the W∗-algebra

Let (X , ν) be a probability space:

L∞(X , ν) is the space of bounded measurable functions
modulo equality ν-almost everywhere. It is a commutative
C∗-algebra.

L1(X , ν) is the space of (absolutely) ν-integrable functions
modulo equality ν-a.e.

The pairing ⟨-, -⟩ : L∞(X , ν)× L1(X , ν) → C defined by
integration

⟨a, ϕ⟩ =
∫
X
aϕ dν

defines an isometry L∞(X , ν) → L1(X , ν)∗. This makes
L∞(X , ν) a commutative W∗-algebra, L1(X , ν) is the predual.

In fact we cannot stay confined to probability spaces, but we
cannot be too general because L∞(X , ν) ̸∼= L1(X , ν) for all
measure spaces.
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Gel’fand Duality for W∗-algebras

The objects of Meas are compact complete strictly localizable
measure spaces, the morphisms equivalence classes of
nullset-reflecting measurable maps.

This class of measure spaces was singled out by Fremlin in
[Fre02] for duality (between measure spaces and a full
subcategory of complete Boolean algebras).

CW∗Alg is a non-full subcategory of CC∗Alg – the morphisms
are normal *-homomorphisms, which are maps that are
equivalently weak-* continuous or Scott continuous.

L∞ : Meas → CW∗Algop is an equivalence.
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are normal *-homomorphisms, which are maps that are
equivalently weak-* continuous or Scott continuous.

L∞ : Meas → CW∗Algop is an equivalence.
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Gel’fand Duality for W∗-algebras II

An inverse to L∞ is given by Spec : CW∗Algop → Meas
(hyperstonean spaces).

Every object of Meas is isomorphic to∐
i∈I

(2κi , ν2κi )

for some family of cardinals (κi )i∈I (Maharam’s theorem).

Reference for W∗-algebra Gel’fand duality: [Pav22].
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A Monad for Conditional Expectations?

By analogy to C∗-algebras, the probabilistic category of
W∗-algebras is CW∗AlgPU (normal positive unital maps).

Nonexistence problems are over: Conditional expectations
exist in CW∗AlgPU for L∞(f ) if f is between probability
spaces.

We want a monad T on Meas whose Kleisli category is
equivalent to CW∗AlgPU

op. We can use W∗-Gel’fand duality
to work on the W∗-side first.

So show that CW∗Alg ↪→ CW∗AlgPU has a left adjoint F
such that the comparison functor for the coKleisli category of
the comonad is an equivalence.
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Double Duals

The forgetful functor CW∗AlgPU → CC∗AlgPU has a left
adjoint, the enveloping W∗-algebra. For A ∈ CC∗Alg it is the
double dual A∗∗. This also produces a left adjoint to
CW∗Alg → CC∗Alg.

Observe:

CW∗AlgPU(A
∗∗,B) ∼= CC∗AlgPU(A,B)

∼= CC∗Alg(C (S(A)),B)
∼= CW∗Alg(C (S(A))∗∗,B).

It must be that F (A∗∗) = C (S(A))∗∗.
Not all W∗-algebras are double duals!
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Defining F

Lemma

CW∗Alg is monadic over CC∗Alg, i.e. CW∗Alg ≃ EM(-∗∗).

Therefore

A∗∗∗∗
ϵA∗∗ //

ϵ∗∗A

// A
∗∗ ϵA // A

is a coequalizer (the canonical presentation of A).

This coequalizer is preserved by the inclusion
CW∗Alg ↪→ CW∗AlgPU.

Since left adjoints preserve colimits and CW∗Alg is
cocomplete, this allows us to define
F : CW∗AlgPU → CW∗Alg.

The coKleisli comparison functor is an equivalence with
CW∗AlgPU because CW∗AlgPU and CW∗Alg have the same
objects. [Wes17, Theorem 9]
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Main Result

Theorem

There is a monad T on Meas such that Kℓ(T ) ≃ CW∗AlgPU.

It seems the simplest way to realize T (X ) is to take the
Gel’fand spectrum of F (L∞(X )).
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Final Remarks

For a countable set X

T (X ) ∼= ([0, 1],P([0, 1]), νd)+([0, 1]2,P([0, 1])⊗ ̂Bo([0, 1]), νd⊗νL)

where νd is the counting measure and νL the Lebesgue
measure.

The need to use non-probabilistic spaces is analogous to the
need to use Set instead of FinSet to define D.

We only have that Meas(1,T (X )) corresponds to the density
functions on X , not that T (X ) does.

It should be that Kℓ(T ) and CW∗AlgPU
op are Markov

categories in the sense of [Fri20] (work in progress).

Robert Furber A Probability Monad on Measure Spaces



Final Remarks

For a countable set X

T (X ) ∼= ([0, 1],P([0, 1]), νd)+([0, 1]2,P([0, 1])⊗ ̂Bo([0, 1]), νd⊗νL)

where νd is the counting measure and νL the Lebesgue
measure.

The need to use non-probabilistic spaces is analogous to the
need to use Set instead of FinSet to define D.

We only have that Meas(1,T (X )) corresponds to the density
functions on X , not that T (X ) does.

It should be that Kℓ(T ) and CW∗AlgPU
op are Markov

categories in the sense of [Fri20] (work in progress).

Robert Furber A Probability Monad on Measure Spaces



Final Remarks

For a countable set X

T (X ) ∼= ([0, 1],P([0, 1]), νd)+([0, 1]2,P([0, 1])⊗ ̂Bo([0, 1]), νd⊗νL)

where νd is the counting measure and νL the Lebesgue
measure.

The need to use non-probabilistic spaces is analogous to the
need to use Set instead of FinSet to define D.

We only have that Meas(1,T (X )) corresponds to the density
functions on X , not that T (X ) does.

It should be that Kℓ(T ) and CW∗AlgPU
op are Markov

categories in the sense of [Fri20] (work in progress).

Robert Furber A Probability Monad on Measure Spaces



Final Remarks

For a countable set X

T (X ) ∼= ([0, 1],P([0, 1]), νd)+([0, 1]2,P([0, 1])⊗ ̂Bo([0, 1]), νd⊗νL)

where νd is the counting measure and νL the Lebesgue
measure.

The need to use non-probabilistic spaces is analogous to the
need to use Set instead of FinSet to define D.

We only have that Meas(1,T (X )) corresponds to the density
functions on X , not that T (X ) does.

It should be that Kℓ(T ) and CW∗AlgPU
op are Markov

categories in the sense of [Fri20] (work in progress).

Robert Furber A Probability Monad on Measure Spaces



References I

Robert Furber and Bart Jacobs, From Kleisli Categories to
Commutative C∗-algebras: Probabilistic Gelfand Duality,
Logical Methods in Computer Science 11 (2015), no. 2, 1–28.

David H. Fremlin, Measure Theory, Volume 3, https:
//www.essex.ac.uk/maths/people/fremlin/mt.htm,
2002.

Tobias Fritz, A synthetic approach to Markov kernels,
conditional independence and theorems on sufficient statistics,
Advances in Mathematics 370 (2020), 107239.

Dmitri Pavlov, Gelfand-type duality for commutative von
Neumann algebras, Journal of Pure and Applied Algebra 226
(2022), no. 4, 106884.

Robert Furber A Probability Monad on Measure Spaces

https://www.essex.ac.uk/maths/people/fremlin/mt.htm
https://www.essex.ac.uk/maths/people/fremlin/mt.htm


References II

Masamichi Takesaki, Conditional expectations in von
Neumann algebras, Journal of Functional Analysis 9 (1972),
no. 3, 306–321.

Jun Tomiyama, On the Projection of Norm One in
W*-algebras, Proceedings of the Japan Academy 33 (1957),
no. 10, 608–612.

Bram Westerbaan, Quantum Programs as Kleisli Maps,
Electronic Proceedings in Computer Science (EPTCS) 236
(2017), 215–228.

Robert Furber A Probability Monad on Measure Spaces


