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The limitation of machine learning

Machine learning (ML) is very useful in modeling large data sets

Typically machine learning is non-probabilistic
This is a “causally-blind” approach to modeling

We need a method which takes into account the possibility of
spurious correlations in the data
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Causal modeling
What is it?

It is a probabilistic method in which to model the causal influence of
events on another

Typically, it is represented by a directed acyclic graph (DAG)

A→ B represents A having a causal influence on B

Given an arbitrary DAG the probability distribution is given by

P (X1, . . . , Xn) =
N∏

n=1
P (Xn|pa (Xn))

In causal modeling the do-operator is used to simulate experimental
interventions by changing the structure of the DAG

The interventional distribution P (Y |do (X )) is computed after
replacing all incoming arrows into X with the constant X = x .
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Causal modeling
Back-door adjustment formula

Suppose we were interested in the direct causal effect of a drug on a
patient’s health, and there is a confounder in the age of the patient

We can represent this in a DAG by,

H ← A→ D

D → H

In this case we make use of the back-door adjustment formula

P (H|do (D = d)) =
∑

a∈ΩA

P (H|A = a, D = d) P (A = a) .
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Causal modeling
Front-door adjustment formula

Suppose we were interested in the mechanism by which smoking
affects lung cancer, we assume that smoking, X , affects tar in the
lungs, M, which affects cancer in lungs Y , in this model we also
include an unobserved variable U

We can represent the DAG as

Y ← U → X

X → M → Y
In this case we make use of the front-door adjustment formula

P (Y |do (X = x)) =
∑

m∈ΩM

P (M = m|X = x)
∑

x′∈ΩX

P
(

Y |M = m, X ′ = x ′
)

P
(

X ′ = x ′
)

.
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The need for semifields

In order to normalize we need an algebra that has a multiplicative
inverse and for our purposes additive inverses are not required

Semifields are critical so that we can form a consistent set of rules in
order to manipulate casual morphisms

Semifields can be used to represent machine learning models, e.g.
ML and deep learning (DL) algorithms.

Example
(Probability semifield). ([0, 1] , +,×, 0, 1)

Example
(Min-plus semifield). (R+, min, +,∞, 0)
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Semifields

Definition
A semifield (S,⊕,⊗, i⊕, i⊗), is a set, S, endowed with two binary
operations ⊕,⊗ that satisfy the following conditions;

1 ⊕ is associative and commutative on all a, b ∈ S and has identity i⊕
i.e. ∀a ∈ S, i⊕ ⊕ a = a ⊕ i⊕ = a

2 ⊗ is associative and has identity i⊗ i.e. ∀a ∈ S, i⊗ ⊗ a = a⊗ i⊗ = a,
and for all a ∈ S\ {i⊕} there exists an inverse a−1 such that
a ⊗ a−1 = a−1 ⊗ a = i⊗

3 ⊗ is both left and right distributive with respect to ⊕ and for every
s ∈ S, i⊕ annihilates s, i.e. a ⊗ i⊕ = i⊕ ⊗ a = i⊕.
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Defining the category

Definition
A Markov category C is a symmetric monoidal category in which every
object X ∈ C is equipped with a commutative comonoid structure given
by a comultiplication copyX : X → X × X and counit delX : X → I,
where × is the tensor product and I is the unit object. The
comultiplication and counit are usually depicted in string diagrams,
further they satisfy commutative comonoid equations, compatibility with
the monoidal structure and the naturality of del.

Definition
A semifield Markov category C is a Markov category in which morphism
composition and the monoidal product is defined by some underlying
semifield (S,⊗,⊕, i⊗, i⊕). A special case of this category is the affine
semifield Markov category in which there is an associated terminal
morphism for each object X ∈ C.
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Defining the category
Extra structure

Objects, morphisms and morphism composition
Objects in semifield Markov categories are arbitrary index sets X , Y , and
morphisms are of the form f : X → D (Y ), where D (Y ) = SY i.e. the
set of all maps m : Y → S, D is as a monad. Morphism composition in
the category denoted ·, on two morphisms f1 : X → D (Y ) and
f2 : Y → D (Z ), is given as

(f1 · f2) (z |x) =
⊕
y∈Y

f2 (z |y)⊗ f1 (y |x) .

The affine requirement
For two morphisms f : Z → D (Y ) and 1Y :Y → D (1), composition of
the two yields

1Y · f = 1Z

where 1Z : Z → D (1).
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Marginalization, normalization, extraction and
disintegration
Marginalization and normalization

Assume C is an affine semifield Markov over an arbitrary semifield
S = (S,⊕,⊗, i⊕, i⊗);

Marginalization: For a morphism f : Z → D (Y ) and a terminal morphism
1Y : Y → D (1), we have 1Y · f = 1Z so that⊕

y∈Y

[1Y (|y) ⊗ f (y |z)] = 1Z (|z) .

Normalization: For a morphism f : X → D (Y ) we define a normalized morphism
with a bar i.e. f̄ (y |x) as follows,

f̄ (y |x) = f (y |x) ⊗

(⊕
y∈Y

f (y |x)

)−1

,

where f (y |) denotes a morphism with no input and f (|y) is a morphism with no
output.
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Extraction and disintegration

Let × denote the monoidal product in which for two arbitrary morphisms
f : X → D (Y ) and g : Y → D (Z ) we have f × g = (f × g) (x , y |u, v);

Extraction: For a morphism f : X → D (Y ), extraction is defined as

f (x , y |z) 7→ f̄ (y |x , z) .

Disintegration: For a morphism f12 : 1→ D (X1 × X2),
disintegration is given as

f12 (x1, x2|) = f̄1|2 (x1|x2)⊗ f2 (x2|) ,

where we have morphisms f̄1|2 (x1|x2) : X2 → D (X1) and
f2 (x2|) : 1→ D (X2) .
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Example of morphisms and compositions from machine
learning
State normalization under the min-plus semifield

Example
Let g (y |λ) = − ln (λ) + λy for y ∈ Y = R+ and λ > 0, normalized
g (y |λ) = λy . Assume a gamma prior,
f (λ|) = − (α− 1) (ln (λ) + ln β − ln (α− 1) + 1) + βλ. Then

(g · f) (y |) = min
λ∈R+

[g (y |λ) + f (λ|)]

= min
λ∈R+

[λ (y − β)− (α− 1) (ln (λ) + ln β − ln (α− 1) + 1)]

= ln
(

y + β

β

)
(α− 1)

which is normalized since ln
(

0+β
β

)
(α− 1) = 0. This is the negative log

of the Lomax distribution, but we have obtained its log-density through
minimization by differentiation, rather than integration.
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Defining the semifield homomorphism

Suppose, we have two arbitrary semifields S = (S,⊕,⊗, i⊕, i⊗) and
S′ = (S ′,⊕′,⊗′, i⊕′ , i⊗′) .

Definition
A function h : S → S ′ is a semifield homomorphism if for every
s1, s2 ∈ S, the following equations hold

h (s1 ⊕ s2) = h (s1)⊕′ h (s2)
h (s1 ⊗ s2) = h (s1)⊗′ h (s2)

h (i⊕) = i⊕′

h (i⊗) = i⊗′

such that ⊗′ distributes over ⊕′.
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Defining the semifield transport functor

Assume that C, C′ are affine semifield Markov categories over semifields
S = (S, +,×, 0, 1) , S′ = (S ′,⊕,⊗, i⊕, i⊗) respectively.

Theorem
Let f : X → D (Y ) ∈ C and f ′ : X → D (Y ) ∈ C′. If there exists a
semifield homomorphism h : S → S ′, then we can define a semifield
transport functor F : C→ C′ is defined as the following;

1 On objects X ∈ C, F (X ) = X ∈ C′

2 On morphisms f, f ′,F(f) (y |x) = h (f (y |x)) = f ′ (y |x) .

Corollary
If there exists an isomorphism of semifields i.e. an inverse to the semifield
homomorphism, then it is possible to construct an isomorphism of
categories.
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An example transport functor
Information transform

Example
Let h (s) = − 1

a ln (s) for a > 0, mapping [0, 1]→ R+ ∪∞. In this case,
h−1 (s ′) = exp (−as ′) and we have

s ′
1 ⊗ s ′

2 = −1
a ln (exp (−as ′

1)× exp (−as ′
1)) = a

a (s ′
1 + s ′

2) = s ′
1 + s ′

2

s ′
1 ⊕ s ′

2 = → −1
a ln (exp (−as ′

1) + exp (−as ′
2))→ min (s ′

1, s ′
2)

in the limit as a→∞. This obtains the semifield
S ′ = ([0,∞] , min, +,∞, 0), the min-plus semifield from the usual
probability semifield, ([0, 1] , +,×, 0, 1).
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String diagram convention

We will represent morphisms of the type f : X → D (Y ) in the form

f

X

Y

We will represent morphisms of the form
f : X1 × X2 × · · · × XK → D (Y ), where K ∈ N, as

f

X1

Y

· · · Xk
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Representing DAGs as string diagrams

Suppose that we have a DAG
that looks like

A

B D

C

P (ABCD) =
P (A) P (B|D) P (D|A) P (C |B)

Then we can represent it in string diagram
notation as

a

b d

c

A B C D

The morphism a : 1 → D (A) contains
the probability P (A), b : A → D (B)
contains the probability P (B|A) ,etc.
The entire diagram is equal to a
morphism f : 1 → D (A × B × C × D)

When a variable is unobserved, we
represent this by removing the output
wire.
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wire.
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Point-state cut functor

Definition
For any morphisms f : X1 × X2 × · · · × XK → D (Y ), where K ∈ N, the
point-state cut functor pcutf (f), acts in the following way

pcutf f

X1· · ·XK

Y

= f = f0

X1· · ·XK

Y

where f = f0 denotes a point-state morphism where f0 is a fixed value, on
morphisms g ̸= f, pcutf (g) = g, and on objects X , pcutf (X ) = X .

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Semifield Homomorphism
A Functor Between Markov Categories
Applications in Machine Learning
The Fixing Morphism

Point-state cut functor

Definition
For any morphisms f : X1 × X2 × · · · × XK → D (Y ), where K ∈ N, the
point-state cut functor pcutf (f), acts in the following way

pcutf f

X1· · ·XK

Y

= f = f0

X1· · ·XK

Y

where f = f0 denotes a point-state morphism where f0 is a fixed value, on
morphisms g ̸= f, pcutf (g) = g, and on objects X , pcutf (X ) = X .

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Semifield Homomorphism
A Functor Between Markov Categories
Applications in Machine Learning
The Fixing Morphism

Marginalizing on string diagrams
If we have a morphism given by f (a, x |w) represented by the following
diagram

a

b x

W

A X

To marginalize out x , we have the following manipulations.
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Marginalizing on string diagrams

We use the affine property of the category to discard the output of x

a

b x

W

A X
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Marginalizing on string diagrams

a

b x

W

A

After marginalizing out x we have obtained the morphism f (a|w).
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The fixing morphism

Given a morphism f (a, x |w) then fixing operates with the following
procedure;

Marginalize out all the inputs to the morphism we want to fix on

Replace the morphism with an identity wire

Extend this new identity wire to become a new input to the entire
diagram

Marginalize out the variable we want to fix at the output of the
entire diagram

After fixing, include a point state for the interventional variable
added at the input of the complete string
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The fixing morphism
In the string diagram formalism, this is represented in the following example

Example
Suppose we have a morphism, f (a, x |w), the fixing morphism Fx (f), acts in the
following way

Fx

b x

a

W

A X

=
a

b

W

x = x0

A

Fixing in this example has the following effect, Fx (f (a, x |w)) = f (a|x , w) . In some
cases, x will just be marginalized out, and on a morphism f (a, y |w), fixing on x has
the following effect Fx (f (a, y |w)) = f (a, y |w).
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Districts and kernels
String diagram perspective

y

x

z

u

X YZ

Districts are kernels (string
diagrams) in which a set of
unobserved common cause
morphisms provides an input
to other variables such as
X , Y and this occurs
transitively across all
unobserved common cause
morphisms.

Here the district is
f(x , y |z)with internal kernel
morphisms x , y , u.
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Back-door adjustment through fixing
String diagram approach

Here we have the typical Back-door DAG in the string diagram
formalism, in this example the morphism is given as f (c, x , y |),

c

x

y

C X Y
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Back-door adjustment through fixing
String diagram approach

When we apply Fx to the diagram it simulates intervention on x
obtaining Fx (f (c, x , y |)) = f (c, y |x) ,

c

y

C

x = x0

X Y
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Back-door adjustment through fixing
String diagram approach

After diagram simplification we obtain,

c

y

CY

x = x0

This is precisely f (c, y |x) = f (c|) f (y |x , c).
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Back-door adjustment through fixing
String diagram approach

We then marginalize out c,

c

y

CY

x = x0
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Back-door adjustment through fixing
String diagram approach

Once we marginalize out c we obtain a diagram with the composite
morphism f (c, y |x) =

∑
c f (c|) f (y |x , c) i.e. the back-door adjustment

formula,

c

y

Y

x = x0
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Front-door adjustment through fixing

In the front-door DAG, U is
a hidden variable which
influence both X and Y

By latent projection U is
replaced by a bidirected edge
between X and Y

In the string diagram
representation we have the
latent morphism f (u|) as an
input to morphisms f (x |u)
and f (y |z , u), but u itself is
not exposed to the output.

y

x

z

u

X YZ
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Front-door adjustment through fixing
We start with the the chain factored front-door diagram

x

z

y

YZX

We can identify z as a district and have a valid fixing sequence
Fx (Fy (f (z |x))) .
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Front-door adjustment through fixing

Once we fix on y and simplifying the string diagram we obtain,

x

z

X Z
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Front-door adjustment through fixing

After fixing on x and using diagram simplification eliminates X at the
output, effectively replacing it with the constant morphism at value X ,
which obtains the string diagram,

z

Z

X

This is the final kernel diagram for this district.
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Front-door adjustment through fixing
Once again we start with the chain factored front-door diagram,

x

z

y

YZX

Here we can identify a district y with valid fixing sequence
Fx (Fz (f (y |z , x))).

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Front-door adjustment through fixing
Once again we start with the chain factored front-door diagram,

x

z

y

YZX

Here we can identify a district y with valid fixing sequence
Fx (Fz (f (y |z , x))).

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Front-door adjustment through fixing
Once again we start with the chain factored front-door diagram,

x

z

y

YZX

Here we can identify a district y with valid fixing sequence
Fx (Fz (f (y |z , x))).

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Front-door adjustment through fixing
Once again we start with the chain factored front-door diagram,

x

z

y

YZX

Here we can identify a district y with valid fixing sequence
Fx (Fz (f (y |z , x))).

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Motivation
Functors Between Markov Categories

Non-probabilistic Causal Inference
Summary

Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Front-door adjustment through fixing
After fixing on z and using diagram simplification we have,
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X
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Y
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Front-door adjustment through fixing
After fixing on x , and since X has no children in the string diagram at
this point in the fixing sequence X is discarded from the output but
remains as a hidden morphism, so we obtain,

y

x

Z

Y

This is the final kernel diagram for this district.
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Front-door adjustment through fixing
Re-combining district kernel diagrams

Recall the final kernel diagrams,

z

Z

X

y

x

Z

Y

We can compose these two sequentially adhering to topological
consistency.
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Front-door adjustment through fixing
Re-combining district kernel diagrams

This results in the combined diagram representing the intervention on the
desired variable, x. The resulting expression for the interventional
diagram is the front-door adjustment formula.

y

xz

x = x0

YZ
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Summary

In this work we have introduced a method in which to conduct
causal inference in a non-probabilistic setting

We have shown how it is possible to create formalism in which to
conduct causal inference and machine learning together

We have shown how we can apply this work to classical do-calculus
problems such as the back-door and front-door adjustment

This novel approach gives us a new perspective on DAG models,
specifically when it comes to topological ordering.
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