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@ Typically machine learning is non-probabilistic
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Motivation

The limitation of machine learning

@ Machine learning (ML) is very useful in modeling large data sets

@ Typically machine learning is non-probabilistic
@ This is a “causally-blind” approach to modeling

@ We need a method which takes into account the possibility of
spurious correlations in the data
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@ It is a probabilistic method in which to model the causal influence of
events on another

o Typically, it is represented by a directed acyclic graph (DAG)
@ A — B represents A having a causal influence on B
@ Given an arbitrary DAG the probability distribution is given by

P(Xi.-... %) = [[ P (Xalpa (X))
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Causal modeling
What is it?

@ It is a probabilistic method in which to model the causal influence of
events on another

Typically, it is represented by a directed acyclic graph (DAG)

@ A — B represents A having a causal influence on B
@ Given an arbitrary DAG the probability distribution is given by

P(Xi.-... %) = [[ P (Xalpa (X))

n=1

@ In causal modeling the do-operator is used to simulate experimental
interventions by changing the structure of the DAG
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Causal modeling
What is it?

@ It is a probabilistic method in which to model the causal influence of
events on another

o Typically, it is represented by a directed acyclic graph (DAG)
@ A — B represents A having a causal influence on B
@ Given an arbitrary DAG the probability distribution is given by

P(Xi.-... %) = [[ P (Xalpa (X))

n=1

@ In causal modeling the do-operator is used to simulate experimental
interventions by changing the structure of the DAG

@ The interventional distribution P (Y|do (X)) is computed after
replacing all incoming arrows into X with the constant X = x.
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Causal modeling

Back-door adjustment formula

@ Suppose we were interested in the direct causal effect of a drug on a
patient’s health, and there is a confounder in the age of the patient

@ We can represent this in a DAG by,
H—A—-D

D—H
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Motivation

Causal modeling

Back-door adjustment formula

@ Suppose we were interested in the direct causal effect of a drug on a
patient’s health, and there is a confounder in the age of the patient

@ We can represent this in a DAG by,
H—A—-D
D—H

@ In this case we make use of the back-door adjustment formula

P(H|do(D=d))= > P(HA=a,D=d)P(A=a).
acQa
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affects lung cancer, we assume that smoking, X, affects tar in the
lungs, M, which affects cancer in lungs Y/, in this model we also
include an unobserved variable U
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Causal modeling

Front-door adjustment formula

@ Suppose we were interested in the mechanism by which smoking
affects lung cancer, we assume that smoking, X, affects tar in the
lungs, M, which affects cancer in lungs Y/, in this model we also
include an unobserved variable U

@ We can represent the DAG as
Y+—U—-X

XM=Y
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Causal modeling

Front-door adjustment formula

@ Suppose we were interested in the mechanism by which smoking
affects lung cancer, we assume that smoking, X, affects tar in the
lungs, M, which affects cancer in lungs Y/, in this model we also
include an unobserved variable U

@ We can represent the DAG as
Y+—U—-X

XM=Y

@ In this case we make use of the front-door adjustment formula

P(Y|do(X = x)) = Z P(M = m|X = x) Z P(YIM=mXx =x)P (X =x).

meQy x'eQx
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The need for semifields

@ In order to normalize we need an algebra that has a multiplicative
inverse and for our purposes additive inverses are not required

@ Semifields are critical so that we can form a consistent set of rules in
order to manipulate casual morphisms

@ Semifields can be used to represent machine learning models, e.g.
ML and deep learning (DL) algorithms.
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Motivation for Semifields
Semifield Markov Categories

The need for semifields

@ In order to normalize we need an algebra that has a multiplicative
inverse and for our purposes additive inverses are not required

@ Semifields are critical so that we can form a consistent set of rules in
order to manipulate casual morphisms

@ Semifields can be used to represent machine learning models, e.g.
ML and deep learning (DL) algorithms.

(Probability semifield). ([0,1],+, x,0,1)
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The need for semifields

@ In order to normalize we need an algebra that has a multiplicative
inverse and for our purposes additive inverses are not required

@ Semifields are critical so that we can form a consistent set of rules in
order to manipulate casual morphisms

@ Semifields can be used to represent machine learning models, e.g.
ML and deep learning (DL) algorithms.

Example

(Probability semifield). ([0,1],+, x,0,1)

Example

Min-plus semifield). (R*, min, +, 00,0
(
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Semifields

A semifield (S, ®, ®, ig, ig), is a set, S, endowed with two binary
operations @, ® that satisfy the following conditions;
@ & is associative and commutative on all a,b € S and has identity ig,
ie. Vac S ig@a=adig=a
@ ® is associative and has identity ig i.e. Va€ S,ig ® a=a®ig = a,
and for all a € S\ {ip} there exists an inverse a~! such that
a®al=ala=ig
© ® is both left and right distributive with respect to & and for every
s € S, ig annihilates s, i.e. a® ig = ig ® a = ig.
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Defining the category

Definition

A Markov category C is a symmetric monoidal category in which every
object X € C is equipped with a commutative comonoid structure given
by a comultiplication copyy : X — X x X and counit delx : X — /,
where X is the tensor product and [ is the unit object. The
comultiplication and counit are usually depicted in string diagrams,
further they satisfy commutative comonoid equations, compatibility with
the monoidal structure and the naturality of del.
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Defining the category

Definition

A Markov category C is a symmetric monoidal category in which every
object X € C is equipped with a commutative comonoid structure given
by a comultiplication copyy : X — X x X and counit delx : X — /,
where X is the tensor product and [ is the unit object. The
comultiplication and counit are usually depicted in string diagrams,
further they satisfy commutative comonoid equations, compatibility with
the monoidal structure and the naturality of del.

Definition

A semifield Markov category C is a Markov category in which morphism
composition and the monoidal product is defined by some underlying
semifield (S, ®, ®, ig, ip)- A special case of this category is the affine
semifield Markov category in which there is an associated terminal
morphism for each object X € C.

A
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Defining the category

Extra structure

Objects, morphisms and morphism composition

Objects in semifield Markov categories are arbitrary index sets X, Y, and
morphisms are of the form f: X — D(Y), where D(Y) = SY i.e. the
set of all maps m: Y — S, D is as a monad. Morphism composition in
the category denoted -, on two morphisms f; : X — D (Y) and
f:Y—D(2),is given as

(fi - £2) (z1x) = P R (zly) @ f1 (v1x) -
yey
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Motivation

Defining the category

Extra structure

Objects, morphisms and morphism composition

Objects in semifield Markov categories are arbitrary index sets X, Y, and
morphisms are of the form f: X — D(Y), where D(Y) = SY i.e. the
set of all maps m: Y — S, D is as a monad. Morphism composition in
the category denoted -, on two morphisms f; : X — D (Y) and

fo: Y — D(Z), is given as

(fi - £2) (z1x) = P R (zly) @ f1 (v1x) -
yey

The affine requirement

For two morphisms f : Z — D(Y) and 1y:Y — D (1), composition of

the two yields
1y -f=1;

where 17 : Z — D (1).
D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML
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Marginalization and normalization

Assume C is an affine semifield Markov over an arbitrary semifield
S= (57 D, ®, i@? i®);
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Marginalization and normalization

Assume C is an affine semifield Markov over an arbitrary semifield
S= (57 D, ®, i@? I®)’
@ Marginalization: For a morphism f: Z — D (Y) and a terminal morphism
ly : Y — D(1), we have 1y - f = 17 so that

Py efyial=12(2).

yeyY
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Marginalization and normalization

Assume C is an affine semifield Markov over an arbitrary semifield
S= (57 D, ®, i@? I®)’
@ Marginalization: For a morphism f: Z — D (Y) and a terminal morphism
ly : Y — D(1), we have 1y - f = 17 so that

Py efyial=12(2).

yeyY

@ Normalization: For a morphism f : X — D (Y) we define a normalized morphism
with a bar i.e. f(y|x) as follows,
-1
fu=fue [ Prox |
yey

where f (y|) denotes a morphism with no input and f (|y) is a morphism with no
output.
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Extraction and disintegration
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Marginalization, normalization, extraction and

disintegration

Extraction and disintegration

Let x denote the monoidal product in which for two arbitrary morphisms
f:X—>D(Y)andg:Y — D(Z) we have f x g = (f x g) (x,y|u, v);

@ Extraction: For a morphism f : X — D (Y), extraction is defined as

f(x.ylz) = f(ylx,2).
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Marginalization, normalization, extraction and

disintegration

Extraction and disintegration

Let x denote the monoidal product in which for two arbitrary morphisms
f:X—>D(Y)andg:Y — D(Z) we have f x g = (f x g) (x,y|u, v);
@ Extraction: For a morphism f : X — D (Y), extraction is defined as

f(x.ylz) = f(ylx,2).

e Disintegration: For a morphism fi5 : 1 — D (X1 x X3),
disintegration is given as

f12 (x1,%0]) = fip (%) @ f2 (),

where we have morphisms fip» (x1|x2) : Xo — D (X1) and
f2 (X2|) 11— D(X2)

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML
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Example of morphisms and compositions from machine

learning

State normalization under the min-plus semifield
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Example of morphisms and compositions from machine

learning

State normalization under the min-plus semifield

Let g(y|A) = —In(A) + Ay for y € Y = R and X > 0, normalized
g (y|\) = Ay. Assume a gamma prior,
f(A)==(a=1)(In(A)+Inf—In(ax—1)+ 1)+ SA. Then

(g-H) = min[gy[A)+F(A)]
= min D& -A—(@-1n(M)+fIn(a—1)+1)
y+p
In (5) (¢ —1)

which is normalized since In (%) (a — 1) = 0. This is the negative log

of the Lomax distribution, but we have obtained its log-density through
minimization by differentiation, rather than integration.

- _________________________________________ ____________/
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Semifield Homomorphism
Functors Between Markov Categories

phism

Defining the semifield homomorphism

Suppose, we have two arbitrary semifields S = (5, ®, ®, ig, ig) and
S/ = (517 @/, ®/7 i@/, i®/) .
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Functors Between Markov Categories

Defining the semifield homomorphism

Suppose, we have two arbitrary semifields S = (5, ®, ®, ig, ig) and
S/ = (517 @/, ®/7 i@/, i®/) .

A function h: S — S’ is a semifield homomorphism if for every
s1,S2 € S, the following equations hold

h(s1®s2) = h(s1) & h(s2)
h(s1 ® 52) = h(s1) ®" h(s2)
) =
Bl = e

such that ®’ distributes over &’.
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@ A Functor Between Markov Categories
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Semifield Homomorphism
Functors Between Markov Categories A Functor Between Markov Categories
Applic i hine Learning
orphism

Defining the semifield transport functor

Assume that C, C’ are affine semifield Markov categories over semifields
S=(5+,x%,0,1),8 =(5,8,®, ig, ig) respectively.
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Defining the semifield transport functor

Assume that C, C’ are affine semifield Markov categories over semifields
S=(5+,x%,0,1),8 =(5,8,®, ig, ig) respectively.

Letf: X - D(Y)eCandf' : X — D(Y) e C'. If there exists a
semifield homomorphism h : S — S’, then we can define a semifield
transport functor F : C — C' is defined as the following;

@ Onobjects X € C, F(X)=XeC
@ On morphisms £, F(f) (y|x) = h(f (y|x)) = f' (y|x) .
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Defining the semifield transport functor

Assume that C, C’ are affine semifield Markov categories over semifields
S=(5+,x%,0,1),8 =(5,8,®, ig, ig) respectively.

Letf: X - D(Y)eCandf' : X — D(Y) e C'. If there exists a
semifield homomorphism h : S — S’, then we can define a semifield
transport functor F : C — C' is defined as the following;

@ Onobjects X € C, F(X)=XeC
@ On morphisms £, F(f) (y|x) = h(f (y|x)) = f' (y|x) .

If there exists an isomorphism of semifields i.e. an inverse to the semifield
homomorphism, then it is possible to construct an isomorphism of
categories.
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Functors Between Markov Categories A Fun
Applications in Machine Learning
The Fix Aorphism

An example transport functor

Information transform
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ications in Machine Learning
The Fixing Morphism

An example transport functor

Information transform

Let h(s) = —LIn(s) for a > 0, mapping [0,1] — R* Uocc. In this case,
h=1(s') = exp(—as’) and we have

1
5;Qs), = -5 In (exp (—as;) x exp (—as;)) = g(s{ +s)=s+s)

1
s;ds, = — -5 In (exp (—as;) + exp (—asy)) — min (s, s5)

in the limit as a — oco. This obtains the semifield
S’ = ([0, 0], min, +, 00, 0), the min-plus semifield from the usual
probability semifield, ([0, 1], +, x,0,1).

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML
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@ The Fixing Morphism
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Functors Between Markov Categories A Funct
Applications in Machine Learning

The Fixing Morphism

String diagram convention

o We will represent morphisms of the type f : X — D (Y) in the form
Y
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String diagram convention

o We will represent morphisms of the type f : X — D (Y) in the form
Y

X

o We will represent morphisms of the form
f: Xy xXox - xXg = D(Y), where K € N, as

Y

Xl"'Xk
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Representing DAGs as string diagrams
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Functors Between Markov Categories
Learning

Representing DAGs as string diagrams

Suppose that we have a DAG
that looks like

C

B/ D
NS
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Functors Between Markov Categories A
Al
The Fixing Morphism

Representing DAGs as string diagrams

Suppose that we have a DAG
that looks like

C

B/ D
NS

P (ABCD) =
P (A) P(BID) P(D|A) P(C|B)
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S
Functors Between Markov Categories A
Al
The Fixing Morphism

Representing DAGs as string diagrams

Then we can represent it in string diagram
notation as

Suppose that we have a DAG A B C D
that looks like

) ==
/
B D E
NS
A
P (ABCD) =
P (A) P(BID) P(D|A) P(C|B)

D. Cakigi, M. A. Little
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Representing DAGs as string diagrams

Then we can represent it in string diagram
notation as

Suppose that we have a DAG A B C D
that looks like

C
/! b | [d]
o ==
A @ The morphism a : 1 — D (A) contains
the probability P (A), b: A — D(B)

ntains the probability P (B|A) ,etc.
P (ABCD) = E:I'ohetaer:'tsir‘:e Ziapg(:a:'\ ist>e/qua(| tL g e
P(A)P(B|D)’D(D‘A)P(C|B) morphism f: 1 — D(A x B x C x D)
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Representing DAGs as string diagrams

Then we can represent it in string diagram
notation as

Suppose that we have a DAG A B C D
that looks like

C
/! b | [d]
o ==
A @ The morphism a : 1 — D (A) contains
the probability P (A), b: A — D(B)

contains the probability P (B|A) etc.
P (ABCD) = The entire diagram is equal to a

P(A)P(B|D)’D(D‘A)P(C|B) morphism f: 1 — D(A x B x C x D)
@ When a variable is unobserved, we

represent this by removing the output
wire.
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The Fixing Morphism

Point-state cut functor
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Functors Between Markov Categories

The Fixing Morphism

Point-state cut functor

Definition
For any morphisms f: X; x Xp x -+ x Xk — D(Y), where K € N, the
point-state cut functor pcuts (f), acts in the following way

Y Y

| \
peur |7y = [T=5 |
{ ° o
X1 Xk X1 Xk

where f = f; denotes a point-state morphism where f; is a fixed value, on
morphisms g # f, pcuts (g8) = g, and on objects X, pcuts (X) = X.
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The Fixing Morphism

Marginalizing on string diagrams
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Semifield Homomorpl
Functors Between Markov Categories A Funct
Applications in Machine Learning

The Fixing Morphism

Marginalizing on string diagrams

If we have a morphism given by f (a, x|w) represented by the following
diagram
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Functors Between Markov Categories A Funct
Applicat
The Fixing Morphism

Marginalizing on string diagrams

If we have a morphism given by f (a, x|w) represented by the following

diagram
A X
a
3
b | [ x
w
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Functors Between Markov Categories A Funct
Applicat
The Fixing Morphism

Marginalizing on string diagrams

If we have a morphism given by f (a, x|w) represented by the following

diagram
A X
a
3
b | [ x
w

To marginalize out x, we have the following manipulations.
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The Fixing Morphism

Marginalizing on string diagrams
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Semifield Homomorpl
Functors Between Markov Categories A Funct
Applications in Machine Learning

The Fixing Morphism

Marginalizing on string diagrams

We use the affine property of the category to discard the output of x
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Functors Between Markov Categories A Funct
Applicat
The Fixing Morphism

Marginalizing on string diagrams

We use the affine property of the category to discard the output of x

" s
a

]
I
w
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Functors Between Markov Categories

The Fixing Morphism

Marginalizing on string diagrams
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Functors Between Markov Categories

Learning

w

After marginalizing out x we have obtained the morphism f (a|w).
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Functors Between Markov Categories
Applications in

The Fixing Morphism

The fixing morphism
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Functors Between Markov Categories A Funct
Applicat
The Fixing Morphism

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;
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Functors Between Markov Categories A Funct
Applicat
The Fixing Morphism

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;

@ Marginalize out all the inputs to the morphism we want to fix on
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Functors Between Markov Categories
Learning

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;

@ Marginalize out all the inputs to the morphism we want to fix on

@ Replace the morphism with an identity wire
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Functors Between Markov Categories
Learning

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;

@ Marginalize out all the inputs to the morphism we want to fix on
@ Replace the morphism with an identity wire

o Extend this new identity wire to become a new input to the entire
diagram
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Semifiel
Functors Between Markov Categories A Fun
Applica

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;

@ Marginalize out all the inputs to the morphism we want to fix on
@ Replace the morphism with an identity wire

o Extend this new identity wire to become a new input to the entire
diagram

@ Marginalize out the variable we want to fix at the output of the
entire diagram
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Semifield H.
Functors Between Markov Categories A Functc
Applicat
The Fixing Morphism

The fixing morphism

Given a morphism f (a, x|w) then fixing operates with the following
procedure;

@ Marginalize out all the inputs to the morphism we want to fix on
@ Replace the morphism with an identity wire

o Extend this new identity wire to become a new input to the entire
diagram

@ Marginalize out the variable we want to fix at the output of the
entire diagram

@ After fixing, include a point state for the interventional variable
added at the input of the complete string

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML
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Functors Between Markov Categories A Funct

Applic

The Fixing Morphism

The fixing morphism
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Semi
Functors Between Markov Categories A Fun
Applicati
The Fixing Morphism

The fixing morphism

In the string diagram formalism, this is represented in the following example
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Semifield Homomorphism
Functors Between Markov Categories A Func

Appli

The Fixing Morphism

The fixing morphism

In the string diagram formalism, this is represented in the following example

Suppose we have a morphism, f (a, x|w), the fixing morphism Fi (f), acts in the

following way

A X A
N
Fx . =
| b | [ b | [x=x]
w w
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Semifield Homomorphism

Functors Between Markov Categories

The Fixing Morphism
The fixing morphism

In the string diagram formalism, this is represented in the following example

Suppose we have a morphism, f (a, x|w), the fixing morphism Fi (f), acts in the

following way

A X A
N
Fx . =
b | [ x [ b | [x=x]
w w

Fixing in this example has the following effect, Fx (f (a, x|w)) = f (a|x, w) . In some
cases, x will just be marginalized out, and on a morphism f (a, y|w), fixing on x has
the following effect Fx (f (a, y|w)) = f (a, y|w).
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Topological Properties of Causal Strings
The Back-door Adj

Non-probabilistic Causal Inference
P The Front-door Adjustment

Outline

© Non-probabilistic Causal Inference
@ Topological Properties of Causal Strings
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Topological Properties of Causal Strings
e Back-door Adjustment

Non-probabilistic Causal Inference o
Front-door Adjustment

Districts and kernels

String diagram perspective
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Topological Properties of Causal Strings
Th k-door Adjustment

Non-probabilistic Causal Inference o
The Front-door Adjustment

Districts and kernels

String diagram perspective

]
]!

|
|
|
!
Lo
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Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Non-probabilistic Causal Inference

Districts and kernels

String diagram perspective

o Districts are kernels (string
diagrams) in which a set of
unobserved common cause
morphisms provides an input
to other variables such as
X, Y and this occurs
transitively across all
unobserved common cause
morphisms.
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Topological Properties of Causal Strings
The Back-door Adjustment
The Front-door Adjustment

Non-probabilistic Causal Inference

Districts and kernels

String diagram perspective

o Districts are kernels (string
diagrams) in which a set of
unobserved common cause
morphisms provides an input
to other variables such as
X, Y and this occurs
transitively across all
unobserved common cause
morphisms.

@ Here the district is
f(x, y|z)with internal kernel
morphisms x, y, u.
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Topol al Properties of Causal Strings
The Back-door Adjustmen

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Outline

© Non-probabilistic Causal Inference

@ The Back-door Adjustment
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach
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Tc f Causal Strings
7
T

Non-probabilistic Causal Inference H

Back-door adjustment through fixing

String diagram approach

Here we have the typical Back-door DAG in the string diagram
formalism, in this example the morphism is given as f (¢, x, y|),

c X Y

[y

[ =]

[ <]
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach
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Topc roperties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

When we apply F; to the diagram it simulates intervention on x
obtaining Fx (f (¢, x, y[)) = f (c,ylx),
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operties of Causal Strings
The ljust

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

When we apply F; to the diagram it simulates intervention on x
obtaining Fx (f (¢, x, y[)) = f (c,ylx),

X Y C

[

X = Xp
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

After diagram simplification we obtain,
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

After diagram simplification we obtain,

Y C

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

After diagram simplification we obtain,

Y C

[y

[ <]

X = Xpo

This is precisely f (c, y|x) = f(c|) f (y|x, c).
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach
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Topol al Properties of Causal Strings
The Back-door Adjustmen

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

We then marginalize out c,
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

We then marginalize out c,

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach
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Causal Strings

Non-probabilistic Causal Inference
The Front ustment

Back-door adjustment through fixing

String diagram approach

Once we marginalize out ¢ we obtain a diagram with the composite
morphism f (c,y|x) =>__f(c|)f(y|x, c) i.e. the back-door adjustment
formula,
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Topological Properties of Causal Strings
The Back-door Adjustment

Non-probabilistic Causal Inference by 8
P The Front-door Adjustment

Back-door adjustment through fixing

String diagram approach

Once we marginalize out ¢ we obtain a diagram with the composite
morphism f (c,y|x) =>__f(c|)f(y|x, c) i.e. the back-door adjustment
formula,

Y

[y

X = Xo
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Non-probabilistic Causal Inference e Fremdlees Axfirimem:

Outline

© Non-probabilistic Causal Inference

@ The Front-door Adjustment
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Non-probabilistic Causal Inference i (Femiscler Adhismet:

-door adjustment through fixing
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Properties of Causal Strings
k-door Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

@ In the front-door DAG, U is
a hidden variable which
influence both X and Y
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s of Causal Strings

Non-probabilistic Causal Inference

Front-door adjustment through fixing

@ In the front-door DAG, U is
a hidden variable which
influence both X and Y

o By latent projection U is
replaced by a bidirected edge
between X and Y
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s of Causal Strings

Non-probabilistic Causal Inference

Front-door adjustment through fixing

@ In the front-door DAG, U is
a hidden variable which
influence both X and Y

o By latent projection U is
replaced by a bidirected edge
between X and Y

@ In the string diagram
representation we have the
latent morphism f (u|) as an
input to morphisms f (x|u)
and f (y|z, u), but u itself is
not exposed to the output.

D. Cakiqi, M. A. Little Non-prob Markov Categories for Causal modeling in ML



@ In the front-door DAG, U is
a hidden variable which
influence both X and Y

o By latent projection U is
replaced by a bidirected edge
between X and Y

@ In the string diagram
representation we have the
latent morphism f (u|) as an
input to morphisms f (x|u)
and f (y|z, u), but u itself is
not exposed to the output.
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of Causal Strings
oor Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

We start with the the chain factored front-door diagram
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T s of Causal Strings
Tl ment
T

Non-probabilistic Causal Inference
ljustment

Front-door adjustment through fixing
We start with the the chain factored front-door diagram

X Z Y
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Non-probabilistic Causal Inference

Front-door adjustment through fixing
We start with the the chain factored front-door diagram

X Z Y

We can identify z as a district and have a valid fixing sequence
T (Fy (F(2]x))) -
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isal Strings

Non-probabilistic Causal Inference

Front-door adjustment through fixing

Once we fix on y and simplifying the string diagram we obtain,
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isal Strings

Non-probabilistic Causal Inference

Front-door adjustment through fixing

Once we fix on y and simplifying the string diagram we obtain,

X V4
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ausal Strings

[ . c dju
Non-probabilistic Causal Inference rctoer Adhs

Front-door adjustment through fixing

After fixing on x and using diagram simplification eliminates X at the
output, effectively replacing it with the constant morphism at value X,
which obtains the string diagram,
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ausal Strings

[ . c dju
Non-probabilistic Causal Inference rctoer Adhs

Front-door adjustment through fixing

After fixing on x and using diagram simplification eliminates X at the
output, effectively replacing it with the constant morphism at value X,
which obtains the string diagram,

Z

[ =]
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ausal Strings

[ . c dju
Non-probabilistic Causal Inference rctoer Adhs

Front-door adjustment through fixing

After fixing on x and using diagram simplification eliminates X at the
output, effectively replacing it with the constant morphism at value X,
which obtains the string diagram,

Z

[ =]

X
This is the final kernel diagram for this district.
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of Causal Strings
oor Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

Once again we start with the chain factored front-door diagram,
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»f Causal Strings

Non-probabilistic Causal Inference

The Front-door Adjustment

Front-door adjustment through fixing

Once again we start with the chain factored front-door diagram,

X Z Y
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Non-probabilistic Causal Inference

Front-door adjustment through fixing

Once again we start with the chain factored front-door diagram,

X Z Y

Here we can identify a district y with valid fixing sequence
Fx (F= (F(y]z. x))).
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of Causal Strings
oor Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

After fixing on z and using diagram simplification we have,
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of Causal Strings
oor Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

After fixing on z and using diagram simplification we have,

Y X

[ ]

V4
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ausal Strings

[ . c dju
Non-probabilistic Causal Inference rctoer Adhs

Front-door adjustment through fixing

After fixing on x, and since X has no children in the string diagram at
this point in the fixing sequence X is discarded from the output but
remains as a hidden morphism, so we obtain,
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ausal Strings

[ . c dju
Non-probabilistic Causal Inference rctoer Adhs

Front-door adjustment through fixing

After fixing on x, and since X has no children in the string diagram at
this point in the fixing sequence X is discarded from the output but
remains as a hidden morphism, so we obtain,

Y

[y
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T s of Causal Strings
Tl ment
T

Non-probabilistic Causal Inference
ljustment

Front-door adjustment through fixing
After fixing on x, and since X has no children in the string diagram at

this point in the fixing sequence X is discarded from the output but
remains as a hidden morphism, so we obtain,

Y

[y

V4

This is the final kernel diagram for this district.
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Non-probabilistic Causal Inference

Front-door adjustment through fixing

Re-combining district kernel diagrams

Recall the final kernel diagrams,
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Non-probabilistic Causal Inference

Front-door adjustment through fixing

Re-combining district kernel diagrams

Recall the final kernel diagrams,
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Non-probabilistic Causal Inference

Front-door adjustment through fixing

Re-combining district kernel diagrams

Recall the final kernel diagrams,
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»f Causal Strings

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

Re-combining district kernel diagrams

Recall the final kernel diagrams,

[ =] [y

x

V4
We can compose these two sequentially adhering to topological
consistency.
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Properties of Causal Strings
door Adjustment

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

Re-combining district kernel diagrams
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»f Causal Strings

Non-probabilistic Causal Inference i (Femiscler Adhismet:

Front-door adjustment through fixing

Re-combining district kernel diagrams

This results in the combined diagram representing the intervention on the
desired variable, x. The resulting expression for the interventional
diagram is the front-door adjustment formula.
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»f Causal Strings

Non-probabilistic Causal Inference

The Front-door Adjustment

Front-door adjustment through fixing

Re-combining district kernel diagrams

This results in the combined diagram representing the intervention on the
desired variable, x. The resulting expression for the interventional
diagram is the front-door adjustment formula.

V4 Y
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Summary

@ In this work we have introduced a method in which to conduct
causal inference in a non-probabilistic setting
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Summary

@ In this work we have introduced a method in which to conduct
causal inference in a non-probabilistic setting

@ We have shown how it is possible to create formalism in which to
conduct causal inference and machine learning together
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Summary

Summary

@ In this work we have introduced a method in which to conduct
causal inference in a non-probabilistic setting

@ We have shown how it is possible to create formalism in which to
conduct causal inference and machine learning together

@ We have shown how we can apply this work to classical do-calculus
problems such as the back-door and front-door adjustment
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Summary

Summary

@ In this work we have introduced a method in which to conduct
causal inference in a non-probabilistic setting

@ We have shown how it is possible to create formalism in which to
conduct causal inference and machine learning together

@ We have shown how we can apply this work to classical do-calculus
problems such as the back-door and front-door adjustment

@ This novel approach gives us a new perspective on DAG models,
specifically when it comes to topological ordering.
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