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This is a story about holes called Quantum Supermaps [1]
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BLACK-BOX HOLES: SUPERMAPS

This is a story about holes called Quantum Supermaps [1]
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CIRCUIT THEORIES: WITH HOLES

Circuits with holes: Combs [2]
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CIRCUIT THEORIES: WITH HOLES

Circuits with holes: Combs [2]
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BEYOND CIRCUITS WITH DEFINITE CAUSAL STRUCTURE

Beyond quantum circuits with holes: The Quantum Switch [3]
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BEYOND CIRCUITS WITH DEFINITE CAUSAL STRUCTURE

The supermap framework allows to study the impact of causal
structure on computation and information processing [4]

Switch

+

Many protocols [5, 6, 7, 3, 8] and real-world experiments [9, 10, 11]
have been inspired by the framework
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BEYOND CIRCUITS WITH DEFINITE CAUSAL STRUCTURE

The supermap framework allows to study the global environments
which are compatible with localized quantum laboratories

Lab

spacetime
Lab .

Motivates the study of causal structure via Bell-like inequalities [12]
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QUANTUM SUPERMAPS

Quantum channels are particular completely positive maps

QC ⊆ CP

Completely positive maps can be used to define supermaps using
∪,∩
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WE HAVE ACT COMBS, BUT NOT ACT SUPERMAPS

Of the quantum supermaps

∙ Combs have been successfully generalized to arbitrary symmetric
monoidal categories [13, 14, 15, 16]

∙ To our knowledge, general supermaps have not [nothing …]

This fact made us sad :(
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THE MATH IS MORE COMPLICATED THAN THE CONCEPT :(

Worse than sad actually, quite perturbed. Lets look back at the
picture again,

S ϕ .
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THE MATH IS MORE COMPLICATED THAN THE CONCEPT :(

Worse than sad actually, quite perturbed. Lets look back at the
picture again,

S ϕ .

it feels like a purely circuit-theoretic concept

14



THE MATH IS MORE COMPLICATED THAN THE CONCEPT :(

Worse than sad actually, quite perturbed. Lets look back at the
picture again,

S ϕ .

it feels like a purely circuit-theoretic concept

∙ Goal: Find a purely circuit-based characterization of supermaps

15



WHY AM I HERE TALKING ABOUT THIS?

Ok so thats the aesthetic point …But also a structural approach to
supermaps is really needed in physics …

∙ We don’t know how to define supermaps on arbitrary (monoidal)
physical theories

∙ Even for arbitrary (non-finite) quantum systems there is no
agreed-upon definition

We want a supermap definition which we can use as a hammer on
any monoidal category. …Sounds like we need to develop/apply
some category theory
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CIRCUIT-BASED SUPERMAP DEFINITION

A first step towards making the categorical supermap hammer
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CIRCUIT-BASED SUPERMAP DEFINITION

A first step towards making the categorical supermap hammer
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TOWARDS A CIRCUIT-THEORETIC DEFINITION OF SUPERMAP

What should a supermap of type (A⇒ A′) −→ (B⇒ B′) give us?

S
A

A′

B′

B′

: (A⇒ A′) −→ (B⇒ B′)
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TOWARDS A CIRCUIT-THEORETIC DEFINITION OF SUPERMAP

What should a supermap of type (A⇒ A′) −→ (B⇒ B′) give us?
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TOWARDS A CIRCUIT-THEORETIC DEFINITION OF SUPERMAP

What should a supermap of type (A⇒ A′) −→ (B⇒ B′) give us?
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THE DEFINITION: LOCALLY APPLICABLE TRANSFORMATIONS

The principle of locality …commuting with actions on extensions

S ϕ

g
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Can be modelled by relating the SX,X′ and SY,Y′ in the following way

SX,X′((i⊗ g) ◦ (ϕ⊗ i) ◦ (i⊗ f)) = (i⊗ g) ◦ (SY,Y′(ϕ)⊗ i) ◦ (i⊗ f)
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TOWARDS A CIRCUIT-THEORETIC DEFINITION OF SUPERMAP

The family of functions

SX,X′ : C(AX,A′X′)→ C(BX,B′X′)

can be denoted by

SX,X′(ϕ) =: SX,X′ ϕ
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B

The graphical language is very useful for generalizing to
multiple-inputs
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THE DEFINITION: LOCALLY APPLICABLE TRANSFORMATIONS

The locality condition

SX,X′((i⊗ g) ◦ (ϕ⊗ i) ◦ (i⊗ f)) = (i⊗ g) ◦ (SY,Y′(ϕ)⊗ i) ◦ (i⊗ f)

is easily parsed in diagrammatic terms

SXX′ ϕ

g

f

= SYY′ ϕ

g

f

.

A supermap is like a trace [17, 18] without the yanking
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Definition (locally-applicable transformations)

A locally-applicable transformation of type S : (A⇒ A′) −→ (B⇒ B′)
on a symmetric monoidal category C is a family of functions

SXX′ : C(AX,A′X′)→ C(BX,B′X′)

such that for every g, f, ϕ then

SXX′ ϕ

g

f

= SYY′ ϕ

g

f

.
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Definition
A lot of type S : (A1 ⇒ A′1) . . . (An ⇒ A′n) −→ (B⇒ B′) is a family of
functions SX
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LOCALITY CHARACTERIZES QUANTUM SUPERMAPS!

Any locally-applicable transformation, is implemented by a quantum
supermap
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Linearity, complete positivity, representation by cups and caps, are
all derivable.
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LOCALITY CHARACTERIZES QUANTUM SUPERMAPS

Theorem
There is a one-to-one correspondence between locally applicable
transformations on quantum channels and deterministic quantum
supermaps of type

(A1 ⇒ A′1) . . . (An ⇒ A′n) −→ (B⇒ B′)

In categorical language, there is an equivalence of multicategories

lot[QC] ∼= QS
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THE NATURALITY BIT

In a locally well-pointed monoidal category, locally applicable
transformations are simply natural transformations

C(A−,A′ =)⇒ C(B−,B′ =)

This is true in the multiparty case too.

C(A1−1,A1′ =1)× · · · × C(An−n,An′ =n)⇒ C(B−1 · · · −n,B′ =1 · · · =n)

So quantum supermaps are actually natural transformations!!!!
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SUMMARY

If you know what a quantum channel is, and you know about natural
transformations, or this picture

SXX′ ϕ

g

f

= SYY′ ϕ

g

f

.

!!CONGRATS!! You now know what a quantum supermap is
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OUTLOOK: PRESENT DIRECTIONS

Here’s some follow-up work on the arxiv [19], a stronger hammer

∙ A stronger definition of locality for “polyslots” satisfies

pslot[QC] ∼= QS pslot[uQC] ∼= uQS

∙ The same strengthening allows us to freely give meaning to

ϕ

TS

by showing polyslots form a polycategory!
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OUTLOOK: FUTURE DIRECTIONS

Here’s what we’d like to see next

∙ Reconstruction of HOQT [20, 21] (the Caus[C] construction) by
iterating the definition of locally-applicable transformation

∙ Use locally-applicable transformations as a model for the most
general environments compatible with post-quantum theories

∙ Characterise the locally-applicable transformations in infinite
dimensions in terms of CPM[∗Hilb] [22]

∙ Development of a category of categories of supermaps [23], so
that we can use categorical heuristics to identify good supermap
definitions

∙ Does this black box hole perspective appear in other places here
at ACT?!
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THANK-YOU FOR LISTENING!
HTTPS://ARXIV.ORG/ABS/2205.09844V2
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CHARACTERIZATION FOR CONVEX SUBSETS OF CHANNELS

Theorem
let K1, . . . , Kn,M be convex sets of morphisms of QC, there is a
one-to-one correspondence between CP-supermaps of type
K1 . . . Kn → M and locally-applicable transformations of the same
type.
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HOW THE PROOF WORKS

What’s the secret sauce?!

∙ Convex Linearity of each S is inherited from convex enrichment of
the category QC

∙ Consequently S can be extended to the larger circuit theory CP of
completely positive maps

∙ Commutation with cups and caps gives internalization

The entire proof works for classical supermaps using the category
fStoch too!
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CONVEX LINEARITY
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CONVEX LINEARITY
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CONVEX LINEARITY
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CONVEX LINEARITY
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CONVEX LINEARITY
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USING CUPS AND CAPS
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USING CUPS AND CAPS
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USING CUPS AND CAPS
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USING CUPS AND CAPS
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USING CUPS AND CAPS
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USING CUPS AND CAPS
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ENRICHED STRUCTURE FOR SUPERMAPS

Locally-applicable transformations enrich the category on which
they act
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Formally have constructed a lot[C]-category C
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ENRICHED STRUCTURE FOR SUPERMAPS

Locally-applicable transformations enrich the category on which
they act
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Formally have constructed a lot[C]-monoidal category C
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