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Combs in quantum foundations

Figure: [Chiribella et al., 2008]



Combs as maps in a *-autonomous category

Figure: [Kissinger and Uijlen, 2019]



Combs as coend optics

Figure: [Román, 2021]

Figure: [Román, 2020]



Combs in the free cornering construction

Figure: [Boisseau et al., 2022]



2-combs
Consider the case of "2-combs" which factor into a top and
bottom part:
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We want to give these things the structure of a symmetric
monoidal category.
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Extensional combs

We need to quotient by an equivalence relation to get a
category.

We want an equivalence relation that captures the extensional
behaviour of combs.

There are several candidates, not all are even congruences.



Extensional combs: i

(f ,g) ∼σ (f ′,g′) ⇐⇒
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This is not always a congruence.
Only works in special cases: for example when the base
category is compact closed.



Extensional combs: ii

(f ,g) ∼τ (f ′,g′) ⇐⇒ λ
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Extensional combs: iii

(f ,g) ∼comb (f ′,g′) ⇐⇒ λ
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Intensional combs
Optics are combs inside tubes. Ie. combs modulo:
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Composition is defined by bubble popping:
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Internal string diagrams for pointed profunctors

Given a monoidal category C, we can put bubbles around the
string diagrams by interpreting them in the coslice category
Prof∗ := 1/Prof.
The bubbles come with 2-cells:
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Where the pants and copants are pseudo(co)monoids.



When are these definitions the same?

There is always a functor from C-intensional to extensional
combs:
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There is not always a functor in the other direction.

We ask when there is one.

Suppose (f ,g)E ∼comb (f ′,g′)E ′ ...



Compact closed
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Unitaries
Because we are in a groupoid there are unitaries U,V such
that f ′ = f ;U and g′ = V ;g
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So both U,V tensor separate into U = U ′⊗1, V = V ′⊗1. Thus
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Inhabited Cartesian

First plug in the swap+discard
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(n,m)-combs
Intensional definition:(
〈f1, . . . , fn|g1, . . . ,gn〉X1,...,Xn : [(A1,A′1), . . . , (An,A′n)]→ [(B1,B′1), . . . , (Bm,B′m)]
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Compact closed implies *-polycategory

η := ε :=
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