

Coend Optics, Combs and Quantum Information

Cole Comfort, James Hefford

University of Oxford

July 21, 2022

Outline

Combs "in nature"

Extensional vs intensional combs

CPM construction

(n,m)-combs

Combs

Combs in quantum foundations

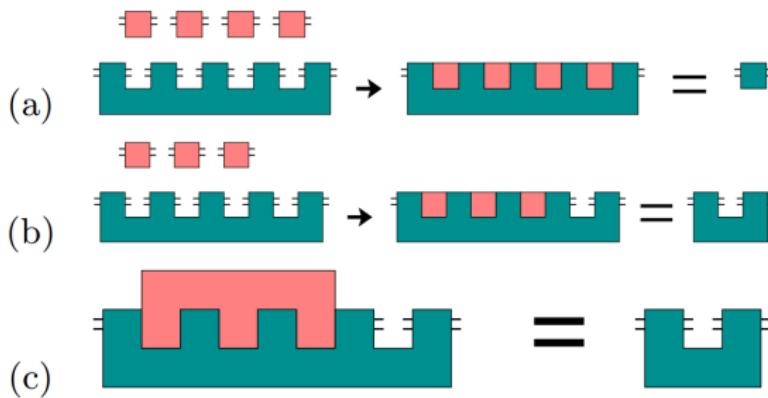


Figure: [Chiribella et al., 2008]

Combs as maps in a $*$ -autonomous category

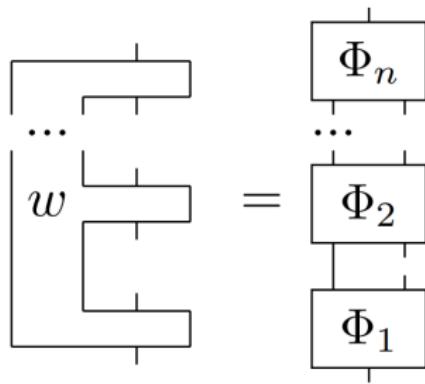


Figure: [Kissinger and Uijlen, 2019]

Combs as coend optics

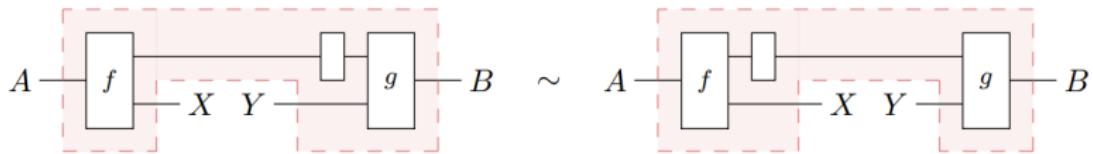


Figure: [Román, 2021]

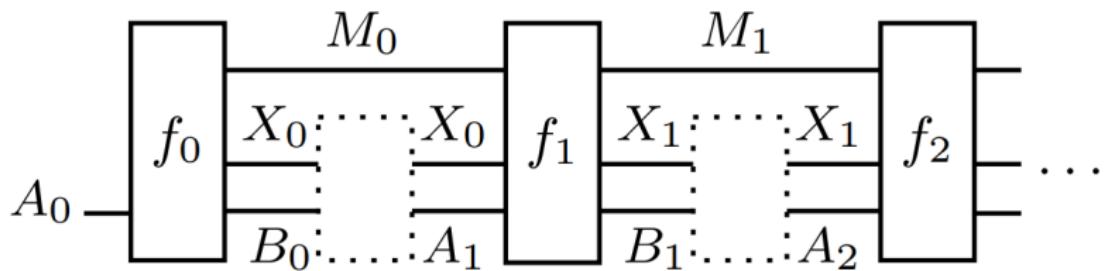


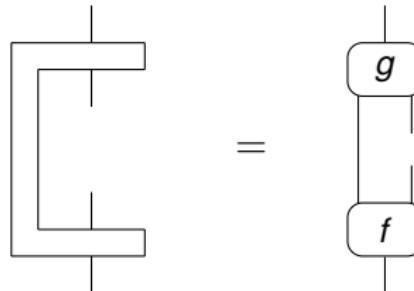
Figure: [Román, 2020]

Combs in the free cornering construction

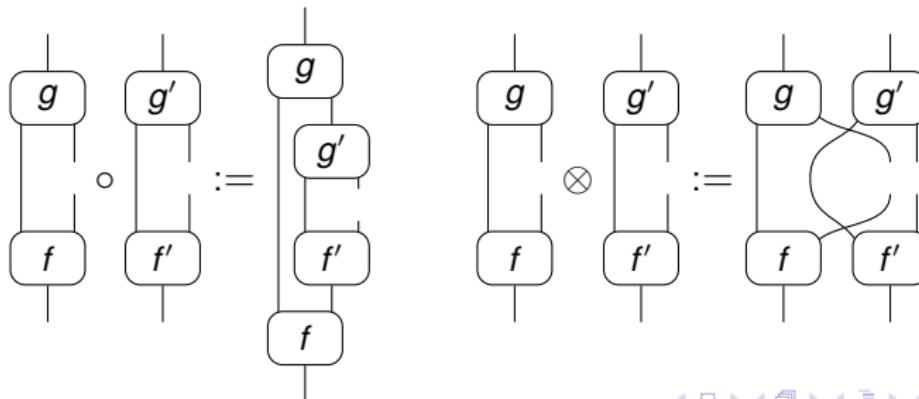
Figure: [Boisseau et al., 2022]

2-combs

Consider the case of "2-combs" which factor into a top and bottom part:



We want to give these things the structure of a symmetric monoidal category.



Extensional combs

We need to quotient by an equivalence relation to get a category.

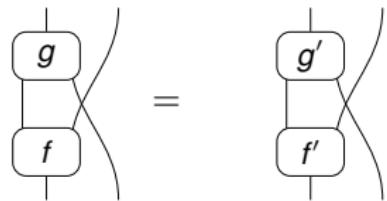
We want an equivalence relation that captures the extensional behaviour of combs.

There are several candidates, not all are even congruences.

Extensional combs: i

$$(f, g) \sim_{\sigma} (f', g')$$

\iff

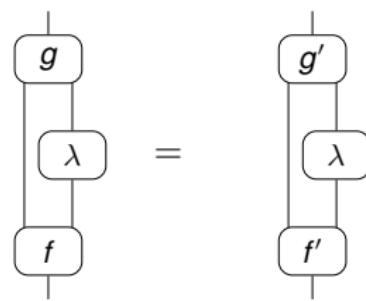


This is not always a congruence.

Only works in special cases: for example when the base category is compact closed.

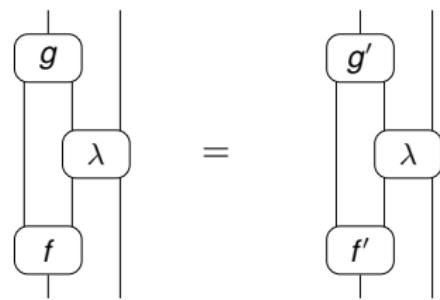
Extensional combs: ii

$$(f, g) \sim_{\tau} (f', g') \iff \forall \lambda : B \rightarrow B'$$



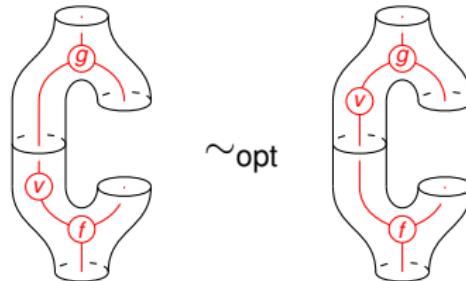
Extensional combs: iii

$$(f, g) \sim_{\text{comb}} (f', g') \iff \forall \lambda$$

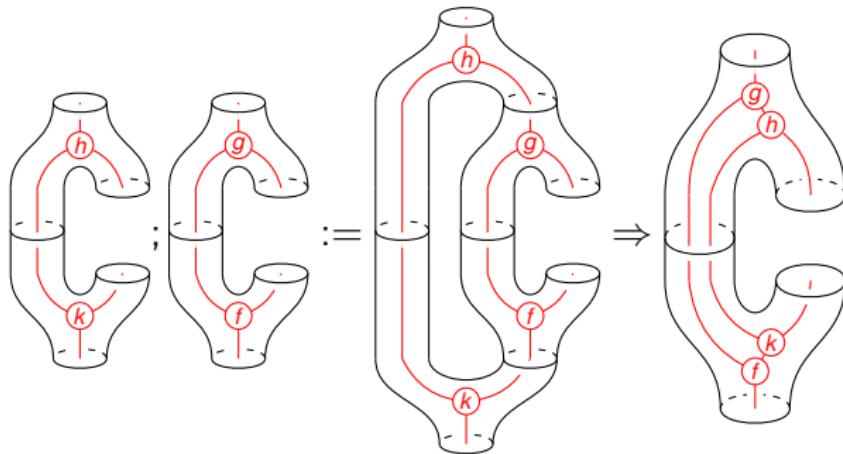


Intensional combs

Optics are combs inside tubes. i.e. combs modulo:



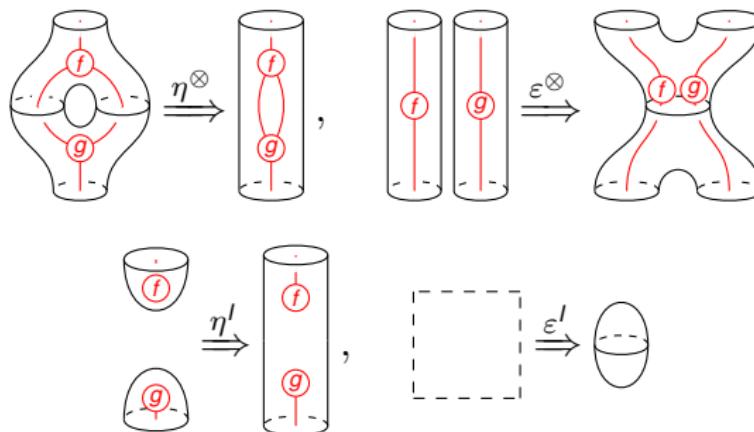
Composition is defined by bubble popping:



Internal string diagrams for pointed profunctors

Given a monoidal category \mathcal{C} , we can put bubbles around the string diagrams by interpreting them in the coslice category $\text{Prof}^* := 1/\text{Prof}$.

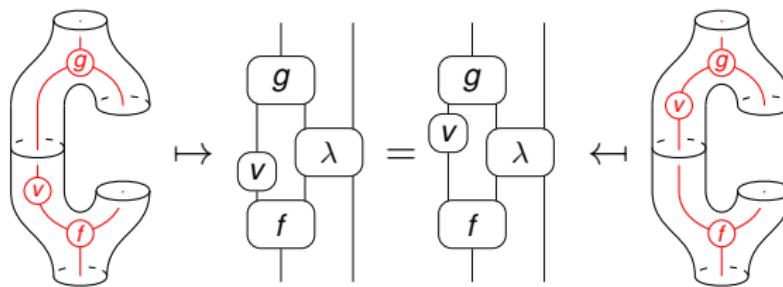
The bubbles come with 2-cells:



Where the pants and copants are pseudo(co)monoids.

When are these definitions the same?

There is always a functor from \mathcal{C} -intensional to extensional combs:

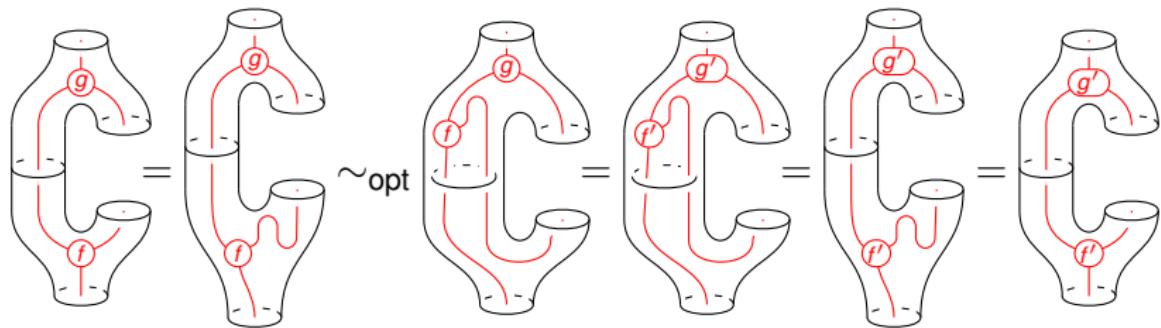


There is not always a functor in the other direction.

We ask when there is one.

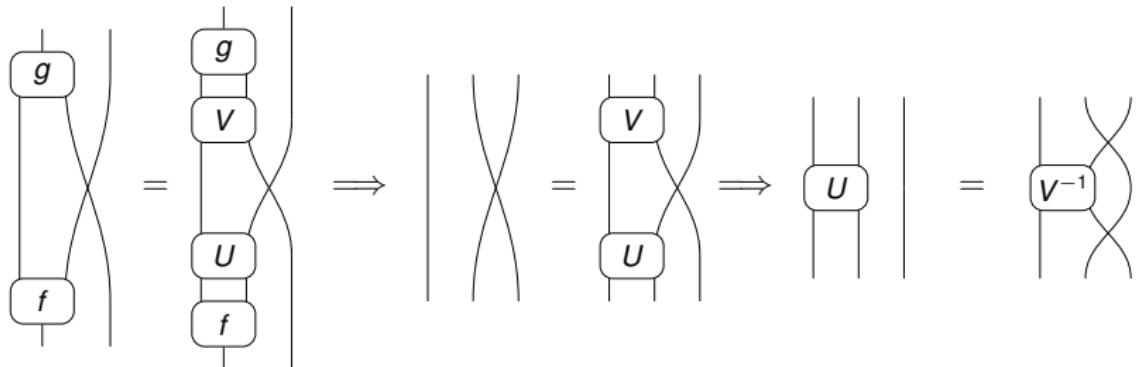
Suppose $(f, g)_E \sim_{\text{comb}} (f', g')_{E'}$...

Compact closed

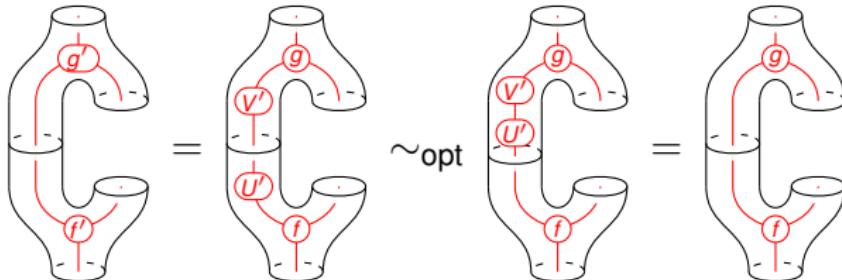


Unitaries

Because we are in a groupoid there are unitaries U, V such that $f' = f; U$ and $g' = V; g$

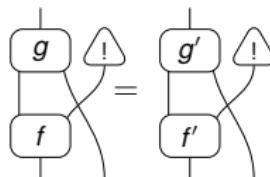


So both U, V tensor separate into $U = U' \otimes 1$, $V = V' \otimes 1$. Thus

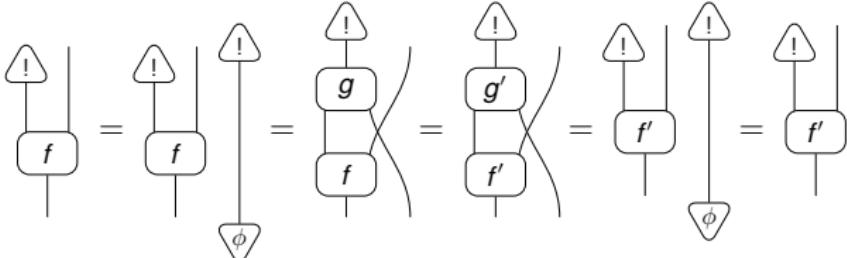


Inhabited Cartesian

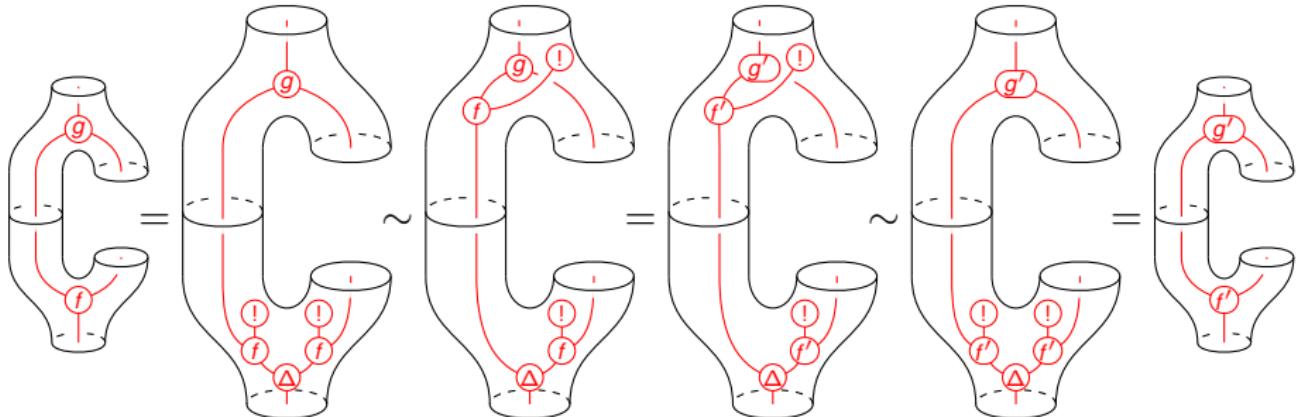
First plug in the swap+discard



For a state ϕ ,



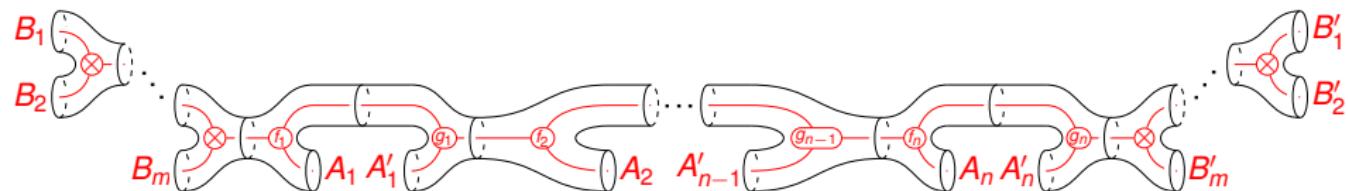
Thus:



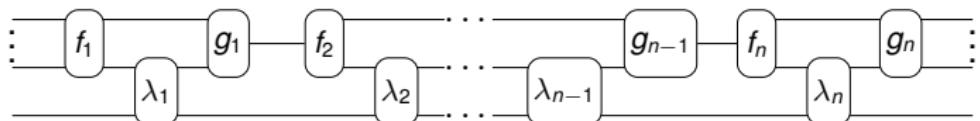
(n,m)-combs

Intensional definition:

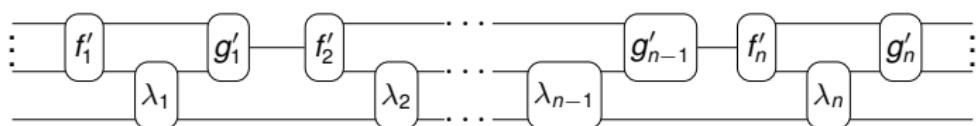
$$\langle \langle f_1, \dots, f_n | g_1, \dots, g_n \rangle \rangle_{x_1, \dots, x_n} : [(A_1, A'_1), \dots, (A_n, A'_n)] \rightarrow [(B_1, B'_1), \dots, (B_m, B'_m)] :=$$



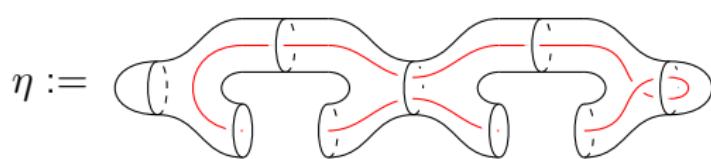
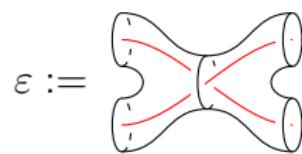
Extensional definition:

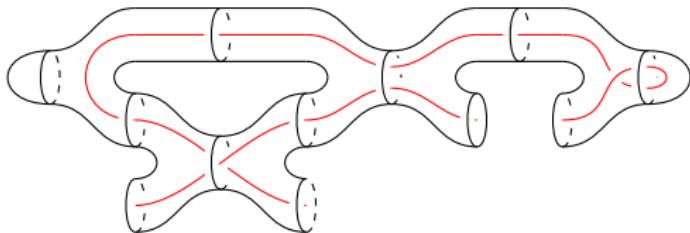
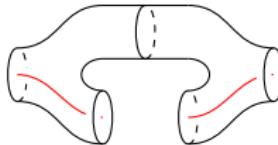


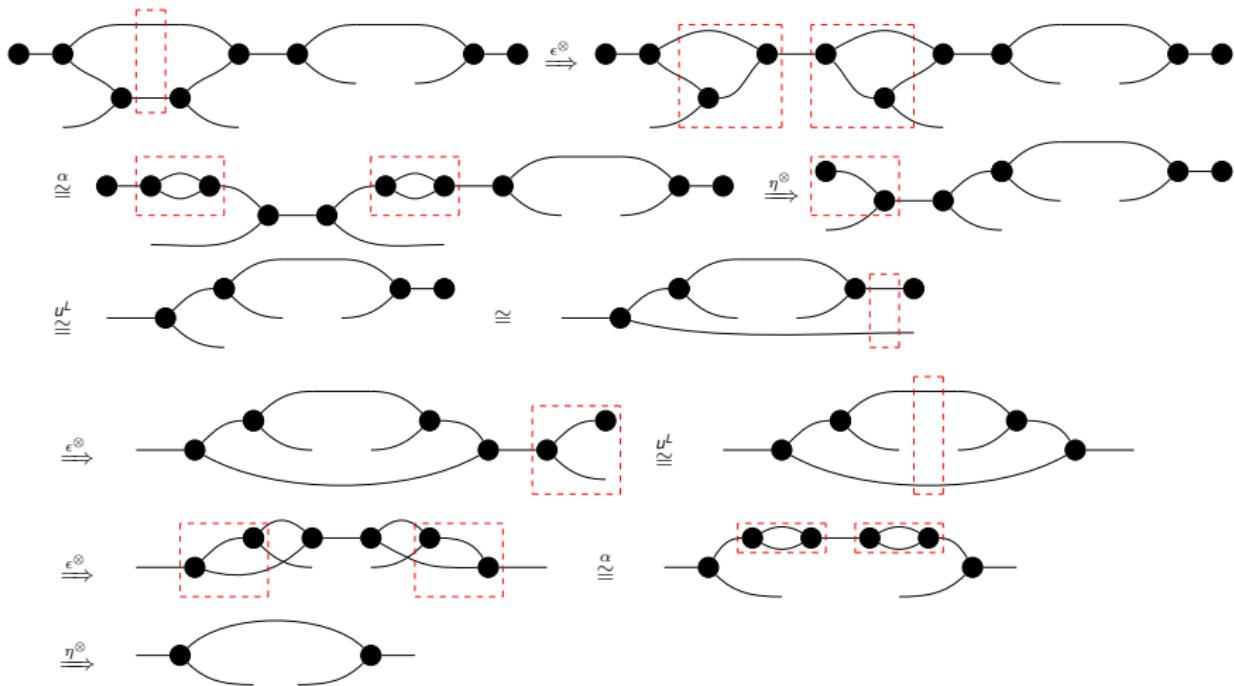
$\forall \lambda_1, \dots, \lambda_n$



Compact closed implies $*$ -polycategory







- Boisseau, G., Nester, C., and Roman, M. (2022).
Cornering optics.
- Chiribella, G., D'Ariano, G. M., and Perinotti, P. (2008).
Quantum circuit architecture.
Physical Review Letters, 101(6).
- Kissinger, A. and Uijlen, S. (2019).
A categorical semantics for causal structure.
Logical Methods in Computer Science, Volume 15, Issue 3.
- Román, M. (2020).
Comb diagrams for discrete-time feedback.
- Román, M. (2021).
Open diagrams via coend calculus.
Electronic Proceedings in Theoretical Computer Science,
333:65–78.