Making Modalities (lax) Monoidal Lachlan McPheat (he/him), Timo Lang, Mehrnoosh Sadrzadeh

Applied Category Theory 2022, Glasgow

UCL, PPLV

Contributions

Gave modalities of **SLLM** lax monoidal structure

Proved that the proof theory remains intact

Proof Theory

The cut rule:

Corresponds to

- Composition (categorically speaking)
- Using lemmas (logically speaking)

$\frac{\Gamma \vdash A \quad \Sigma[A] \vdash B}{\Sigma[\Gamma] \vdash B}$ *cut*

Proof Theory

Cut ruins proof-search:

How would you guess where A comes from?

Cut-elimination: showing that any proof using cut could be done without it!

$\frac{\Gamma \vdash A \quad \Sigma[A] \vdash B}{\Sigma[\Gamma] \vdash B}$ *cut*

i.e. given $\Sigma[\Gamma] \vdash B$ what is its proof?

Lambek Calculus, L

Formulas

Left rules

- $\frac{\Gamma[A,B] \vdash C}{\Gamma[A \bullet B] \vdash C} \bullet_L$
- $\frac{\Gamma \vdash A \quad \Sigma[B] \vdash C}{\Sigma[\Gamma, A \backslash B] \vdash C} ^{\backslash_L}$
- $\frac{\Gamma \vdash A \quad \Sigma[B] \vdash C}{\Sigma[B/A, \Gamma] \vdash C} /_{L}$

Axiom

 $A \vdash A$

$A, B ::= p \in Atom | A \bullet B | A \setminus B | A/B$

Right rules

$$\frac{\Gamma \vdash A \quad \Sigma \vdash B}{\Gamma, \Sigma \vdash A \bullet B} \bullet_R^R$$

$$\frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} \backslash_R$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash B/A}/_R$$

Las Grammar

If Atom = $\{n, s\}$ where *n* is for noun and *s* is for sentence

Consider a dictionary

We can prove "dog likes food" is a sentence using L:

 $n \vdash n$

 $n, n \leq n, n \vdash s$

- $\{dog: n, likes: n \le n, food: n\}$

$$\begin{array}{c|cc}
\overline{n \vdash n} & \overline{s \vdash s} \\
\overline{n, n \backslash s \vdash s}
\end{array}$$

Cut-elimination for L

This, in a sense, shows that \mathbf{L} is a category.

It also shows that proof-search for \mathbf{L} is tractable (in fact this is easy).

A cut-elimination theorem for \mathbf{L} was proven by Lambek in [Lambek '58].

L as a Category

L is a monoidal bi-closed category, $\mathscr{C}(L)$ [Sadrzadeh et al '13]

 $\mathscr{C}(\mathbf{L})$ has \mathbf{L} -formulas as objects, and proofs as morphisms.

We distinguish between the logic L and the category $\mathscr{C}(L)$

- That is $\mathscr{C}(L)$ is monoidal and we have left and right internal Homs.

Going beyond sentences

L can parse lots of English, but not more than single sentences/phrases. We extend this analysis using modalities (SLLM) [McP et al '21] Inspired by Jäger, Morrill, and Moortgaat to name a few.

SLLM = L + $\{!, \nabla\}$ [Kanovich et al '20]

- That is, **SLLM** has the same formulas and rules as **L**
 - AND
 - Has two new kinds of formulas !A and ∇A
 - AND
 - new rules that govern ! and ∇

$$\frac{\Gamma[VA] \vdash B}{\Gamma[A] \vdash B} \nabla_L$$

Right rules

Structural rules

$$\frac{A \vdash B}{!A \vdash !B} !_R$$

$$\frac{\Gamma[B, \nabla A] \vdash C}{\Gamma[\nabla A, B] \vdash C} \nabla_{E_1}$$

$$\frac{A \vdash B}{\nabla A \vdash \nabla B} \nabla_R$$

$$\frac{\Gamma[\nabla A, B] \vdash C}{\Gamma[B, \nabla A] \vdash C} \nabla_{E_2}$$

SLLM lets us parse discourses with references.

For example

Charlie sleeps. She snores.

C(SLLM)

- Showed that $\mathscr{C}(SLLM)$ is a monoidal biclosed category equipped with two endofunctors, M and P, for **m**ultiplexing and **p**ermuting respectively.
- M and P come with the following natural transformations:
 - $\pi_n: M \to id^{\otimes n}$ for each n = 1, 2, ... (multiplexing transformation)
 - $\sigma: P(-) \otimes id(=) \cong id(=) \otimes P(-)$ (permutation)
 - $e: P \rightarrow id$ (counit)

Frustrations with SLLM

We didn't require *M* or *P* to be compatible with the monoidal product! But models from [McP et al '21] are lax monoidal.

Monoidal SLLM

Recall lax monoidality

A functor between monoidal categories

is lax monoidal when it has the structure (F, m, u) where

-
$$m: F(-) \boxtimes F(-) \to F(-\otimes =)$$
 is a

- $u: J \to F(I)$ is an arrow in \mathscr{D}

Satisfying associativity and unitality equations.

(*F* is oplax if we reverse all the arrows)

$F: (\mathscr{C}, \otimes, I) \to (\mathscr{D}, \boxtimes, J)$

a natural transformation

Oplax monoidality in SLLM

Added rules to **SLLM** to make M and P oplax monoidal in $\mathscr{C}(SLLM)$

$$\frac{\Gamma[!A,!B] \vdash C}{\Gamma[!(A \bullet B)] \vdash C}!_{O} \text{ and } \frac{\Gamma[\nabla A, \nabla B] \vdash C}{\Gamma[\nabla(A \bullet B)] \vdash C} \nabla_{O}$$

What about oplax SLLM?

Well, adding the oplax rules ruins the new logic.

This can be seen by the sequent $! \nabla (A \bullet B) \vdash A \bullet (B \bullet B)$.

This sequent has a proof using cut, but cannot be proven without it.

Lax monoidality in SLLM

We added rules to **SLLM** to make M and P lax monoidal in $\mathscr{C}(SLLM)$

$$\frac{\Gamma[!(A \bullet B)] \vdash C}{\Gamma[!A, !B] \vdash C} \stackrel{!_{M}}{\stackrel{\text{and}}{\stackrel{\text{and}}{\stackrel{\text{formula}}{\stackrel{\stackrel{\text{formula}}{\stackrel{\text{formula}}{\stackrel{\text{formula}}{\stackrel{\stackrel{\text{formula}}{\stackrel{\text{formula}}{\stackrel{\stackrel{\text{formula}}{\stackrel{\text{formula}}{\stackrel{\stackrel{\text{formula}}\stackrel{\stackrel{\text{formula}}{\stackrel{\stackrel{formula}}\stackrel{\stackrel{\text{formula}}\stackrel{\stackrel{\stackrel{\text{formula}}\stackrel{\stackrel{formula}\stackrel{\stackrel{\stackrel{formula}}\stackrel{\stackrel{formula}}\stackrel$$

This defines the logic Monoidal SLLM.

Eliminating cut

Did this in two steps:

1. Show Monoidal SLLM is equivalent to Generalised SLLM

2. Prove cut-elimination for Generalised SLLM

When adding new rules, one has to eliminate cut from the new system.

Step 1 - equivalence

Generalised SLLM is just **SLLM** where the rules $!_{L}$, $!_{R}$ and ∇_{R} are

Usual rules

$$\frac{\Gamma[A, A, \dots, A] \vdash B}{\Gamma[!A] \vdash B} !_{L} \qquad \checkmark \Rightarrow$$

$$\frac{A \vdash B}{!A \vdash !B} !_{R} \qquad \checkmark \Rightarrow$$

$$\frac{A \vdash B}{\nabla A \vdash \nabla B} \nabla_{R} \qquad \checkmark \Rightarrow$$

generalised to allow full structures. We denote the new rules \tilde{I}_{L} , \tilde{I}_{R} and $\tilde{\nabla}_{R}$

Generalised rules

$$\frac{\Gamma[\Sigma, \Sigma, \dots, \Sigma] \vdash B}{\Gamma[!\Sigma] \vdash B} \tilde{!}_{L}$$

$$\frac{\Gamma \vdash B}{!\Gamma \vdash !B}_{\tilde{I}_R}$$

$$\frac{\Gamma \vdash B}{\nabla \Gamma \vdash \nabla B} \tilde{\nabla}_R$$

Where if $\Gamma = A_1, A_2, \dots, A_n$ then $!\Gamma = !A_1, !A_2, \dots, !A_n$ (same for ∇)

Step 1 - equivalence

Proved equivalence of **Monoidal SLLM** and **Generalised SLLM** by simulating proofs of one in the other and vice versa.

- Proving that *cut* is eliminable from **Generalised SLLM**. Used the standard cut-elimination technique of "pushing up" cuts.
- This is an induction on the complexity of a proof π .
- Show that for every possible combination of rules followed by cut, we can move cut further up in the proof, where it has lower complexity.

The base case is

Which transformed into

$\frac{A \vdash A}{A \vdash A} \quad \frac{\overline{A \vdash A}}{A \vdash A} \quad cut$

$A \vdash A$

the left and the right. For example:

 $\frac{\Gamma \vdash \overline{A}}{\nabla \Gamma \vdash \nabla A} \nabla_{R} \quad \frac{\Sigma, A, \Delta \vdash B}{\Sigma, \nabla A, \Delta \vdash B} \nabla_{L}$ $\frac{\Sigma, \nabla \Gamma, \Delta \vdash B}{\Sigma, \nabla \Gamma, \Delta \vdash B} cut$

The principal cuts are ones where we cut along a formula introduced on

Transformed into

$$\begin{array}{c} \overline{\Gamma \vdash A} & \overline{\Sigma, A, \Delta \vdash B} \\ \overline{\Sigma, \Gamma, \Delta \vdash B} & cut \\ \overline{\Sigma, \Lambda_1, \Lambda_2, \dots, \Lambda_m, \Delta \vdash B} \\ \overline{\Sigma, \Lambda_1, \Lambda_2, \dots, \Lambda_m, \Delta \vdash B} & \nabla_L \\ \overline{\Sigma, \nabla A_1, \Lambda_2, \dots, \Lambda_m, \Delta \vdash B} & \nabla_L \\ \vdots \\ \overline{\Sigma, \nabla A_1, \nabla A_2, \dots, \Lambda_m, \Delta \vdash B} & \nabla_L \\ \overline{\Sigma, \nabla A_1, \nabla A_2, \dots, \nabla A_m, \Delta \vdash B} & \nabla_L \\ \overline{\Sigma, \nabla A_1, \nabla A_2, \dots, \nabla A_m, \Delta \vdash B} & \nabla_L \\ \overline{\Sigma, \nabla F, \Delta \vdash B} \end{array}$$

the left or right sequent. For example

The non-principal cuts are ones where the cut formula is introduced by only

Transformed into

Summary & Outlook

- We have shown that
- This takes us one step closer to
 - 3. Finding a complete model of **SLLM**
 - 4. Defining a graphical language.

1. Adding lax monoidal structure to **SLLM** preserves its proof theory.

2. Adding oplax monoidal structure completely ruins its proof theory.

Thank you for listening

References:

- Coecke, B. Sadrzadeh, M. & Clark, S. (2010) Mathematical Foundations for Distributed Compositional Model of Meaning
- Calculus
- Barry, G. Hepple, M. Leslie, N. & Morrill, G. (1991). Proof figures and structural operators for categorial grammar
- Jäger, G. (1998) A multi-modal analysis of anaphora and ellipsis
- Jäger, G. (2006) Anaphora and type logical grammar
- Kanovich, M., Kuznetsov, S., Nigam, V & Scedrov, A. (2020) Soft Subexponentials and Multiplexing.
- and semantics
- McPheat, L. Sadrzadeh, M. & Wazni, H. (2021) Vector Space Semantics for Lambek Calculus with Soft Subexponentials
- Moortgat (1996). *Multimodal linguistic inference*

Coecke, B. Grefenstette, E. & Sadrzadeh, M. (2013) Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek

McPheat, L. Sadrzadeh, M. Wazni, H. & Wijnholds, G. (2020) Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality

McPheat, L. Wijnholds, G. Sadrzadeh, M. Correia, A. & Toumi, A. (2020) Anaphora and ellipsis in lambek calculus with a relevant modality: Syntax

