FIBLANG

FIBRATIONAL APPROACH TO CATEGORICAL LINGUISTICS

Genovese, Loregian, Puca

ACT2022

INTRODUCTION

AN UNBIASED FORMALIZATION FOR LINGUISTICS

AN UNBIASED FORMALIZATION FOR LINGUISTICS

Definition (Speaker

A speaker is a functor $p : \mathcal{D}^p \to \mathcal{L}$.

AN UNBIASED FORMALIZATION FOR LINGUISTICS

Definition (Speaker

A speaker is a functor $p : \mathcal{D}^p \to \mathcal{L}$.

We know nothing about this $\dashrightarrow \mathcal{D}^p$

 \mathcal{L} <---- This can be described

р

INTRODUCTION TO FIBLANG FIBRATIONS

FIBRATIONS

Definition (Fibration)

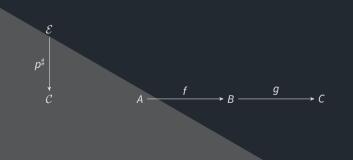
 p^{\sharp}

FIBRATIONS

Definition (Fibration)

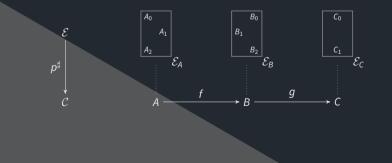
FIBRATIONS

Definition (Fibration)



FIBRATIONS

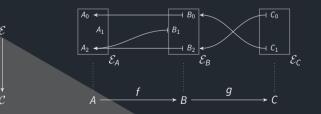
Definition (Fibration)



 p^{\sharp}

FIBRATIONS

Definition (Fibration)



INTRODUCTION TO FIBLANG Main theorems

MAIN THEOREMS

Theorem

Any functor $p : \mathcal{D}^p \to \mathcal{L}$ can be written as a composition of functors $\mathcal{D}^p \xrightarrow{s} \mathcal{E}^p \xrightarrow{p^{\sharp}} \mathcal{L}$, such that p^{\sharp} is a fibration.

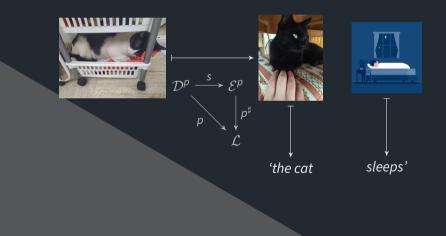
MAIN THEOREMS

Theorem

Any functor $p : \mathcal{D}^p \to \mathcal{L}$ can be written as a composition of functors $\mathcal{D}^p \xrightarrow{s} \mathcal{E}^p \xrightarrow{p^{\sharp}} \mathcal{L}$, such that p^{\sharp} is a fibration.

We know nothing about this $\cdots \rightarrow \mathcal{D}^{p} \xrightarrow{s} \mathcal{E}^{p} \leftarrow \cdots \rightarrow This is compatible with \mathcal{L}$ $\downarrow^{p} \qquad \qquad \downarrow^{p^{\sharp}} \mathcal{L} \leftarrow \cdots \rightarrow This can be described$

INTRODUCTION TO FIBLANG TOY EXAMPLE



WHAT MAKES US HUMAN

WHAT MAKES US HUMAN

The Final Wave: *Homo sapiens* biogeography and the evolution of language

Telmo Pievani University of Milan Bicocca telmo.pievani@unimib.it

"Language was central to human expansion across the globe. It was our secret weapon, and as soon we got language we became a really dangerous species"

WHAT MAKES US HUMAN

The Final Wave: *Homo sapiens* biogeography and the evolution of language

Telmo Pievani University of Milan Bicocca telmo.pievani@unimib.it

"Language was central to human expansion across the globe. It was our secret weapon, and as soon we got language we became a really dangerous species"

...yet, no one is born already fluent.

WHAT MAKES US HUMAN

How is that?

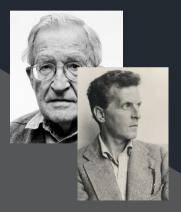
The Final Wave: *Homo sapiens* biogeography and the evolution of language

Telmo Pievani University of Milan Bicocca telmo.pievani@unimib.it

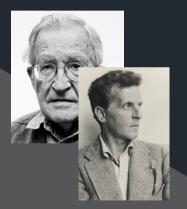
"Language was central to human expansion across the globe. It was our secret weapon, and as soon we got language we became a really dangerous species"

...yet, no one is born already fluent.

THE PROBLEM OF LANGUAGE ACQUISITION



THE PROBLEM OF LANGUAGE ACQUISITION



- Mentalism vs. Behavourism
- Innateness Hypothesis vs. Language Games

LET'S PLAY LANGUAGE GAMES!

BUILDER: Slab!

LET'S PLAY LANGUAGE GAMES!

BUILDER: Slab! ASSISTANT: (handles a beam)

LET'S PLAY LANGUAGE GAMES!

BUILDER: Slab! ASSISTANT: (handles a beam) BUILDER: No! Slab! (pointing at a slabVocabulary acquisition by example)

LET'S PLAY LANGUAGE GAMES!

BUILDER: Slab!
ASSISTANT: (handles a beam)
BUILDER: No! Slab! (pointing at a slabVocabulary acquisition by example)
ASSISTANT: (understands the correction, handles a slab)

LANGUAGE ACQUISITION Let's play language games!

BUILDER: Slab!
ASSISTANT: (handles a beam)
BUILDER: No! Slab! (pointing at a slabVocabulary acquisition by example)
ASSISTANT: (understands the correction, handles a slab)
BUILDER: Right.

VOCABULARY ACQUISITION BY EXAMPLE

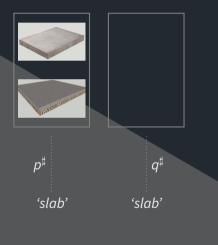
Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{L}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{L}$.

Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$:

Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$: $\succ \mathcal{E}_{l}^{p} \neq \emptyset$ (*p* knows the meaning of *L*);

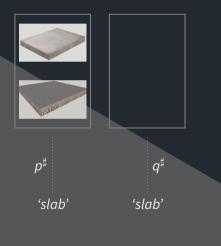
'slab'

 p^{\sharp}



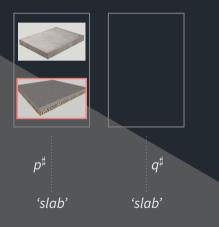
Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$: $\mathcal{E}_{L}^{p} \neq \emptyset$ (*p* knows the meaning of *L*);

VOCABULARY ACQUISITION BY EXAMPLE



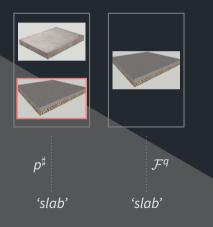
Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$: $\mathcal{E}_{L}^{p} \neq \emptyset$ (*p* knows the meaning of *L*); $\mathcal{E}_{L}^{q} = \emptyset$ (*q* does not know the meaning of *L*); Define a category \mathcal{F}^{q} such that:

VOCABULARY ACQUISITION BY EXAMPLE



Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$: $\succ \mathcal{E}_{L}^{p} \neq \emptyset$ (*p* knows the meaning of *L*); $\succ \mathcal{E}_{L}^{q} = \emptyset$ (*q* does not know the meaning of *L*); Define a category \mathcal{F}^{q} such that:

 $\mathsf{obj}(\mathcal{F}^q) := \mathsf{obj}(\mathcal{E}^q) \sqcup \mathcal{S}$ $\mathsf{hom}(\mathcal{F}^q) := \mathsf{hom}(\mathcal{E}^q)$



Consider speakers $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and $q^{\sharp} : \mathcal{E}^{q} \to \mathcal{L}$. Suppose that for some $L \in \mathcal{L}$: $\triangleright \mathcal{E}_{L}^{p} \neq \emptyset$ (*p* knows the meaning of *L*); $\triangleright \mathcal{E}_{L}^{q} = \emptyset$ (*q* does not know the meaning of *L*); Define a category \mathcal{F}^{q} such that:

$$\mathsf{obj}(\mathcal{F}^q) := \mathsf{obj}(\mathcal{E}^q) \sqcup \mathsf{S}$$

 $\mathsf{hom}(\mathcal{F}^q) := \mathsf{hom}(\mathcal{E}^q)$

Define $T : \mathcal{F}^q \to \mathcal{L}$ such that it agrees with q.

Define $T : \mathcal{F}^q \to \mathcal{L}$ such that it agrees with q. Are we done?

Define $T : \mathcal{F}^q \to \mathcal{L}$ such that it agrees with q. Are we done? No!

Define $T : \mathcal{F}^q \to \mathcal{L}$ such that it agrees with q. Are we done? No! We need new knowledge to be **compatible** with the previous.

Define $T : \mathcal{F}^q \to \mathcal{L}$ such that it agrees with q. Are we done? No! We need new knowledge to be **compatible** with the previous. By Factorisation Theorem:

VOCABULARY ACQUISITION BY PARAPHRASIS

ALICE: I adopted a cat!

ALICE: I adopted a cat! BOB: A what?

ALICE: I adopted a cat! BOB: A what? ALICE: You know, a cat: one of those felines.

ALICE: I adopted a cat! BOB: A what? ALICE: You know, a cat: one of those felines. BOB: Oh, you mean, like a tiger?

ALICE: I adopted a cat!
BOB: A what?
ALICE: You know, a cat: one of those felines.
BOB: Oh, you mean, like a tiger?
ALICE: No: a cat is smaller and it comes in various colours. Mine is black.

ALICE: I adopted a cat!
BOB: A what?
ALICE: You know, a cat: one of those felines.
BOB: Oh, you mean, like a tiger?
ALICE: No: a cat is smaller and it comes in various colours. Mine is black.
BOB: Oh, maybe I see. A cat is like...a lynx.

ALICE: I adopted a cat!
BOB: A what?
ALICE: You know, a cat: one of those felines.
BOB: Oh, you mean, like a tiger?
ALICE: No: a cat is smaller and it comes in various colours. Mine is black.
BOB: Oh, maybe I see. A cat is like...a lynx.
ALICE: Well, almost; black cats are cursed.

VOCABULARY ACQUISITION BY PARAPHRASIS A simple example

ALICE: I adopted a cat! BOB: A what? ALICE: You know, a cat: one of those felines. вов: Oh, you mean, like a tiger? ALICE: No: a cat is smaller and it comes in various colours. Mine is black. вов: Oh, maybe I see. A cat is like...a lynx. ALICE: Well, almost; black cats are cursed. вов: Ah, now I see.

Theorem

There is an equivalence of categories $\nabla - : \mathsf{DFib}/\mathcal{L} \cong [\mathcal{L}, \mathsf{Set}] : \int -.$

Theorem

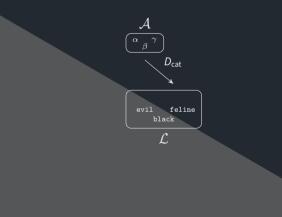
There is an equivalence of categories $\nabla - : DFib/\mathcal{L} \cong [\mathcal{L}, Set] : \int - .$

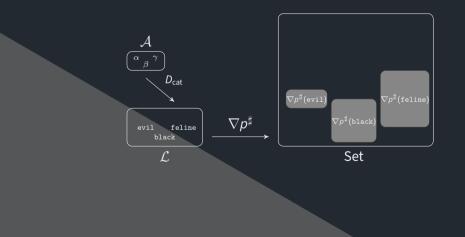
Definition (Explanation)

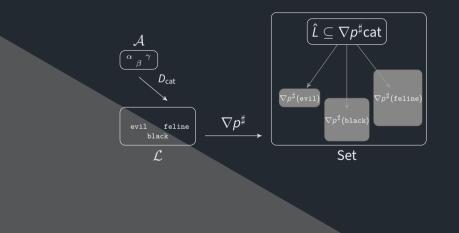
Consider a speaker $p^{\sharp} : \mathcal{E}^{p} \to \mathcal{L}$ and an object *L* of \mathcal{L} . An *explanation for L according p* is a finite diagram $D_{L} : \mathcal{A} \to \mathcal{L}$ such that the limit \hat{L} of the diagram

$$\mathcal{A} \xrightarrow{D_L} \mathcal{L} \xrightarrow{
abla p^{\sharp}} \mathsf{Set}$$

is a subset of the fibre \mathcal{E}_{l}^{p} .







12

Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

• $\mathcal{E}_L^p \neq \emptyset$ (*p* knows the meaning of *L*);

Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\boldsymbol{\mathcal{E}}_{L}^{\boldsymbol{\rho}} \neq \emptyset \text{ (} \boldsymbol{p} \text{ knows the meaning of } L\text{);}$
- $\triangleright \mathcal{E}_L^q = \emptyset$ (q does not know the meaning of L);

Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\blacktriangleright \mathcal{E}_L^p \neq \emptyset \text{ (} p \text{ knows the meaning of } L\text{);}$
- $\triangleright \mathcal{E}_{L}^{q} = \emptyset$ (q does not know the meaning of L);
- \blacktriangleright $D_L : \mathcal{A} \rightarrow \mathcal{L}$ is an explanation of *L* according to *p*;

Consider speakers $p^{\sharp}: \mathcal{E}^{p} \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^{q} \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\triangleright \quad \mathcal{E}_{L}^{p} \neq \emptyset$ (*p knows* the meaning of *L*);
- $\triangleright \mathcal{E}_L^q = \emptyset$ (*q does not know* the meaning of *L*);
- \triangleright $D_L : \mathcal{A} \to \mathcal{L}$ is an explanation of *L* according to *p*;
- D_L is an explanation of L according to p but in general not according to q.

Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\blacktriangleright \mathcal{E}_L^p \neq \emptyset \text{ (} p \text{ knows the meaning of } L\text{);}$
- $\triangleright \mathcal{E}_{L}^{q} = \emptyset$ (q does not know the meaning of L);
- ▶ $D_L : A \to L$ is an explanation of *L* according to *p*;

 D_L is an explanation of L according to p but in general not according to q. Yet, p can give the explanation D_L to q by just uttering D_L .

Consider speakers $p^{\sharp}: \mathcal{E}^{p} \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^{q} \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\triangleright \quad \mathcal{E}_{L}^{p} \neq \emptyset$ (*p knows* the meaning of *L*);
- $\triangleright \mathcal{E}_L^q = \emptyset$ (q does not know the meaning of L);
- \triangleright $D_L : \mathcal{A} \to \mathcal{L}$ is an explanation of *L* according to *p*;

 D_L is an explanation of L according to p but in general not according to q. Yet, p can give the explanation D_L to q by just uttering D_L . q can use it to define \mathcal{F}^q by taking the limit \hat{L} of the following functor and adding it into \mathcal{E}^q .

$$\mathcal{A} \xrightarrow{D_L} \mathcal{L} \xrightarrow{
abla q^{\sharp}} \mathsf{Set}$$

Consider speakers $p^{\sharp}: \mathcal{E}^p \to \mathcal{C}$ and $q^{\sharp}: \mathcal{E}^q \to \mathcal{C}$. Suppose that for some $L \in \mathcal{L}$

- $\triangleright \quad \mathcal{E}_{L}^{p} \neq \emptyset$ (*p knows* the meaning of *L*);
- $\triangleright \mathcal{E}_L^q = \emptyset$ (q does not know the meaning of L);
- \triangleright $D_L : \mathcal{A} \to \mathcal{L}$ is an explanation of *L* according to *p*;

 D_L is an explanation of L according to p but in general not according to q. Yet, p can give the explanation D_L to q by just uttering D_L . q can use it to define \mathcal{F}^q by taking the limit \hat{L} of the following functor and adding it into \mathcal{E}^q .

$$\mathcal{A} \xrightarrow{D_L} \mathcal{L} \xrightarrow{\nabla q^{\sharp}} \mathsf{Set}$$

Problem: \hat{L} is a cone but including its legs in \mathcal{F}^q , a functor $\mathcal{F}^q \to \mathcal{L}$ may not be definable.

Define a quiver Q as follows:

Define a quiver *Q* as follows:

Vertexes of Q are objects of L;

Define a quiver *Q* as follows:

 \blacktriangleright Vertexes of *Q* are objects of *L*;

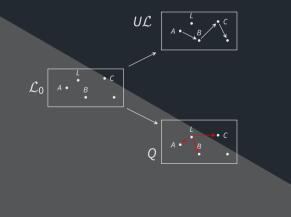
► There is an edge $L \to L'$ in Q iff there is a morphism $\phi : \hat{L} \to \nabla q^{\sharp}L'$ in the limiting cone of $\mathcal{A} \xrightarrow{D_L} \mathcal{L} \xrightarrow{\nabla q^{\sharp}}$ Set.

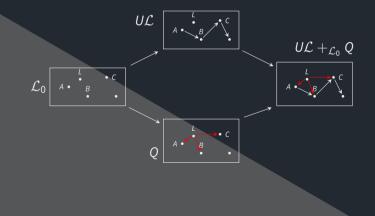
Define a quiver *Q* as follows:

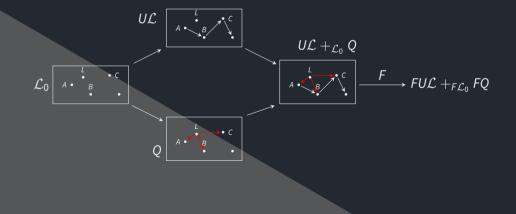
Vertexes of Q are objects of L;

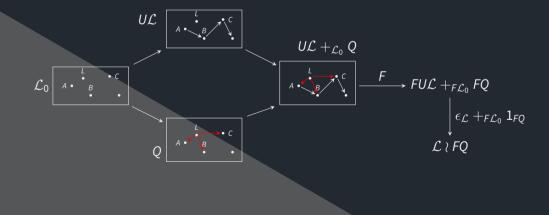
► There is an edge $L \to L'$ in Q iff there is a morphism $\phi : \hat{L} \to \nabla q^{\sharp}L'$ in the limiting cone of $\mathcal{A} \xrightarrow{D_L} \mathcal{L} \xrightarrow{\nabla q^{\sharp}}$ Set.

Now, we want to 'glue' the quiver Q to the category \mathcal{L} .









 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

Now we can define a functor $T : \mathcal{L} \wr FQ \rightarrow Set$ as follows:

On objects:

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

- On objects:
 - We map *L* to \hat{L} ;

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

- On objects:
 - We map L to \hat{L} ;
 - We map any other L' to $\nabla q^{\sharp}L'$.

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

- On objects:
 - We map L to \hat{L} ;
 - We map any other L' to $\nabla q^{\sharp}L'$.
- On morphisms:

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

- On objects:
 - We map L to \hat{L} ;
 - We map any other L' to $\nabla q^{\sharp}L'$.
- On morphisms:
 - T agrees with ∇q^{\sharp} whenever the latter is defined;

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

- On objects:
 - We map L to \hat{L} ;
 - We map any other L' to $\nabla q^{\sharp}L'$.
- On morphisms:
 - T agrees with ∇q^{\sharp} whenever the latter is defined;
 - \blacktriangleright T maps the edges of Q to the legs of the limiting cone \hat{L} .

 $\mathcal{L} \wr FQ$ is a language category enhanced with semantic links that q established in 'understanding' L.

Now we can define a functor $T : \mathcal{L} \wr FQ \rightarrow Set$ as follows:

- On objects:
 - We map L to \hat{L} ;
 - We map any other L' to $\nabla q^{\sharp}L'$.
- On morphisms:
 - T agrees with ∇q^{\sharp} whenever the latter is defined;
 - \blacktriangleright T maps the edges of Q to the legs of the limiting cone \hat{L} .

The new fibration modelling q after having learned L is $\int T$.