Exchangeability and the Radon Monad

Probability Measures, Quantum States and Multisets

Sam Staton & Ned Summers*

Classical De Finetti Theorem:

every exchangeable sequence is drawing a random measure from a bag and repeating it forever!

De Finetti, 1937; Hewitt, Savage, 1955

Polya's Urn

Start with n white balls, and k black balls. Draw a ball, record the result and replace with two; continue...

Exchangeable!

Polya's Urn

Start with n white balls, and k black balls. Draw a ball, record the result and replace with two; continue...

Exchangeable! What is the De Finetti measure?

Pick a black-white coin with bias $\theta \sim \text{Beta}(n, k)$

Flip repeatedly: $F_i \sim \text{Bernoulli}(\theta)$

Radon Measures

No "escaping to infinity"

Points are "nicely" separated

Let X be a compact, Hausdorff topological space + Borel σ -algebra.

A probability measure μ on X is *Radon* if the measure of a set is given by measuring compact subsets:

 $\mu(S) = \sup_{\substack{K \subset S \\ K \text{ measurable} \\ + \text{ compact}}} \mu(K)$

Compact Haus. Spaces + Cont. Maps

In **CH**, measures that are determined by subobjects.

The Radon Monad

Compact Haus. Spaces + Cont. Maps

 $\mathcal{R}: \mathbf{CH} \to \mathbf{CH}$

<u>On Spaces</u>: space of measures

 $X \mapsto \mathcal{R}X := \{\mu \mid \text{Radon measures on } X\}$

Topologised by all $\{\mu \mid \int_X f \, d\mu \subset \Omega \}$ for $f : X \to \mathbb{C}$ continuous and $\Omega \subset \mathbb{C}$ open

<u>On Continuous Maps</u>: pushforward measures $(f : X \to Y) \mapsto (\lambda \mu. f_* \mu : \mathcal{R}X \to \mathcal{R}Y)$

Unit of Monad: delta distributions

 $\begin{array}{l} X \to RX \\ x \mapsto \delta_x \end{array}$

Multiplication of Monad: averaging

$$\mathcal{R}^{2}X \to \mathcal{R}X$$
$$\Phi \mapsto \left(\lambda S. \int_{\mu \in \mathcal{R}X} \mu(S) \mathrm{d}\Phi\right)$$

"Is *S* likely?" ↔"Am I likely to draw a measure for which *S* is likely?"

Measures are close if they integrate lots of functions to similar values

Radon Kleisli Maps and Markov Categories

The category $Kl(\mathcal{R})$:

Objects: $X \in CH$ Morphisms: $X \rightsquigarrow Y \equiv X \rightarrow \mathcal{R}Y$

Markov Categories: semicartesian symmetric monoidal (C, \otimes , I)

Naturality of del_X

Naturality of $copy_X$? Not with probability!

Fritz, 2019

Exchangeability Categorically Let $X \in CH$: How to describe an exchangeable measure? > A measure μ on $X^{\mathbb{N}}$

> such that, for any projection $\pi_n : X^{\mathbb{N}} \to X^n$ and any permutation $\sigma : \{1, ..., n\} \to \{1, ..., n\},\ (\pi_n)_* \mu = (X^{\sigma} \pi_n)_* \mu$

> and for any permutation σ : {1,...,n} → {1,...,n}, $\mu_n = (X^{\sigma})_*\mu_n$ $X^0 \longleftrightarrow X^1 \longleftrightarrow X^2 \longleftrightarrow X^3 \longleftrightarrow \cdots$ $\langle A^{\sigma} \longleftrightarrow A^{\sigma} \longleftrightarrow A^{\sigma} \longleftrightarrow A^{\sigma}$

Categorical De Finetti (Kleisli Category) <u>Theorem</u>: In $Kl(\mathcal{R}), \mathcal{R}(X)$ is the limit of the diagram of permutations and projections

 $\begin{array}{c} & & & & & & & & & \\ X^0 & & & X^1 & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

I.e. For any exchangeable sequence parametrized by Y:

8

The morphisms $\mathcal{R}(X) \rightsquigarrow X^n$ generates *n* independent trials from a measure: $\mu \mapsto \mu \times \cdots \times \mu$

c.f. Staton, Jacobs , 2020; Fritz, Gonda, Perrone, 2020

Exchangeability Categorically: Multisets Let $X \in CH$: How to describe an exchangeable measure?

> A set of measures μ_n on X^n for each $n \in \mathbb{N}$

> which are compatible: for $\pi_{mn}: X^m \to X^n$, $(\pi_{mn})_*\mu_m = \mu_n$

> and for any permutation σ : {1,...,n} \rightarrow {1,...,n}, $\mu_n = (X^{\sigma})_* \mu_n$

Exchangeability Categorically: Multisets

Let $X \in CH$: How to describe an exchangeable measure?

> A set of measures μ_n on $\mathcal{M}[n](X)$ for each $n \in \mathbb{N}$

Multisets: Sets with (possible) repeated elements \leftrightarrow Quotient of X^n by permutating factors Implicit symmetry!

> which are compatible: for $\pi_{mn}: X^m \to X^n$, $(\pi_{mn})_*\mu_m = \mu_n$

Exchangeability Categorically: Multisets

Let $X \in CH$: How to describe an exchangeable measure?

> A set of measures μ_n on $\mathcal{M}[n](X)$ for each $n \in \mathbb{N}$

Multisets: Sets with (possible) repeated elements \leftrightarrow Quotient of X^n by permutating factors Implicit symmetry!

> which are compatible: for DD: $\mathcal{M}[n+1](X) \rightsquigarrow \mathcal{M}[n](X)$, $(DD)_*\mu_m = \mu_n$

Draw-and-Delete: Randomly drop one element from the multiset.

Theorem: In $Kl(\mathcal{R}), \mathcal{R}(X)$ is the limit of the diagram $\mathcal{M}[0](X) \xleftarrow{\text{DD}} \mathcal{M}[1](X) \xleftarrow{\text{DD}} \mathcal{M}[2](X) \xleftarrow{\text{DD}} \mathcal{M}[3](X) \xleftarrow{\text{DD}} \cdots$ I.e. For any exchangeable sequence parametrized by Y: $\mathcal{M}[0](X) \xleftarrow{\text{DD}} \mathcal{M}[1](X) \xleftarrow{\text{DD}} \mathcal{M}[2](X) \xleftarrow{\text{DD}} \mathcal{M}[3](X) \xleftarrow{\text{DD}} \cdots$ $\mathcal{R}(X)$

Categorical De Finetti (Multisets)

10

The morphisms $\mathcal{R}(X) \rightsquigarrow \mathcal{M}[n](X)$ generates a multiset of *n* independent trials from a measure.

Algebras of the Radon Monad

- > Free algebras: $\mathcal{R}(X)$ for compact Hausdorff X
- > Non-free algebras: ???

11

Algebras of the Radon Monad

- > Free algebras: $\mathcal{R}(X)$ for compact Hausdorff X
- > Non-free algebras: "Quotients" of $\mathcal{R}(X)$
 - Quantum States!
- > (More) formally:

11

- State Space Functor: Quantum Channels $\hookrightarrow \mathcal{EM}(\mathcal{R})$
- > But also we have classical probability! $\mathcal{K}l(\mathcal{R}) \hookrightarrow \mathcal{EM}(\mathcal{R})$
- > United by C*-algebras and completely positive maps

Furber, Jacobs, 2015

<u>**Theorem**</u>: This reflects to a similar colimit in C^*_{CPU} .

12

Staton, Summers, 2022; Cf. Størmer, 1969; Hudson, Moody, 1976; Caves, Fuches, Schack, 2002

Wrapping Up

> Three Categorical De Finetti Theorems:

– Two classical: Classifying $\mathcal{R}(X)$ as the limit of an exchangeability diagram.

> Explicitly using the permutation maps $X^{\sigma}: X^n \to X^n$

Implicitly: multisets and random deletion DD: $\mathcal{M}[n+1](X) \rightarrow \mathcal{M}[n](X)$

- One quantum: Classifying $\mathcal{R}(S(\mathcal{A}))$ for a C*-algebra (e.g. $B(\mathcal{H})$) as limit of an exchangeability diagram.

S. Staton and N. Summers. Quantum de Finetti Theorems as Categorical Limits, and Limits of State Spaces of C*-algebras. To appear in Proceedings of International Conference on Quantum Physics and Logic 2022 (QPL 2022). Preprint: arxiv:2207.05832

Contact us/me: ned.summers@cs.ox.ac.uk

Exchangeability and the Radon Monad

Probability Measures, Quantum States and Multisets

Sam Staton & Ned Summers*

