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Towards Reinforcement Learning algorithms

• n-armed bandit problem: Exploration vs exploitation (greedy, ε-greedy)

• Contextual bandits: Many states, immediate rewards

• Reinforcement Learning problem: Many states, delayed rewards
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Decision Processes

state space X transition f : X × A→ X

action space A utility U : X × A→ R

Objective: Which actions to choose where, to optimize long-run reward?

policy π : X → A

Long-run reward: Discounted1 sum with infinite horizon

x0
f (x0,π(x0))−−−−−−→ x1

f (x1,π(x1))−−−−−−→ x2 −→ · · ·

Vπ(x0) =
∞∑
k=0

βkU(xk , π(xk))

1Discount factor β ∈ (0, 1)
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Dynamic Programming

Assign value functions to policies.
Start with some policy π : X → A, and some value function V : X → R.
Bellman update steps:

• Value improvement: V ′(x) = U(x , π(x)) + βV (f (x , π(x)))
(policy evaluation)

• Policy improvement: π′(x) = argmaxa∈A U(x , a) + βV (f (x , a))

Bellman optimality condition: Fixpoint of the update function.

• Value improvement: V (x) = U(x , π(x)) + βV (f (x , π(x)))

• Policy improvement: π(x) = argmaxa∈A U(x , a) + βV (f (x , a))
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Dynamic Programming

Classical DP algorithms:

• Policy Iteration: ((V impr.)∗;π impr.)∗

• Value Iteration: (V impr.;π impr.)∗

• Fusion of both steps:

V (x) = max
a∈A

U(x , a) + βV (f (x , a))

6 Value iteration is optic composition

2.4 Gridworld example

A classic example in reinforcement learning is the Gridworld environment, where an agent moves in the
four cardinal directions in a rectangular grid. States of this finite MDP correspond to the positions that
the agent can be in.

Assume that all transitions and policies are deterministic, and that the transition function prevents
the agent from moving outside the boundary. Suppose that the environment rewards 0 value for all states
except the top left corner, where the reward is 1 (see figure 1).

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
β 3 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
β 3 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

1 β β 2 0
β β 2 0 0
β 2 0 0 0
0 0 0 0

1 β β 2 β 3

β β 2 β 3 0
β 2 β 3 0 0
β 3 0 0 0

1 β β 2 β 3

β β 2 β 3 β 4

β 2 β 3 β 4 0
β 3 β 4 0 0

V V V
π

· · ·

π
V

π
V

π
V

π
V

· · ·

Figure 1: Difference between policy iteration (above) and value iteration (below). The numbers in the
cells are state values and the red arrows are the directions dictated by the policy at each stage. The arrows
between grids indicate what kind of update the algorithm does, either value improvement (V ) or policy
improvement (π). Notice how policy iteration performs value improvement three times before updating
the policy, whereas value iteration improves the value and the policy at each stage.

Starting with a policy which moves upwards in all states and a value function which rewards 1
only in the top left corner, a policy iteration algorithm would improve the value of the current policy
until converging to the optimal values in the leftmost column, before updating the policy, while a value
iteration algorithm would update the value function and also update the policy.

Take the finite set of positions as the state space X , and A = {←,→,↑,↓} as the action space.
This example can be made stochastic if we add stochastic policies like ε-greedy, where the action that

the agent takes is the one with maximum value with probability 1−ε and a random one with probability
ε . Another way is for the transition function to be stochastic, for example with a wind current that shifts
the next state to the right with some probability ε .

2.5 Inverted pendulum example

A task that illustrates a continuous state space MDP is the control of a pendulum balanced over a cart,
which can be described in continuous-time exactly by two non-linear differential equations [17, Example
2E]:

(M+m)ÿ+mLθ̈ cosθ −mLθ̇ 2 sinθ = a

mLÿcosθ +mL2θ̈ −mLgsinθ = 0
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Markov Decision Processes

MDP: Some function is stochastic: Kleisli morphism of ∆ (e.g. Gridworld with
uncertainty):

state space X transition f : X × A→ ∆X

action space A utility U : X × A→ ∆R

policy π : X → ∆A

6 Value iteration is optic composition

2.4 Gridworld example

A classic example in reinforcement learning is the Gridworld environment, where an agent moves in the
four cardinal directions in a rectangular grid. States of this finite MDP correspond to the positions that
the agent can be in.

Assume that all transitions and policies are deterministic, and that the transition function prevents
the agent from moving outside the boundary. Suppose that the environment rewards 0 value for all states
except the top left corner, where the reward is 1 (see figure 1).
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Figure 1: Difference between policy iteration (above) and value iteration (below). The numbers in the
cells are state values and the red arrows are the directions dictated by the policy at each stage. The arrows
between grids indicate what kind of update the algorithm does, either value improvement (V ) or policy
improvement (π). Notice how policy iteration performs value improvement three times before updating
the policy, whereas value iteration improves the value and the policy at each stage.

Starting with a policy which moves upwards in all states and a value function which rewards 1
only in the top left corner, a policy iteration algorithm would improve the value of the current policy
until converging to the optimal values in the leftmost column, before updating the policy, while a value
iteration algorithm would update the value function and also update the policy.

Take the finite set of positions as the state space X , and A = {←,→,↑,↓} as the action space.
This example can be made stochastic if we add stochastic policies like ε-greedy, where the action that

the agent takes is the one with maximum value with probability 1−ε and a random one with probability
ε . Another way is for the transition function to be stochastic, for example with a wind current that shifts
the next state to the right with some probability ε .

2.5 Inverted pendulum example

A task that illustrates a continuous state space MDP is the control of a pendulum balanced over a cart,
which can be described in continuous-time exactly by two non-linear differential equations [17, Example
2E]:

(M+m)ÿ+mLθ̈ cosθ −mLθ̇ 2 sinθ = a

mLÿcosθ +mL2θ̈ −mLgsinθ = 0
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Continuous spaces w/o stochasticity

Continuous state or action space, e.g. savings model in economics:

• X = R: Assets (savings)
• A = R: Consumption

• (1 + γ): Gross rate of return

• i : Interest (constant)

• Policy: π : x 7→ c

• Transition: f : (x , c) 7→ (1 + γ)(x − c + i)

• Utility: U : ( , c) 7→ U(c)
(w/ Inada or transversality condition)

V ′(x) = max
0≤c≤x+i

U(c) + βV ((1 + γ)(x − c + i))

Also, the inverted pendulum control problem.
Continuous spaces and stochastic maps: Stoch = Kl(Giry) or
some subcategory.
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Value iteration with optics
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Optics

M monoidal category

↓ • :M×C → C action ofM on C
C category

Then C is aM-actegory. GivenM monoidal, and twoM-actegories C, D, the
category of mixed optics OpticC,D has

• objects

(
X
X ′

)
∈ C
∈ D

• morphisms are coends

OpticC,D

((
X

X ′

)
,

(
Y

Y ′

))
=

∫ M:M
C(X ,M • Y )︸ ︷︷ ︸

f

×D(M • Y ′,X ′)︸ ︷︷ ︸
f ′

i.e. equivalence classes of (M, f , f ′).
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Optics

Let C =M = Mark = Kl(∆), and D = (Conv,⊠, {∗}) = EM(∆), where ⊠ is
similar to tensor product in R-Mod. Conv is monoidal closed under ⊠, where the
function set [X ,Y ] has pointwise convex structure.

OpticMark,Conv

((
X

X ′

)
,

(
Y

Y ′

))
=

∫ M:Mark

Mark(X ,M ⊗Y )× Conv(∆M, [Y ′,X ′])

String diagram syntax (informal for mixed case):

f

f ′

X

X ′

Y

Y ′

M

in Mark

in Conv

(a) Morphism

f

f ′

X

X ′

I

I

M

(b) Costate
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Optics for Value Iteration
Deterministic Decision Processes

X

R

X

R

simulate: look into the future

update our values

(a) Lenses are iteration steps

U

+

×β

f

X

R

X

R

π

(b) Lenses are iteration steps

U

+

×β

f

X

R

X

R

π A

X

R

#

A

X

R

(c) Lenses are iteration steps (π̄ # λ)

X

R V

I

I

(d) Costates are initial value functions
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Optics for Value Iteration

Bellman update steps on a dynamical system with state space

AX × Optic
((X

R
)
,
(I
I

))
:

• V improv: (π,V ) 7→ (π, π̄ # λ # V )

U

+

×β

f

X

R

X

R

π A

X

R

#

A

X

R

X

R V

#

X

R V ′

memoization

• π improv: (π,V ) 7→ (x 7→ argmaxa∈A(λ # V )(x , a),V )
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Optics for Value Iteration
Mixed optics for MDPs

λ :

(
X × A

R

)
→

(
X

R

)
in OpticMark,Conv

where λ = (X ⊗ A, g , g ′)

g : X ⊗ A→ X ⊗ A⊗ A in Mark

g ′ : ∆(X ⊗ A)→ [R,R] in Conv

g ′(α)(r) = EU(α) + βr

+

×β

X

R

X × A

R

f

EU

α

α : ∆(X ⊗ A), joint distribution on states and actions.
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Optics for Value Iteration
Mixed optics for continuous-space MDPs

Savings problem: V ′(x) = max
0≤c≤x+i

U(c) + βV ((1 + γ)(x − c + i))

• V improv:
V ′(x) = U(π(x)) + βV (f (x , π(x)))

• π improv:
π′(x) = argmax

0≤c≤x+i
U(c) + βV (f (x , c))

Recall:

• Policy: π : x 7→ c

• Transition: f : (x , c) 7→ (1 + γ)(x − c + i)

• Utility: U : ( , c) 7→ U(c)

+

×β

f X

R

A

X

R

U

c

Stoch: Markov category of measurable spaces and stochastic maps
(Gauss: Euclidean spaces and affine functions with noise Y = MX + ξ)
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From Value Iteration to Q-learning

Shift from learning state values V : X → R to state-action values q : X × A→ R.
• Value Iteration, in AX × Optic

((X
R
)
,
(I
I

))
:

(π,V ) 7→ (x 7→ argmax
a

(λ # V )(x , a), π̄ # λ # V )

• State-Action Value Iteration, in AX × Optic
((X×A

R
)
,
(I
I

))
:

(π, q) 7→ (x 7→ argmax
a

q(x , a), λ # π̄ # q)

U

+

×β

f

X

R

X

R

πA

X

R

#

A

X

R

A

R

#
memoization

q

X

A

R q′

X

(π,V ) 7→ (x 7→ argmax
a

(λ # V )(x , a), π̄ # λ # V )

• State-Action Value Iteration, in AX × Optic
((X×A

R
)
,
(I
I

))
:

(π, q) 7→ (x 7→ argmax
a

q(x , a), λ # π̄ # q)

• Q-learning, also in AX × Optic
((X×A

R
)
,
(I
I

))
, without using π̄, λ:

(π, q) 7→ (x 7→ argmax
a

q(x , a), q′)

q′(x ′, a) = (1− α)q(x , a) + α(r + βmax
a′

q(x ′, a′))
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Related work

MDPs in Myers’ open dyn. systems2: Functor lenses of BiKl(C ×−,∆(R×−))op
Different interfaces:

U

+

×β

f

X

R

X

R

V

π

(a) Interface is a value function
(ours)

T

X

X

O

I

π

r

R

(b) Interface is a policy (Myers’)

(
X

R

)
→

(
X

R

) (
X

∆(X × R)

)
→

(
O

I

)
2Jaz Myers, “Double Categories of Open Dynamical Systems (Extended Abstract)”.
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Summary and future work

• Optics can be tailored to study different MDPs (deterministic, stochastic,
discrete-space, continuous-space).

• Q-learning feels ad hoc: use categorical cybernetics to express it with optics
One state (X = 1) Many states Imperfect states

Without agency
(fixed π)

- Markov
chain

Hidden Markov
Model (HMM)

With agency
(learned π)

”Bandit problem”
w/ delayed re-
wards

MDP Partially Ob-
servable MDP
(POMDP)

• Known/unknown environment

• Problem structure: Adaptive Control, Dynamic Programming, Reinforcement
Learning.
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Dynamic Programming theorems

• Policy improvement theorem: Given deterministic policies π, π′ : X → A,

qπ(x , π
′(x)) ≥ Vπ(x) ∀x ∈ X

implies Vπ′(x) ≥ Vπ(x) ∀x ∈ X

Also for stochastic policies π, π′ : X → ∆A, by defining

qπ(s, π
′(s)) =

∑
a

π′(a | s)qπ(s, a)

• Convergence proofs require metric. Optics enriched in metric spaces?
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MDP example: Inverted pendulum

• System of non-linear differential equations3:

(M +m)ÿ +mLθ̈ cos θ −mLθ̇2 sin θ = a

mLÿ cos θ +mL2θ̈ −mLg sin θ = 0

• RL approach: Linearization near equilibrium: ẋ = Ax(t) + Ba(t) and
time-discretization via Euler approximation xk+1 = xk +∆t(Axk + Bak)

A =


0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
ML 0

 B =


0
1
M
0
− 1

ML

 x =


y
ẏ
θ

θ̇


• Optimal control approach:

J(x , a) =

∫ ∞

0
C (x(t), a(t))dt

3Friedland, Control Systems Design, Example 2E.
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Conv

• (Conv,⊠, {∗}) monoidal product4 of two convex spaces A⊠ B:
• Free convex structure on A× B, then take the smallest congruence relation on

the set s.t.∑
i

αi (ai , b) ≡ (
∑
i

αiai , b) and
∑
i

αi (a, bi ) ≡ (a,
∑
i

αibi )

• Classifies bi-affine functions f : A× B → C , like how A⊗ B classifies bilinear
functions f : A× B → C in R-Mod.

• Monoidal closure: Convex structure on BA = Conv(A,B) is pointwise: Given
f , g ∈ Conv(A,B), (f +α g)(a) = f (a) +α g(a).

4Stirtz, “Categorical probability theory”, Sec 2.2.
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