Categorification of negative information using enrichment

Double COVID combo! Andrea Censi, Emilio Frazzoli, Jonathan Lorand, Gioele Zardini ETH Zürich

- > What is negative information, and why do we care?
 - It pops up in practical applications, e.g., infeasibility results in robot motion planning.
 - We asked: what is the corresponding categorical notion?
- Idea: represent negative information by negative arrows called "norphisms," which <u>complement</u> the positive information of **morphisms**.
- A **nategory** is a category with some additional structure for norphisms accounting, including a compatibility relation that allows defining "coherent subnategories."
- Norphisms do not compose by themselves. They need a morphism as a "catalyst."

$$\frac{X \xrightarrow{f} Y \xrightarrow{g} Z}{X \xrightarrow{f^{g}g} Z} \qquad \qquad \begin{array}{c} Y \xleftarrow{f} X \xrightarrow{n} Z \\ & Y \xleftarrow{f \leftrightarrow n} Z \end{array} \qquad \qquad \begin{array}{c} X \xrightarrow{n} Z \xleftarrow{g} Y \\ & Y \xrightarrow{f \leftrightarrow n} Z \end{array} \qquad \qquad \begin{array}{c} X \xrightarrow{n} Y \xleftarrow{g} Y \\ & Y \xrightarrow{f \leftrightarrow n} Z \end{array}$$

- Very **weird**, compared to the simplicity of the morphism axioms. Is this a mess? No!

- We can derive the norphism rules very elegantly using **enriched category theory**.
 - Just like a $\mathbf{P} \coloneqq \langle \mathbf{Set}, \times, 1 \rangle$ -enriched category provides the data for a small category, ...
 - ... a **PN**-enriched category provides the data for a coherent subnategory.
- **Conclusions**: morphisms and norphisms are of the same substance. Negative information can be "categorified" using enriched category theory.

Example: robot motion planning

- **Robot motion planning:** find the optimal path between two robot configurations. Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).
 - Think of a *quasi-metric space*: (Costs are not symmetric)
- 1. $d(x, y) \ge 0$ 2. $d(x,y) = 0 \iff x = y$ 3. $d(x, z) \le d(x, y) + d(y, z)$
- As a category: objects are points in "free space," and morphisms are paths with a cost. Morphism composition concatenates the paths and "sums" the costs.
- A *complete* algorithm can find a **path** (if it exists) or give a **certificate of infeasibility** (if one doesn't exist).
- > An *optimal* algorithm can find (if it exists) an *optimal solution*:
 - a feasible path, plus...
 - a certificate of optimality: there is no better path.
- Search algorithms of the A* family achieve speed using heuristics: lower bounds for the cost between two points.

positive information: morphism! what is this, categorically?

positive information: morphism! what is this, categorically?

what is this, categorically?

Building intuition: the case of thin categories

- ▶ In a thin category, there is at most one morphism per hom-set.
- These are preorders that represent connectivity. (Motion planning without costs.)
- We postulate these semantics:
 - A norphisms $n: X \to Y$ implies that there is no morphism $f: X \to Y$
 - A morphism $f: X \to Y$ implies that there is no norphism $n: X \to Y$

• We find that **the norphisms rules are dual to the morphisms rules**

$$\frac{\top}{X \to X} \qquad \frac{f: X \to Y \quad g: Y \to Z}{(f \, \stackrel{\circ}{,}\, g): X \to Z}.$$

$$\frac{X \dashrightarrow X}{\bot} \qquad \frac{o: X \dashrightarrow Z \qquad Y: \operatorname{Ob}_{\mathbb{C}}}{(n: X \dashrightarrow Y) \lor (m: Y \dashrightarrow Z)}.$$

Note: nonconstructive!

Norphisms composition needs morphisms as catalysts

- We **constructively** revisit the logic to obtain **composition rules**.
- The constraint splits into **two rules** of the type morphism \rightarrow norphism:

- Norphism composition requires morphisms as catalysts.
- There is no norphism + norphism composition rule.

$$\frac{n \colon X \dashrightarrow Y \quad m \colon Y \dashrightarrow Z}{??? \colon X \dashrightarrow Z}$$

- There is no "category of norphisms."
- Norphisms are complementary to morphisms but obey different rules.

$$f \xrightarrow{n} X \xrightarrow{n} Z$$

$$Z \xrightarrow{f \leftrightarrow n} Z$$

$$\xrightarrow{n} Z \xleftarrow{g} Y$$

Nategories and coherent subnategories

Definition 1 (Nategory). A small *nategory* C is a small category with the following additional structure. For each pair of objects $X, Y \in Ob_{\mathbb{C}}$, in addition to the set of morphisms $Hom_{\mathbb{C}}(X;Y)$, we also specify: • A set of norphisms $Nom_{\mathbb{C}}(X;Y)$. We write $n: X \to Y$ to say that a norphism belongs to that set.

- A *compatibility relation* between the two sets:

 $R_{X,Y}$: Hom_C $(X;Y) \rightarrow_{\text{Rel}} \text{Nom}_{C}(X;Y)$

where $(fR_{X,Y}n)$ means that $f: X \to Y$ is "compatible" with the norphism $n: X \to Y$.

Definition 2 (Subnategory). A subnategory **D** of **C** is a nategory **D** that is a subcategory of **C** in the usual sense, and for which $Nom_{\mathbf{D}}(X;Y) \subseteq Nom_{\mathbf{C}}(X;Y)$.

Definition 3 (Coherent subnategory). A subnategory **D** of **C** is *coherent* if all morphisms and norphisms are compatible:

 $\frac{f: \operatorname{Hom}_{\mathbf{D}}(X;Y) \quad n: \operatorname{Nom}_{\mathbf{D}}(X;Y)}{f(R_{X,Y})n}$

- Interpretation as a generalization of subcategories:
 - Think of a subcategory as a "coherent view" of a category, in the sense that it is a selection of morphisms closed to composition.
 - We are generalizing the notion of subcategory by adding norphisms (that must be compatible with the present morphisms).
- > Thinking of **coherent subnategory as states of information** allows distinguishing
 - absence of evidence (e.g., an empty subcategory)

VS

evidence of absence (e.g., enough norphisms to negate the existence of all morphisms)

(11)

Deriving norphism composition rules

From this nategory structure we can define the two composition operators.

(c) Pulling back incompatible morphisms.

$$\rightarrow Z \stackrel{g}{\leftarrow} Y$$
.

$$\xrightarrow{n \leftarrow g} Y$$

we find incompatibility with n

$$\begin{array}{c} Z \to Y \\ f \end{array} \qquad \boxed{\begin{array}{c} Z \to Y \\ \end{array}}$$

(b) Find incompatibility with *n*.

$$\begin{array}{c|c} Z \to Y & Z \dashrightarrow Y \\ f & \end{array}$$

(d) We have now found n + f.

Deriving norphism composition rules

• From this nategory structure we can define the two composition operators.

$$I_{X,Y}: \operatorname{Hom}_{\mathbf{C}}(X;Y) \to \operatorname{Pow}(\operatorname{Nom}_{\mathbf{C}}(X;Y)),$$

$$f \mapsto \{n \in \operatorname{Nom}_{\mathbf{C}}(X;Y): \neg fR_{X,Y}n\},$$

$$J_{X,Y}: \operatorname{Nom}_{\mathbf{C}}(X;Y) \to \operatorname{Pow}(\operatorname{Hom}_{\mathbf{C}}(X;Y)),$$

$$n \mapsto \{f \in \operatorname{Hom}_{\mathbf{C}}(X;Y): \neg fR_{X,Y}n\},$$

$$X \to Y \quad X \to Y \quad x$$

 $X \rightarrow Z$

(c) Pulling back incompatible morphisms.

compatibility with *n* ~ ^ ~

 $Z \to Y \quad Z \dashrightarrow Y$

compatibility with *n*.

 $Z \rightarrow Y \quad Z \dashrightarrow Y$

 $X \xrightarrow{n} Z \xleftarrow{g} Y$

 $X \xrightarrow{n \leftarrow g} Y$

(d) We have now found n + f.

Example: hiking on the Swiss mountains

Definition 5 (Berg). Let $h: \mathbb{R}^2 \to \mathbb{R}_{>0}$ be a C^1 function, describing the elevation of a mountain. The set with elements $\langle a, b, h(a, b) \rangle$ is a manifold M that is embedded in \mathbb{R}^3 . Let $\sigma = [\sigma_L, \sigma_U] \subset \mathbb{R}$ be a closed interval of real numbers. The category $\mathbf{Berg}_{h,\sigma}$ is specified as follows:

- 1. An object X is a pair $\langle \mathbf{p}, \mathbf{v} \rangle \in \mathscr{T}\mathbb{M}$, where $\mathbf{p} = \langle \mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \rangle$ is the position, v is the velocity, and $\mathscr{T}\mathbb{M}$ is the tangent bundle of the manifold.
- 2. Morphisms are C^1 paths on the manifold. At each point of a path we define the steepness as:

$$s(\langle \mathbf{p}, \mathbf{v} \rangle) \coloneqq \mathbf{v}_z / \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}.$$

We choose as morphisms only the paths that have the steepness values contained in the interval σ :

 $\operatorname{Hom}_{\operatorname{Berg}_{h,\sigma}}(X;Y) = \{ f \text{ is a } C^1 \text{ path from } X \text{ to } Y \text{ and } s(f) \subseteq \sigma \},\$ (19)

- 3. Morphism composition is given by concatenation of paths.
- 4. Given any object, the identity morphism is the trivial self path with only one point.
- We take **norphisms in Berg** to be lower bounds on the path length: $\operatorname{Nom}_{\operatorname{Berg}_{h,\sigma}}(X;Y) \subseteq \mathbb{R}_{\geq 0} \cup \{\infty\}.$
- The **compatibility condition** says that a **norphism** and a **morphism** are compatible if the lower bound is not violated.

 $fR_{X,Y}n$ length(f) >

• An **optimal path is a pair** of **morphism** and a **norphism**:

 $f: X \to Y \quad \text{length}(f): X \dashrightarrow Y$

f is optimal

(18)

Example: hiking on the Swiss mountains

Definition 5 (Berg). Let $h: \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be a C^1 function, describing the elevation of a mountain. The set with elements $\langle a, b, h(a, b) \rangle$ is a manifold M that is embedded in \mathbb{R}^3 . Let $\sigma = [\sigma_L, \sigma_U] \subset \mathbb{R}$ be a closed interval of real numbers. The category $\mathbf{Berg}_{h,\sigma}$ is specified as follows:

- 1. An object X is a pair $\langle \mathbf{p}, \mathbf{v} \rangle \in \mathscr{T}\mathbb{M}$, where $\mathbf{p} = \langle \mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \rangle$ is the position, v is the velocity, and $\mathscr{T}M$ is the tangent bundle of the manifold.
- 2. Morphisms are C^1 paths on the manifold. At each point of a path we define the steepness as:

$$s(\langle \mathbf{p}, \mathbf{v} \rangle) \coloneqq \mathbf{v}_z / \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}.$$

We choose as morphisms only the paths that have the steepness values contained in the interval σ :

 $\operatorname{Hom}_{\operatorname{Berg}_{h,\sigma}}(X;Y) = \{ f \text{ is a } C^1 \text{ path from } X \text{ to } Y \text{ and } s(f) \subseteq \sigma \},\$ (19)

- 3. Morphism composition is given by concatenation of paths.
- 4. Given any object, the identity morphism is the trivial self path with only one point.
- We take **norphisms in Berg** to be lower bounds on the path length: $\operatorname{Nom}_{\operatorname{Berg}_{h,\sigma}}(X;Y) \subseteq \mathbb{R}_{\geq 0} \cup \{\infty\}.$
- **Norphism composition** is as follows:

(18)

$${n - \text{length}(f), 0}$$

Example: hiking on the Swiss mountains

Definition 5 (Berg). Let $h: \mathbb{R}^2 \to \mathbb{R}_{>0}$ be a C^1 function, describing the elevation of a mountain. The set with elements $\langle a, b, h(a, b) \rangle$ is a manifold M that is embedded in \mathbb{R}^3 . Let $\sigma = [\sigma_L, \sigma_U] \subset \mathbb{R}$ be a closed interval of real numbers. The category $\mathbf{Berg}_{h,\sigma}$ is specified as follows:

- 1. An object X is a pair $\langle \mathbf{p}, \mathbf{v} \rangle \in \mathscr{T}\mathbb{M}$, where $\mathbf{p} = \langle \mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \rangle$ is the position, v is the velocity, and $\mathscr{T}\mathbb{M}$ is the tangent bundle of the manifold.
- 2. Morphisms are C^1 paths on the manifold. At each point of a path we define the steepness as:

$$s(\langle \mathbf{p}, \mathbf{v} \rangle) \coloneqq \mathbf{v}_z / \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}.$$

We choose as morphisms only the paths that have the steepness values contained in the interval σ :

Hom_{Berg_{*h*, $\sigma}}(X;Y) = \{f \text{ is a } C^1 \text{ path from } X \text{ to } Y \text{ and } s(f) \subseteq \sigma\},\$}</sub> (19)

- 3. Morphism composition is given by concatenation of paths.
- 4. Given any object, the identity morphism is the trivial self path with only one point.
- Some norphisms axioms schemas that we could use in Berg.
 - $\|\mathbf{p}^{\perp}-$ - The length of a path cannot be lower than the distance in 3D:
 - The length of a path cannot be lower than than the geodesic distance: -

$$d_{\mathbb{M}}(\mathbf{p}^1, \mathbf{p}^2) \colon \langle \mathbf{p}^1, \mathbf{v}^1 \rangle \dashrightarrow \langle \mathbf{p}^2, \mathbf{v}^2 \rangle$$

- Moreover, the following bounds hold due to the constraint on inclination:

$$\begin{aligned} \mathbf{p}_z^1 - \mathbf{p}_z^2 &< 0 & \mathbf{p}_z^1 - \mathbf{p}_z^2 &> 0 \\ \mathbf{p}_z^1 - \mathbf{p}_z^2 |/\sigma_{\mathrm{U}} \colon \langle \mathbf{p}^1, \mathbf{v}^1 \rangle & \dashrightarrow \langle \mathbf{p}^2, \mathbf{v}^2 \rangle & |\mathbf{p}_z^1 - \mathbf{p}_z^2|/\sigma_{\mathrm{L}} \colon \langle \mathbf{p}^1, \mathbf{v}^1 \rangle & \dashrightarrow \langle \mathbf{p}^2, \mathbf{v}^2 \rangle \end{aligned}$$

(18)

$$|-\mathbf{p}^2||:\langle \mathbf{p}^1,\mathbf{v}^1\rangle \dashrightarrow \langle \mathbf{p}^2,\mathbf{v}^2\rangle$$

Enlightenment by Enrichment

Definition 7 (Enriched category). Let $\langle \mathbf{V}, \otimes, \mathbf{1}, as, lu, ru \rangle$ be a monoidal category, where *as* is the associator, *lu* is the left unitor, and *ru* is the right unitor.

- A V-enriched category E is given by a tuple $\langle Ob_E, \alpha_E, \beta_E, \gamma_E \rangle$, where
 - 1. Ob_E is a set of "objects".
 - 2. α_E is a function such that, for all pairs of objects $X, Y \in Ob_E$, the value $\alpha_E(X, Y)$ is an object of V.
 - 3. β_E is a function such that, for all $X, Y, Z \in Ob_E$, there exists a morphism $\beta_E(X, Y, Z)$ of V, called *composition morphism*:

$$\beta_{\mathbf{E}}(X,Y,Z): \alpha_{\mathbf{E}}(X,Y) \otimes \alpha_{\mathbf{E}}(Y,Z) \to_{\mathbf{V}} \alpha_{\mathbf{F}}(Y,Z)$$

4. γ_E is a function such that, for each $X \in Ob_E$, there exists a morphism of V:

$$\gamma_{\mathbf{E}}(X): \mathbf{1} \to_{\mathbf{V}} \alpha_{\mathbf{E}}(X,X).$$

al category, where *as* is the assovalue $\alpha_{\mathbf{E}}(X,Y)$ is an object of V. orphism $\beta_{\mathbf{E}}(X,Y,Z)$ of V, called $\mathbf{E}(X,Z)$. (32) ism of V: (33)

The category **PN**

- Idea: objects and morphisms are dependent pairs with a positive and a negative part.
 - The positive part is a copy of $\mathbf{P} \coloneqq \langle \mathbf{Set}, \mathbf{x}, 1 \rangle$ -
 - The negative part is intertwined with **P** and cannot be factorized. -

Definition 9 (Category **PN**). The category **PN** is defined as follows.

- that associates to an element of H a subset of N.

$$\varphi \colon H_1 \to H_2,$$

$$\psi \colon (h_1 \colon H_1) \to (m_2(\varphi(h_1)) \to m_1(h_1))$$

morphism $f \, \, \overset{\circ}{,} \, g$, where

(37))). $\varphi_{f\mathfrak{s}g} = \varphi_f \mathfrak{s} \varphi_g,$ (38) $\boldsymbol{\psi}_{f \approx g}(\boldsymbol{h}_1) = \boldsymbol{\psi}_g(\boldsymbol{\varphi}_f(\boldsymbol{h}_1)) \, \boldsymbol{\varphi}_f(\boldsymbol{h}_1).$ (39)

$$\varphi = \mathrm{id}_H, \quad \psi(h) = \mathrm{id}_{m(h)},$$

However, for intuition, think about N being a dependent version of $N_0 \coloneqq \langle Set^{op}, +, \emptyset \rangle$ 1. The objects of PN are dependent pairs $(H, m: H \to Pow(N))$, where H, N are sets, and m is a map 2. A morphism $f: \langle H_1, m_1 \rangle \rightarrow \langle H_2, m_2 \rangle$ is a pair of functions $\langle \varphi, \psi \rangle$ where 3. Given morphisms $f: \langle H_1, m_1 \rangle \rightarrow \langle H_2, m_2 \rangle$ and $g: \langle H_2, m_2 \rangle \rightarrow \langle H_3, m_3 \rangle$, their composition is a 4. An identity for an object $\langle H, m \rangle$ is given by where id_{H} is the identity function on the set H and $\operatorname{id}_{m(h)}$ is the identity function on the set m(h).

- A reviewer asked: Is **PN** a submonoidal category of **Poly**? Maybe, with some changes. *I am also becoming Polyamorous*!

Defining a monoidal structure on PN

• A preliminary definition to compose the "negative part" of the **PN** morphisms:

Definition 10 (" \triangle "). Given two maps $m_1 : H_1 \to \text{Pow}(N_1)$ and $m_2 : H_2 \to \text{Pow}(N_2)$, we define $(m_1 \triangle m_2): H_1 \times H_2 \rightarrow \text{Pow}(N_1 + N_2),$ $\langle h_1, h_2 \rangle \mapsto \operatorname{in}_1(m_1(h_1)) \cup \operatorname{in}_2(m_2(h_2)),$ where in_1, in_2 are the injections in the disjoint union lifted to sets.

- The operation has this identity: $id_{\Delta} : 1 \rightarrow Pow(\emptyset)$, • $\mapsto \emptyset$.
- **Definition of a monoidal structure on PN:**

Lemma 11. (**PN**, \otimes_{PN} , $\langle 1, id_{\Delta} \rangle$) is a monoidal category, defining the product of two objects as $\langle H_1, m_1 \rangle \otimes_{\mathbf{PN}} \langle H_2, m_2 \rangle \coloneqq \langle H_1 \times H_2, m_1 \triangle m_2 \rangle,$ and the product of two morphisms $f: \langle H_1, m_1 \rangle \rightarrow \langle K_1, l_1 \rangle, g: \langle H_2, m_2 \rangle \rightarrow \langle K_2, l_2 \rangle$ $f \otimes_{\mathbf{PN}} g: \langle H_1 \times H_2, m_1 \triangle m_2 \rangle \rightarrow \langle K_1 \times K_2, l_1 \triangle l_2 \rangle$ as the morphism defined by the two functions $\varphi_{f\otimes_{PN}g}$ and $\psi_{f\otimes_{PN}g}$ defined as $\varphi_{f\otimes_{\mathbf{PN}g}} = \varphi_f \times \varphi_g,$ $\psi_{f\otimes_{\mathbf{PN}g}}: (\langle h_1, h_2 \rangle: H_1 \times H_2) \to \psi_f(h_1) + \psi_f(h_2) \to \psi_f(h_2) + \psi_f(h_2) \to \psi_f(h_2)$ where \times is the product of functions and + is the direct sum of functions.

$$\Psi_g(h_2),$$

Enrichment in PN describes coherent subnategories Lemma 8. A category enriched in **P** gives the data necessary to define a small category. *Proof.* We show one direction. Suppose that we are given a P-enriched category as a tuple $\langle Ob_E, \alpha_E, \alpha_E \rangle$ $\beta_{\mathbf{E}}(X,Y,Z)$: Hom_C $(X;Y) \otimes$ Hom_C $(Y;Z) \rightarrow_{\mathbf{Set}}$ Hom_C(X;Z). (35) The diagrams constraints imply that this function is associative. Therefore, we use it to define morphism composition in **C**, setting ${}_{X,Y,Z} := \beta_{\mathbf{E}}(X,Y,Z)$. • For each $X \in Ob_{\mathbb{C}}$ we know a function $\gamma_{\mathbb{E}}(X) \colon 1 \to_{\text{Set}} Hom_{\mathbb{C}}(X;X)$ that selects a morphism. The diagrams constraints imply that such morphism satisfies unitality with respect to $g_{X,Y,Z}$. (36) **Proposition 12.** A **PN**-enriched category provides the data necessary to specify a coherent subnategory.

• Recall the following fact about enrichment in $\mathbf{P} \coloneqq \langle \mathbf{Set}, \mathbf{x}, 1 \rangle$:

 $\beta_{\rm E}, \gamma_{\rm E}$ We can define a small category C as follows:

- Set $Ob_{\mathbf{C}} \coloneqq Ob_{\mathbf{E}}$.
- For each $X, Y \in Ob_{\mathbb{C}}$, let $\operatorname{Hom}_{\mathbb{C}}(X;Y) \coloneqq \alpha_{\mathbb{E}}(X,Y)$.
- For each $X, Y, Z \in Ob_{\mathbb{C}}$, we know a function

Therefore, we can use it to define the identity at each object:

$$\operatorname{id}_X := \gamma_{\mathbf{E}}(X)(\bullet).$$

• We can prove an analogous result for PN:

- The "P" part recovers the category structure (positive information), as in the traditional construction.
- ► The "N" part recovers the nategory structure (nom-sets, compatibility relation, norphism composition).

Highlight from the proof

Proposition 12. A **PN**-enriched category provides the data necessary to specify a coherent subnategory.

- Define the function *I* that gives the norphisms that are incompatible with a particular morphism: $I_{X,Y}$: Hom_C(X;Y) \rightarrow Pow(Nom_C(X;Y)), $f \qquad \mapsto \{n \in \operatorname{Nom}_{\mathbf{C}}(X;Y) : \neg fR_{X,Y}n\}$
- ▶ In the proof, for all triples of objects *X*, *Y*, *Z*, we construct the dependent function

 $\psi \colon (\langle f, g \rangle \colon \operatorname{Hom}(X; Y) \times \operatorname{Hom}(Y; Z)) \to (I_{X,Z}(f \, \mathfrak{g} \, g) \to (\operatorname{in}_1(I_{X,Y}(f)) \cup \operatorname{in}_2(I_{Y,Z}(g))).$

• Reading this using the "**propositions as types**" interpretation gives **the logic for norphisms** and the norphism composition rules.

For all
$$f, g \rightarrow I_{X,Z}(f;g)$$
 nonempty?
empty?

The composite morphism *f* ;;g is allowed in this subnategory. There are no norphisms that deny it. The composite morphism $f \ g$ is **not** allowed in this subnategory.

The elements of $I_{X,Z}(f \, g)$ are the norphisms that contradict f ; g. For each norphism *n*, we can evaluate the function

 $I_{X,Z}(f \ g) \rightarrow (in_1(I_{X,Y}(f)) \cup in_2(I_{Y,Z}(g)))$

$$I_{X,Y}(f)$$
 empty

If f is not denied, we obtain an element of $I_{Y,Z}(g)$

$$Y \stackrel{f}{\leftarrow} X \stackrel{n}{\dashrightarrow} Z$$

$$Y \xrightarrow{f \leftrightarrow n} Z$$

 $I_{Y,Z}(g)$ empty

If g is not denied, we obtain an element of $I_{X,Y}(f)$

$$X \xrightarrow{n} Z \xleftarrow{g} Y$$
$$X \xrightarrow{n \xrightarrow{g}} Y$$

Conclusions and future work

Negative information can be categorified using negative arrows (norphisms).

- (as opposed to using some logic on top of category theory...)
- Norphisms behave fundamentally differently than morphisms. They compose using morphisms as catalysts.

$$\frac{X \xrightarrow{f} Y \xrightarrow{g} Z}{X \xrightarrow{f_{g}g} Z} \qquad \qquad \begin{array}{c} Y \xleftarrow{f} X \xrightarrow{n} Z \\ & Y \xleftarrow{f} Y \xrightarrow{n} Z \end{array} \qquad \qquad \begin{array}{c} X \xrightarrow{n} Z \xrightarrow{g} Z \\ & Y \xrightarrow{f} \xrightarrow{f} Y \end{array} \qquad \qquad \begin{array}{c} X \xrightarrow{n} Y \xrightarrow{g} Z \xrightarrow{n} Z \xrightarrow{g} Z \end{array}$$

- "Nategories" generalize categories to account for the norphism machinery.
- "Coherent subnategories" generalize subcategories by adding a selection of norphisms that must be compatible with the selection of morphisms. A coherent state of information.
- We can derive the norphism rules very elegantly using **enriched category theory**.
 - Just like a **Set**-enriched category provides the data for a small category, ...
 - ... a **PN**-enriched category provides the data for a coherent subnategory.

Future work

- Surveying natural norphism structures in the wild.
- Explore more the idea of algorithms producing both positive and negative information. -
- Is **PN** a submonoidal category of **Poly**? (asked a reviewer) Maybe, with some changes.
- Generalization to higher-level concepts. What would a "nunctor" be?

