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» What is negative information, and why do we care?
- It pops up in practical applications, e.g., infeasibility results in robot motion planning.
- We asked: what is the corresponding categorical notion?

» Idea: represent negative information by negative arrows called “norphisms,”
which complement the positive information of morphisms.

» A nategory is a category with some additional structure for norphisms accounting,
including a compatibility relation that allows defining “coherent subnategories.”

» Norphisms do not compose by themselves. They need a morphism as a “catalyst.”
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- Very weird, compared to the simplicity of the morphism axioms. Is this a mess? No!
» We can derive the norphism rules very elegantly using enriched category theory.

- Just like a P := (Set, x, 1) -enriched category provides the data for a small category, ...

- ...a PN-enriched category provides the data for a coherent subnategory.

» Conclusions: morphisms and norphisms are of the same substance.
Negative information can be “categorified” using enriched category theory.



Example: robot motion planning

» Robot motion planning: find the optimal path between two robot configurations.
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).

- Think of a quasi-metric space: 1.d(z,y) =0
(Costs are not symmetric) 2.d(z,y) =0 — z=1y

3.d(z,z) < d(z,y) + d(y, 2)

» As a category: objects are points in “free space,” and morphisms are paths with a cost.
Morphism composition concatenates the paths and “sums” the costs.

» A complete algorithm can find a path (if it exists) positive information: morphism!
or give a certificate of infeasibility (if one doesn’t exist). what is this, categorically?

» An optimal algorithm can find (if it exists) an optimal solution:

- afeasible path, plus... positive information: morphism!

- a certificate of optimality: there is no better path. what is this, categorically?

» Search algorithms of the A* family achieve speed using heuristics:
lower bounds for the cost between two points.
what is this, categorically?



Building intuition: the case of thin categories

» In a thin category, there is at most one morphism per hom-set.

» These are preorders that represent connectivity. (Motion planning without costs.)
» We postulate these semantics:
- A norphisms n: X --+ Y implies that there is no morphism f: X — Y

- Amorphism f: X — Y implies that there is no norphism 7n: X --» Y

» We find that the norphisms rules are dual to the morphisms rules

T [+ X—=Y g.Y—=Z

X —X (fsg): X +Z

X -2 X 0: X -7 Y : Obc
1 (n: X -—>Y)V(@m:Y - Z)

Note: nonconstructive!



Norphisms composition needs morphisms as catalysts

» We constructively revisit the logic to obtain composition rules.

» The constraint splits into two rules of the type morphism + norphism — norphism:
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» Norphism composition requires morphisms as catalysts.

» There is no norphism + norphism composition rule.

n: X --+Y m:Y -2
X -2 2

» There is no “category of norphisms.”

» Norphisms are complementary to morphisms but obey different rules.



Nategories and coherent subnategories

Definition 1 (Nategory). A small nategory C is a small category with the following additional structure.
For each pair of objects X,Y € Obg, in addition to the set of morphisms Hom¢ (X;Y), we also specify:
* A set of norphisms Nomg(X;Y). We write » : X -+ Y to say that a norphism belongs to that set.
* A compatibility relation between the two sets:

RX:yI HOI]](:(X;Y) —7Rel I\'Dlllc(X;Y), (10)

where ( /Ry y») means that /: X — Y is “compatible” with the norphismn: X - > Y.

Definition 2 (Subnategory). A subnategory D of C is a nategory D that is a subcategory of C in the usual
sense, and for which Nomp (X;Y) C Nome(X;Y).

Definition 3 (Coherent subnategory). A subnategory D of C is coherent if all morphisms and norphisms

are compatible:
f: Homp(X;Y) n: Nomp(X:Y)

f(Rxy)n (11)

» Interpretation as a generalization of subcategories:

- Think of a subcategory as a “coherent view” of a category, in the sense that it is a selection of
morphisms closed to composition.

- We are generalizing the notion of subcategory by adding norphisms (that must be compatible with
the present morphisms).

» Thinking of coherent subnategory as states of information allows distinguishing

- absence of evidence (e.g., an empty subcategory)
VS

- evidence of absence (e.g., enough norphisms to negate the existence of all morphisms)



Deriving norphism composition rules

» From this nategory structure we can define the two composition operators.
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Deriving norphism composition rules

» From this nategory structure we can define the two composition operators.

Ixy:Home(X;Y) — Pow(Nome(X;Y)),

f — {n € Nome(X;Y): - fRyyn},

Jxy: Nomg(X;Y) — Pow(Homg(X;Y)),
n — {f € Hom¢(X;Y): - fRx yn}.
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Example: hiking on the Swiss mountains

Definition 5 (Berg). Let £: R? — Rq be a C! function, describing the elevation of a mountain. The set
with elements {(a, b, h(a, b)) is a manifold M that is embedded in R>. Let 6 = [or, o] C R be a closed
interval of real numbers. The category Berg,  1s specified as follows:
1. An object X is a pair (p, v) € M, where p = (px, Py, P;) 18 the position, v is the velocity, and
7 M is the tangent bundle of the manifold.
2. Morphisms are C' paths on the manifold.At each point of a path we define the steepness as:

s((p, V) = Vz/ 4/ V3 + V5. (18)
We choose as morphisms only the paths that have the steepness values contained in the interval o
Homperg, . (X;¥) ={/isa C' path from X to Y and s(f) C o}, (19)

3. Morphism composition is given by concatenation of paths.
4. Given any object, the identity morphism is the trivial self path with only one point.

» We take norphisms in Berg to be lower bounds on the path length:
Nomgerg, , (X3Y) C RxoU{co}.

» The compatibility condition says that a norphism and a morphism
are compatible if the lower bound is not violated.

fRX,yH TM

length(f) > »

» An optimal path is a pair of morphism and a norphism:

f:X—=Y length(f): X -—>»Y

f1s optimal

S



Example: hiking on the Swiss mountains

Definition 5 (Berg). Let #: R? — Rq be a C! function, describing the elevation of a mountain. The set
with elements {(a, b, h(a, b)) is a manifold M that is embedded in R>. Let 6 = [or, o] C R be a closed
interval of real numbers. The category Berg,  1s specified as follows:
1. An object X is a pair (p, v) € M, where p = (px, Py, P;) 18 the position, v is the velocity, and
7 M is the tangent bundle of the manifold.
2. Morphisms are C' paths on the manifold.At each point of a path we define the steepness as:

s((p, V) = Vz/ 4/ V3 + V5. (18)
We choose as morphisms only the paths that have the steepness values contained in the interval ¢
HomBergM(X;Y) — {fisaC’ path from X to Y and s(f) C o}, (19)

3. Morphism composition is given by concatenation of paths.
4. Given any object, the identity morphism is the trivial self path with only one point.

» We take norphisms in Berg to be lower bounds on the path length:
Nomgerg, , (X3Y) C RxoU{co}.

» Norphism composition is as follows:
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Example: hiking on the Swiss mountains

Definition 5 (Berg). Let £: R? — R be a C! function, describing the clevation of a mountain. The set
with elements (a, b, h(a, b)) is a manifold M that is embedded in R°. Let 6 = [or, ou] C R be a closed
interval of real numbers. The category Berg,  1s specified as follows:
1. An object X is a pair (p, v) € M, where p = (px, Py, P;) 18 the position, v is the velocity, and
7 M is the tangent bundle of the manifold.
2. Morphisms are C! paths on the manifold.At each point of a path we define the steepness as:

(B V) = o/ |2+ V3 (18)
We choose as morphisms only the paths that have the steepness values contained in the interval o
Homgerg, , (X; Y)={fisaC" path fromX toY and s(f) C o}, (19)

3. Morphism composition is given by concatenation of paths.
4. Given any object, the identity morphism is the trivial self path with only one point.

» Some norphisms axioms schemas that we could use in Berg.
- The length of a path cannot be lower than the distance in 3D: Ip' —p*(|: (p',v') - (p?, v?)

- The length of a path cannot be lower than than the geodesic distance:

dhf(plapz): (pla V]> B <p2: V2>

- Moreover, the following bounds hold due to the constraint on inclination:

p: —p; <0 p;—p; >0

/GU: <p1: vl> ? <p2: Vz) |p21' _pzz.’/o-]-«: <p1: V1> — = <p27 V2>

p. — p:



Enlightenment by Enrichment

Definition 7 (Enriched category). Let (V, ®, 1, as, lu, ru) be a monoidal category, where as is the asso-
ciator, [u 1s the left unitor, and ru 1s the right unitor.
A V-enriched category E is given by a tuple (Obg, ag, Bg, ¥&), where
1. Obg 1s a set of “objects™.
2. ag is a function such that, for all pairs of objects X,Y € Obg, the value @g(X,Y) is an object of V.
3. PBg is a function such that, for all X,Y,Z € Obg, there exists a morphism Pg(X,Y,Z) of V, called

composition morphism:
Be(X,Y,Z): ag(X,Y)®ag(Y,Z) —»v ag(X,Z2). (32)
4. 1 1s a function such that, for each X € Obg, there exists a morphism of V:
1 (X): 1 —y ag(X,X). (33)

oe(X,Y)® (ag(Y,Z)® ag(Z,U)) Yoo (ag(X,Y)Qag(Y,Z2)® ag(Z,U)
ey (x,v) ® B (¥, Z,U) | |Be(X,Y,2)®idgyz,0)

ag(X, Y)®aEYUA:( XY U g(X,U XZUSZE(X Z)®ag(Z,U)

og(X,Y)@ag(Y, ﬁ X7, Y&E( )% (XX, (%E(X X)®ag(X,Y)

idgexr)®1e(Y) T P b’E( ) ®idg,(x.y)

aE(X7Y)®1 1®aE(X7Y)



The category PN

» Idea: objects and morphisms are dependent pairs with a positive and a negative part.
- The positive part is a copy of P := (Set, x, 1)

- The negative part is intertwined with P and cannot be factorized.
However, for intuition, think about N being a dependent version of Ny, := (Set®", +, @)

Definition 9 (Category PN). The category PN is defined as follows.
1. The objects of PN are dependent pairs (7, m: H — Pow(/V)), where H, N are sets, and 7 is a map
that associates to an element of /7 a subset of /.
2. A morphism f: (Hy,m) — (H», m») is a pair of functions (¢, ) where

Q. Hl—)HQ,

W (hi: Hy) = (ma(@(hy)) — my(hy)).

3. Given morphisms f': (H,m;) — (Hp,m>) and g: (Hy, my) — (H3, ms), their composition is a
morphism [ § g, where

(37)

(Pfgg — (pfg(Pga

W psg (A1) = W (@ p(h1)) s (h1).
4, An identity for an object (H, m) is given by

Q= idH7 l//(h) — idm(h)v (39)

where idy; is the identity function on the set /7 and id,,,,) is the identity function on the set (/).

(38)

- A reviewer asked: Is PN a submonoidal category of Poly? Maybe, with some changes.

I am also becoming Polyamorous!



Defining a monoidal structure on PN

» A preliminary definition to compose the “negative part” of the PN morphisms:

Definition 10 (“A”). Given two maps m,: H1 — Pow(/N;) and m, : H» — Pow(/V>), we define
(m.1 Amz)I HixH, — POW(N] +N2),

(hi, ho) > ing(my(hy))Uing(ma(h2)),
where ing,iny are the injections in the disjoint union lifted to sets.

- The operation has this identity: id,: 1 — Pow(0),
e —0.

» Definition of a monoidal structure on PN:

Lemma 11. (PN, ®py, (1,1d, )) is a monoidal category, defining the product of two objects as
(Hl : m])®p1\~ (Hz, mg) = (Hl X, I7'I]AI722>,
and the product of two morphisms f: (Hy, m) — (K1, [1), g: (Ha, ma) — (K2, )
f®png: (HixHy,mAmy) — (K| xKy, || AL)
as the morphism defined by the two functions ¢ ;e . and V4o . defined as
Prome = Pr % Po

Vi@ s (1, m2) s Hy xHp) — W o (h) + v, (h2),
where X 1s the product of functions and +- 1s the direct sum of functions.




Enrichment in PN describes coherent subnategories

» Recall the following fact about enrichment in P := (Set, x, 1) :

Lemma 8. A category enriched in I gives the data necessary to define a small category.

Proof. We show one direction. Suppose that we are given a P-enriched category as a tuple (Obg, O,
PE, Y& ). We can define a small category C as follows:

e Set Ob¢ = Obg.

» Foreach X,Y € Obg, let Hom¢(X;Y) == ag(X,Y).

 Foreach X,Y,Z € Ob¢, we know a function

Be(X,Y,Z): Home(X;Y)®Home(Y;Z) —ge Home(X;2). (35)

The diagrams constraints imply that this function is associative.
Therefore, we use it to define morphism composition in C, setting ¢x y z := Bg(X,Y,Z).

e For each X € Obc we know a function Jg(X): 1 —ge¢ Home(X;X) that selects a morphism.
The diagrams constraints imply that such morphism satisfies unitality with respect to ¢x y z.
Therefore, we can use it to define the 1dentity at each object:

idy = Y(X)(e). (36)
» We can prove an analogous result for PN:

Proposition 12. A PN-enriched category provides the data necessary to specify a coherent subnategory.

» The “P” part recovers the category structure (positive information), as in the traditional construction.

» The “N” part recovers the nategory structure (nom-sets, compatibility relation, norphism composition).



Highlight from the proof

Proposition 12. A PN-enriched category provides the data necessary to specify a coherent subnategory.

» Define the function I that gives the norphisms that are incompatible with a particular morphism:
Ixy: Home(X;Y) — Pow(Nome(X;Y)),
f — {n € Nom¢g(X;Y): ~fRx yn}

» In the proof, for all triples of objects X, Y, Z, we construct the dependent function

Y. (</, g): Hom (X,Y) XH()II](Y;Z)) — (IX’Z(‘/'Eg) — (inl(lX’y(,_/')) Uinz(/y,z(g))).

» Reading this using the “propositions as types” interpretation gives the logic for norphisms
and the norphism composition rules.

nonempty? The composite morphism f § g

Forallf g — Ixz(/$8) g is not allowed in this subnategory.
i The elements of /x z(f 5 2)
Py are the norphisms that contradict ¢ g.
v For each norphism 1, we can evaluate the function
The composite morphism f 3;g Ixz([3g) = (inm(Ixy(/))Uina(ly z(g)))
is allowed in this subnategory. |
There are no norphisms that deny it. Ixy(/) empty / \ ly,z(g) empty
If fis not denied, we obtain If g is not denied, we obtain
an element of /y z(g) an element of 7y y (/)
vlx "5z x-"szly

./'H” 7l o=

Y A X Y



Conclusions and future work

» Negative information can be categorified using negative arrows (norphisms).
- (as opposed to using some logic on top of category theory...)

» Norphisms behave fundamentally differently than morphisms.
They compose using morphisms as catalysts.

x .y %7 vix sz x "szly
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» “Nategories” generalize categories to account for the norphism machinery.

» “Coherent subnategories” generalize subcategories by adding a selection of norphisms
that must be compatible with the selection of morphisms. A coherent state of information.

» We can derive the norphism rules very elegantly using enriched category theory.
- Just like a Set-enriched category provides the data for a small category, ...

- ...a PN-enriched category provides the data for a coherent subnategory.

» Future work
- Surveying natural norphism structures in the wild.
- Explore more the idea of algorithms producing both positive and negative information.
- Is PN a submonoidal category of Poly? (asked a reviewer) Maybe, with some changes.

- Generalization to higher-level concepts. What would a “nunctor” be?



