
Categorification of negative information using enrichment

‣ What is negative information, and why do we care? 
- It pops up in practical applications, e.g., infeasibility results in robot motion planning. 
- We asked: what is the corresponding categorical notion? 

‣ Idea: represent negative information by negative arrows called “norphisms,” 
which complement the positive information of morphisms. 

‣ A nategory is a category with some additional structure for norphisms accounting, 
including a compatibility relation that allows defining “coherent subnategories.” 

‣ Norphisms do not compose by themselves. They need a morphism as a “catalyst.” 

- Very weird, compared to the simplicity of the morphism axioms. Is this a mess? No! 
‣ We can derive the norphism rules very elegantly using enriched category theory. 

- Just like a                            -enriched category provides the data for a small category, … 
- … a PN-enriched category provides the data for a coherent subnategory. 

‣ Conclusions: morphisms and norphisms are of the same substance.  
Negative information can be “categorified” using enriched category theory. 
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Example: robot motion planning

‣ Robot motion planning: find the optimal path between two robot configurations. 
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time). 
- Think of a quasi-metric space: 

(Costs are not symmetric) 

‣ As a category: objects are points in “free space,” and morphisms are paths with a cost. 
Morphism composition concatenates the paths and “sums” the costs. 

‣ A complete algorithm can find a path (if it exists)  
or give a certificate of infeasibility (if one doesn’t exist). 

‣ An optimal algorithm can find (if it exists) an optimal solution: 
- a feasible path, plus… 
- a certificate of optimality: there is no better path. 

‣ Search algorithms of the A* family achieve speed using heuristics: 
lower bounds for the cost between two points.

positive information: morphism!

what is this, categorically?
positive information: morphism!

what is this, categorically?

what is this, categorically?



Building intuition: the case of thin categories

‣ In a thin category, there is at most one morphism per hom-set. 
‣ These are preorders that represent connectivity. (Motion planning without costs.) 

‣ We postulate these semantics: 
- A norphisms                            implies that there is no morphism  
- A morphism                            implies that there is no norphism 

‣ We find that the norphisms rules are dual to the morphisms rules

Note: nonconstructive! 
 



Norphisms composition needs morphisms as catalysts

‣ We constructively revisit the logic to obtain composition rules. 
‣ The constraint splits into two rules of the type morphism + norphism → norphism: 

‣ Norphism composition requires morphisms as catalysts. 
‣ There is no norphism + norphism composition rule. 

‣ There is no “category of norphisms.”  
‣ Norphisms are complementary to morphisms but obey different rules.



Nategories and coherent subnategories

‣ Interpretation  as a generalization of subcategories: 
- Think of a subcategory as a “coherent view” of a category, in the sense that it is a selection of 

morphisms closed to composition. 
- We are generalizing the notion of subcategory by adding norphisms (that must be compatible with 

the present morphisms). 
‣ Thinking of coherent subnategory as states of information allows distinguishing  

- absence of evidence      (e.g., an empty subcategory) 
                  vs 

- evidence of absence      (e.g., enough norphisms to negate the existence of all morphisms)



Deriving norphism composition rules

‣ From this nategory structure we can define the two composition operators.



Deriving norphism composition rules

‣ From this nategory structure we can define the two composition operators.



Example: hiking on the Swiss mountains

‣ We take norphisms in Berg to be lower bounds on the path length: 

‣ The compatibility condition says that a norphism and a morphism 
are compatible if the lower bound is not violated.  

‣ An optimal path is a pair of morphism and a norphism:



Example: hiking on the Swiss mountains

‣ We take norphisms in Berg to be lower bounds on the path length: 

‣ Norphism composition is as follows:



Example: hiking on the Swiss mountains

‣ Some norphisms axioms schemas that we could use in Berg. 
- The length of a path cannot be lower than the distance in 3D: 
- The length of a path cannot be lower than than the geodesic distance: 

- Moreover, the following bounds hold due to the constraint on inclination:



Enlightenment by Enrichment



The category PN

‣ Idea: objects and morphisms are dependent pairs with a positive and a negative part. 
- The positive part is a copy of  
- The negative part is intertwined with P and cannot be factorized. 

However, for intuition, think about N being a dependent version of  

- A reviewer asked: Is PN a submonoidal category of Poly? Maybe, with some changes. 
I am also becoming Polyamorous!



Defining a monoidal structure on PN

‣ A preliminary definition to compose the “negative part” of the PN morphisms: 

- The operation has this identity: 

‣ Definition of a monoidal structure on PN:



Enrichment in PN describes coherent subnategories

‣ Recall the following fact about enrichment in                              : 

‣ We can prove an analogous result for PN: 

‣ The “P” part recovers the category structure (positive information), as in the traditional construction. 
‣ The “N” part recovers the nategory structure (nom-sets, compatibility relation, norphism composition). 



Highlight from the proof

‣ Define the function I that gives the norphisms that are incompatible with a particular morphism: 

‣ In the proof, for all triples of objects X, Y, Z, we construct the dependent function  

‣ Reading this using the “propositions as types” interpretation gives the logic for norphisms 
 and the norphism composition rules.

empty?

nonempty?

The  composite morphism f ⨟;g 
is allowed in this subnategory. 
There are no norphisms that deny it.

The composite morphism f ⨟ g 
is not allowed in this subnategory.For all f, g

The elements of  
are the norphisms that contradict f ⨟ g. 
For each norphism n, we can evaluate the function

empty empty

If f is not denied, we obtain  
an element of

If g is not denied, we obtain  
an element of



Conclusions and future work

‣ Negative information can be categorified using negative arrows (norphisms). 
- (as opposed to using some logic on top of category theory…) 

‣ Norphisms behave fundamentally differently than morphisms.  
They compose using morphisms as catalysts. 

‣ “Nategories” generalize categories to account for the norphism machinery. 
‣ “Coherent subnategories” generalize subcategories by adding a selection of norphisms 

that must be compatible with the selection of morphisms. A coherent state of information. 
‣ We can derive the norphism rules very elegantly using enriched category theory. 

- Just like a Set-enriched category provides the data for a small category, … 
- … a PN-enriched category provides the data for a coherent subnategory. 

‣ Future work 
- Surveying natural norphism structures in the wild. 
- Explore more the idea of algorithms producing both positive and negative information.  
- Is PN a submonoidal category of Poly? (asked a reviewer) Maybe, with some changes. 
- Generalization to higher-level concepts. What would a “nunctor” be? 


