Categories of Differentiable Polynomial Circuits
for Machine Learning

Paul Wilson*, Fabio Zanasi

July 17, 2022

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
©00000000

Motivation

m Narrow view: What's in the paper?

m Wide view: Why is what's in the paper in the paper?

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
000000000

This Paper: Narrow View

m A machine learning model class PolyCircg
m A graphical account of reverse derivatives
m A recipe to construct and extend reverse derivative categories

m An extension of PolyCirc to gain functional completeness

?Dﬁ X1 X2+—>X1-(X2+1)

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
00@000000

Presentations by Generators and Equations

Generators (example):

—C X

Build terms with composition and tensor:

O EE S E i

Equations (example):

=

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
[e]e]eY Yolelelele)

This Paper: Wide View

Slogan: Machine Learning with String Diagrams

m ML papers often use diagrammatic exposition (below from
[KGST17])

m We want to make this completely formal

m Use string diagrams: gain access to lots of free theoretical

Dot-Prod. Attention Attention ConvBlock Input Encoder /O Mixer Decoder
Encoded Encoded Encoded
Target Source Inputs Inputs Inputs Outputs Outputs Inputs

‘Mixure of
Experts (opt)

B .
;‘“‘*‘“‘" Crem)|
& @

Encoded Encoded Decoded
Attended Source Outputs Inputs Outputs Outputs

Dot-product
Attention

T5x1 Convstep
Diaton 4

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
[e]e]eYo! Yelelele)

Why is graphical structure important?

Morphisms of PolyCirc will represent machine learning models. We
want to...

m ... represent terms easily on a computer [WZ21a]

® ... manipulate terms (rewriting/optimization) [BGK™20]
m ... evaluate and compile (to unusual targets!)

m ... visualise execution + model internals

Aside from this, we also have an immediate application in mind...

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
00000@000

Application: Gradient based learning without R |

In 5 bullet points:
m Want to learn a function f: R? — R?
m Define a model m : RP x R? — Rb

m Learning: repeatedly nudge your parameters in the ‘direction
of best improvement'.

m Final result: parameters 6 € RP
m ... giving a function m(f, —) : R? — R?

This paper: what about for arbitrary semirings instead of R?

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
000000000

Application: ‘Gradient’ Based Learning without R [l

Problems with R:

m We can't really represent values of R on a computer anyway

m Instead, we need to deal with finite representations

m Floating-point is relatively expensive: sometimes not available!
Another option:

m An extreme choice: use Z; instead of R [WZ21b]

= ‘Nudging an input’ = flipping a bit

m We can express any function B? — B? in terms of polynomials

over Zjy (functional completeness!)

What about other semirings S? That's where PolyCircg comes in

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
000000080

Summary

So we want categories which ...
m ... have RDC structure
m ... are presented by generators and relations
m ... represent a ‘suitably expressive' class of models
So that we can ...
m ... do ‘gradient’ based learning
® ... use computer representations to evaluate/compile them
m ... define an appropriate model for a given problem

PolyCirc fits these criteria

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Motivation
000000008

Structure of this talk

m Motivation
m Reverse Derivatives
m Polynomial Circuits

m Functional Completeness

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
©000000000000

Presentation-Friendly Reverse Derivatives

m Original formulation
m What are reverse derivatives for?
m Alternative ‘presentation-friendly’ axioms

m ‘Extensibility theorem’

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0®00000000000

Reverse Derivative Categories (2019)

Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher,
Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon Plotkin,
Dorette Pronk

Defines categories with a reverse derivative combinator:

f
A— B A
T RIA— A
Ax B —s A g
R

obeying some axioms RD.1 - RD.7, along with some other ‘base’
structure.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0080000000000

Why do we need Reverse Derivatives?

Earlier we said...
m Want to learn amap f: A— B
m Defineamodel m: Px A— B

m Learning: repeatedly nudge your parameters in the ‘direction
of best improvement'.

We need something like this:

P
A—dml—P
B/

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
000@000000000

Reverse Derivatives

Taking the reverse derivative of our model gets us what we want:

But RDCs have some required ‘base’ structure...

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000@00000000

RDC Requirements |: Cartesian Structure

. means that each object A comes equipped with a copy and a

discard map:
A
A —o(A A

such that...

R Sl S
e e

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000080000000

Cartesian Left Additive Structure |

A Cartesian Left-Additive Category ([CCG119], [BCS09]) is a
cartesian category in which each object A is equipped with a
commutative monoid and zero map:

Q}A — A

so that

S S e

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
000000@000000

Cartesian Left Additive Structure II: Adding Morphisms

We used the ‘alternative’ definition of cartesian left-additive
structure. The original has these axioms:

xs(f+g) = (xsH+(x58) x30 = 0

We can recover these by defining addition and zero:

f—l—g:z 0= —o o

Then the equations above can be written diagrammatically:

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000000@00000

RDC Axioms |: Structural Axioms

[ARD.1] (Structural axioms, equivalent to RD.1, RD.3-5 in
[CCGT19])

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000000080000

RDC Axioms Il: Additivity of Change

[ARD.2] (Additivity of change, equivalent to RD.2 in [CCGT19])

R - ' SR = o

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000000008000

RDC Axioms Ill: Higher Derivatives

[ARD.3] (Linearity of change, equivalent to RD.6 in [CCGT19])

D5 R[] = - AR}

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [CCGT19])

D@ =>4 D[

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000000000800

Equivalence to Original Definition

m Original formulation had axioms RD.1 - RD.7
m Our formulation has axioms ARD.1 - ARD.4

m These are equivalent (Theorem 1)

Now let's use our formulation to show how to extend RDCs...

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
0000000000080

Extending RDC Presentations: A Theorem

How to extend an RDC % presented by generators ¥ and
equations E (Theorem 2):

m Add a new generator s and equations e.g. /=r
m Define R[s]
m Check R is well-defined (R[/] = R[A])
m Check R satisfies ARD.2 - ARD.4
Formally:

Theorem

Let € be the cartesian left-additive category presented by
generators (Obj, X.) and equations E. If for each s € ¥ there is
some R[s| which is well-defined with respect to E, and which
satisfies axioms ARD.1-4, then € is a reverse derivative category.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Reverse Derivatives
000000000000

Summary

We've done this:
m Redefined the RDC axioms in a ‘presentation friendly’ way

m Showed how we can extend an RDC with new generators and
equations

Now we can slowly build up PolyCirc from parts

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
©00000000

Polynomial Circuits

m Definition
m Relationship to POLYg

m Examples

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
0@0000000

Defining PolyCircg

Piece-by-piece:
m Cartesian left-additive structure
® A multiplication operation

m Constants and equations

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
00®000000

Cartesian Left Additive Structure

Generators:

A{j A —e j\\}A — A

Equations:

e Sl
By e

P s S

The reverse derivative is fixed by ARD.1

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
000@00000

Cartesian Distributive Categories

Now add a multiplication “»— and 1 constant - to get a
Cartesian Distributive Category:

Satisfying cartesian left-additive and multiplicativity equations

=D 2= o=

and the distributivity and annihilation equations

et e

X1 (x+x3) =x1 X2+ x1-X3 x1-0=0

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
0000@0000

Cartesian Distributive Categories Il: Reverse Derivative

m Take an RDC

m Add the generators and equations of Cartesian Distributive
categories

m Give it a reverse derivative:

Rl Rl

This is well-defined and satisfies ARD.1-4.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
00000@000

Polynomial Circuits

We define PolyCircg as the cartesian distributive category
presented by:

m one generating object 1 (so the objects are natural numbers)
m for each s € S, a generating morphism @: 0—1,
m the ‘constant’ equations (below)

PolyCircs is an RDC with R |<§}—| = —e .

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
000000000

Polynomial Circuits Examples |: PolyCircy

define each constant s € S as repeated addition:

where we define inductively as

—0D— = o - = o LD

PolyCircy is the free Cartesian Distributive Category on one
generating object

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
00000000

Polynomial Circuits Examples II: PolyCircy,_

PonCicm2 is the same, but we need one additional equation:

S ED SRR

This says that 1 +1 = 0 (it's XOR)
More generally for PolyCircy, :

—An>—=—e e—

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Polynomial Circuits
00000000@

PolyCircg and POLYs

m Take a morphism f: m — n of PolyCircg
m It's the same as an n-tuple of m-variable polynomials...
m i.e. an element of the free module over polynomial ring
S[x1 ... xm]"
m This makes PolyCircg =2 POLYs (POLYs is from [CCGT19])

Recall our first example:

?Dﬁ X1 Xo > X1+ Xo + X1

Except something is missing for functional completeness: we need
to extend PolyCircg by adding a new operation (and we'll no
longer have polynomials)

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
©000000000000000

Functional Completeness

m Why do we want it?
m How do we define it?
m When do we have it?

m Extending PolyCircg to get it

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0®00000000000000

Why do we want it?

We want to use morphisms of PolyCircg as ML models

Interpreting morphisms m — n gives us functions S™ — 5"

We would like to be able to express any function using our
syntax

m If we can do this, we have functional completeness

m This is like a discrete analog of "Universal Approximator”
theorems for NNs

m We will now be working only with finite semirings!

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
00®0000000000000

How do we define it?

More formally...

m We want to interpret morphisms f: m — n of PolyCircg as
functions between sets.

m Define FinSets as the PROP whose morphisms are functions
ST 5"

m When any function in FinSets has a corresponding morphism
f € PolyCircg, then PolyCircg is functionally complete.

We say a category % is functionally complete with respect to a
finite set S when there a full identity-on-objects functor
F : ¥ — FinSets.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
000@000000000000

For some S, PolyCircg is already functionally complete

Example: PolyCircy, ...
m Addition as XOR
m Multiplication as AND

...is functionally complete

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0000®00000000000

... but not always!

Example: For B the boolean semiring with:
m Addition as OR
m Multiplication as AND
PolyCircy is not functionally complete (you need a NOT gate!)

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
00000®0000000000

The missing piece

1 ifx=y
compare(x,) = 0 otherwise

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learni

Functional Completeness
000000®000000000

Function Tables

The idea is that because S is finite, we can simply encode the
function table of any function f: S™ — S.

e.g., for f(Xl,Xg) = X1 (X2 + 1) in Zo:

X1 X2 ‘ f(x1, x2)
0

= = O O
= O = O

0
1
0

How do we encode this?

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0000000e00000000

Function Tables Il

We can encode function tables using only constants, addition, and
multiplication:

X Z compare(s, x) - (s)
seSsm
m fis 'syntactic’ above- we only use it to build the expression
m compare is 1 only when s = x (i.e. exactly once!)
Example: S=7Z3, m=1, f{x) = x+2

x+— compare(0, x) - 2
+ compare(1, x) - 0
+ compare(2, x) - 1

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness

0O0000000e0000000

Theorem

Let S be a finite commutative semiring. A category € is
functionally complete with respect to S iff. there is a monoidal
functor F : € — FinSetg in whose image are the following
functions:

m () > s for each s € S (constants)
m (x,y) — x+ y (addition)

m (x,y) — x-y (multiplication)

m compare

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
000000000e000000

Example: PolyCirc;

PonCicmP is functionally complete for prime p. Fermat’s Little

Theorem says:
2”71 = 1(mod p)

for a > 0. In other words, this is the ‘nonzero indicator’ function.
We can construct the ‘zero indicator’ function like this:

1 ifa=0
§(a):=(p—1)-aP1+1=
(a):=(p—1) 0 otherwise
Now we can construct compare (because S is finite):

compare(xi, x2) Z d(x1+5s)-0(x2+s)
seS

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0000000000e00000

PolyCircg

To get functional completeness, we just add one more widget,
which we will interpret as the compare function

A=

and equations

for s,t € S with s# t.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
00000000000e0000

The Reverse Derivative of Comparison

To make PolyCircg an RDC, we need to define R[B] in a
way that:

m s consistent with its equations
m Satisfies axioms ARD.2 - ARD.4

We choose this:

This satisfies the conditions, but is it reasonable?

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
000000000000e000

The Straight-Through Estimator

m DNN architectures sometimes use functions with zero
derivatives

m Example: ‘Thresholding’ function d,>0

m Instead of using the zero derivative, just ‘pass through’ the
gradients to not lose information

m This is called the straight through estimator

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0000000000000e00

Summary

m We defined PolyCirc in an ‘extensible’ way

m We showed how RDCs can be defined in a ‘presentation
friendly' way too

m We used our definition to extend PolyCirc with an additional
operation (comparison)

m We ended up with a useful model class for machine learning

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

Functional Completeness
0000000000000080

Thanks for listening!

Questions?

Paul Wilson* Zanasi

Categories of Differentiable Polynomial Circuits for Machin

Functional Completeness
000000000000000e

[§ Richard F. Blute, J. R. B. Cockett, and R. A. G. Seely.
Cartesian differential categories.
Theory and Applications of Categories, 22, 2009.

[@ Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel
Sobocinski, and Fabio Zanasi.
String diagram rewrite theory i: Rewriting with frobenius
structure, 2020.

[M Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher,
Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon
Plotkin, and Dorette Pronk.

Reverse derivative categories, 2019.

[§ Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish
Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit.
One model to learn them all, 2017.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning

	Motivation
	Reverse Derivatives
	Polynomial Circuits
	Functional Completeness

