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Motivation

Narrow view: What’s in the paper?
Wide view: Why is what’s in the paper in the paper?
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This Paper: Narrow View

A machine learning model class PolyCircS
A graphical account of reverse derivatives
A recipe to construct and extend reverse derivative categories
An extension of PolyCirc to gain functional completeness

x1 x2 7→ x1 · (x2 + 1)

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning
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Presentations by Generators and Equations

Generators (example):

Build terms with composition and tensor:

# = × =

Equations (example):
=

Paul Wilson*, Fabio Zanasi
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This Paper: Wide View
Slogan: Machine Learning with String Diagrams

ML papers often use diagrammatic exposition (below from
[KGS+17])
We want to make this completely formal
Use string diagrams: gain access to lots of free theoretical
tools!

Paul Wilson*, Fabio Zanasi
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Why is graphical structure important?

Morphisms of PolyCirc will represent machine learning models. We
want to...

... represent terms easily on a computer [WZ21a]

... manipulate terms (rewriting/optimization) [BGK+20]

... evaluate and compile (to unusual targets!)

... visualise execution + model internals
Aside from this, we also have an immediate application in mind...

Paul Wilson*, Fabio Zanasi
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Application: Gradient based learning without R I

In 5 bullet points:
Want to learn a function f : Ra → Rb

Define a model m : Rp × Ra → Rb

Learning: repeatedly nudge your parameters in the ‘direction
of best improvement’.
Final result: parameters θ ∈ Rp

... giving a function m(θ,−) : Ra → Rb

This paper: what about for arbitrary semirings instead of R?

Paul Wilson*, Fabio Zanasi
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Application: ‘Gradient’ Based Learning without R II

Problems with R:
We can’t really represent values of R on a computer anyway
Instead, we need to deal with finite representations
Floating-point is relatively expensive: sometimes not available!

Another option:
An extreme choice: use Z2 instead of R [WZ21b]
‘Nudging an input’ = flipping a bit
We can express any function Ba → Bb in terms of polynomials
over Z2 (functional completeness!)

What about other semirings S? That’s where PolyCircS comes in

Paul Wilson*, Fabio Zanasi
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Summary

So we want categories which ...
... have RDC structure
... are presented by generators and relations
... represent a ‘suitably expressive’ class of models

So that we can ...
... do ‘gradient’ based learning
... use computer representations to evaluate/compile them
... define an appropriate model for a given problem

PolyCirc fits these criteria

Paul Wilson*, Fabio Zanasi
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Structure of this talk

Motivation
Reverse Derivatives
Polynomial Circuits
Functional Completeness

Paul Wilson*, Fabio Zanasi
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Presentation-Friendly Reverse Derivatives

Original formulation
What are reverse derivatives for?
Alternative ‘presentation-friendly’ axioms
‘Extensibility theorem’

Paul Wilson*, Fabio Zanasi
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Reverse Derivative Categories (2019)
Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher,
Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon Plotkin,
Dorette Pronk

Defines categories with a reverse derivative combinator:

A f−→ B
A × B′ −→

R[f]
A′ R[f]

A

B′
A′

obeying some axioms RD.1 - RD.7, along with some other ‘base’
structure.

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning



. .. .. .. .. .. .. .. .. .
Motivation

. .. .. .. .. .. .. .. .. .. .. .. .. .
Reverse Derivatives

. .. .. .. .. .. .. .. .. .
Polynomial Circuits

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
Functional Completeness

Why do we need Reverse Derivatives?

Earlier we said...
Want to learn a map f : A → B
Define a model m : P × A → B
Learning: repeatedly nudge your parameters in the ‘direction
of best improvement’.

We need something like this:

m′
P

B′
A P′

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning
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Reverse Derivatives

Taking the reverse derivative of our model gets us what we want:

m
P

A
B ⇒ R[m]

P

B′
A

P′

A′

But RDCs have some required ‘base’ structure...

Paul Wilson*, Fabio Zanasi
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RDC Requirements I: Cartesian Structure

... means that each object A comes equipped with a copy and a
discard map:

A
AA A

such that...

= = =

f =
f

f
f =

Paul Wilson*, Fabio Zanasi
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Cartesian Left Additive Structure I

A Cartesian Left-Additive Category ([CCG+19], [BCS09]) is a
cartesian category in which each object A is equipped with a
commutative monoid and zero map:

A
A A A

so that

= = =

Paul Wilson*, Fabio Zanasi
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Cartesian Left Additive Structure II: Adding Morphisms
We used the ‘alternative’ definition of cartesian left-additive
structure. The original has these axioms:

x # (f + g) = (x # f) + (x # g) x # 0 = 0

We can recover these by defining addition and zero:

f + g :=
f
g

0 :=

Then the equations above can be written diagrammatically:

f
g

x =
f
g

x

x
x =

Paul Wilson*, Fabio Zanasi
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RDC Axioms I: Structural Axioms

[ARD.1] (Structural axioms, equivalent to RD.1, RD.3-5 in
[CCG+19])

R [ ] = R
[ ]

= R
[ ]

=

R
[ ]

= R [ ] = R [ ] =

R[f # g] = f R[g]
R[f] R[f × g] =

R[f]

R[g]

Paul Wilson*, Fabio Zanasi
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RDC Axioms II: Additivity of Change

[ARD.2] (Additivity of change, equivalent to RD.2 in [CCG+19])

R[f] =
R[f]

R[f]
R[f] =

Paul Wilson*, Fabio Zanasi
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RDC Axioms III: Higher Derivatives

[ARD.3] (Linearity of change, equivalent to RD.6 in [CCG+19])

DB [R[f]] = R[f]

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [CCG+19])

D(2)[f] = D(2)[f]

Paul Wilson*, Fabio Zanasi
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Equivalence to Original Definition

Original formulation had axioms RD.1 - RD.7
Our formulation has axioms ARD.1 - ARD.4
These are equivalent (Theorem 1)

Now let’s use our formulation to show how to extend RDCs...

Paul Wilson*, Fabio Zanasi
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Extending RDC Presentations: A Theorem
How to extend an RDC C presented by generators Σ and
equations E (Theorem 2):

Add a new generator s and equations e.g. l = r
Define R[s]
Check R is well-defined (R[l] = R[r])
Check R satisfies ARD.2 - ARD.4

Formally:

Theorem
Let C be the cartesian left-additive category presented by
generators (Obj,Σ) and equations E. If for each s ∈ Σ there is
some R[s] which is well-defined with respect to E, and which
satisfies axioms ARD.1-4, then C is a reverse derivative category.

Paul Wilson*, Fabio Zanasi
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Summary

We’ve done this:
Redefined the RDC axioms in a ‘presentation friendly’ way
Showed how we can extend an RDC with new generators and
equations

Now we can slowly build up PolyCirc from parts

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits

Definition
Relationship to POLYS
Examples

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning



. .. .. .. .. .. .. .. .. .
Motivation

. .. .. .. .. .. .. .. .. .. .. .. .. .
Reverse Derivatives

. .. .. .. .. .. .. .. .. .
Polynomial Circuits

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
Functional Completeness

Defining PolyCircS

Piece-by-piece:
Cartesian left-additive structure
A multiplication operation
Constants and equations

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning



. .. .. .. .. .. .. .. .. .
Motivation

. .. .. .. .. .. .. .. .. .. .. .. .. .
Reverse Derivatives

. .. .. .. .. .. .. .. .. .
Polynomial Circuits

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
Functional Completeness

Cartesian Left Additive Structure
Generators:

A
AA A A

A A A

Equations:

= = =

f =
f

f
f =

= = =

The reverse derivative is fixed by ARD.1
Paul Wilson*, Fabio Zanasi
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Cartesian Distributive Categories
Now add a multiplication and 1 constant to get a
Cartesian Distributive Category:

Satisfying cartesian left-additive and multiplicativity equations

= = =

and the distributivity and annihilation equations

= =

x1 · (x2 + x3) = x1 · x2 + x1 · x3 x1 · 0 = 0
Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning
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Cartesian Distributive Categories II: Reverse Derivative

Take an RDC
Add the generators and equations of Cartesian Distributive
categories
Give it a reverse derivative:

R
[ ]

= R [ ] =

This is well-defined and satisfies ARD.1-4.

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits
We define PolyCircS as the cartesian distributive category
presented by:

one generating object 1 (so the objects are natural numbers)
for each s ∈ S, a generating morphism s : 0 → 1,
the ‘constant’ equations (below)

0 =
s

t
= s + t

1 =
s

t
= s · t

PolyCircS is an RDC with R
[

s
]
= .

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits Examples I: PolyCircN

define each constant s ∈ S as repeated addition:

s := s

where we define n inductively as

0 := n :=
n − 1

PolyCircN is the free Cartesian Distributive Category on one
generating object

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits Examples II: PolyCircZn

PolyCircZ2 is the same, but we need one additional equation:

=

This says that 1+ 1 = 0 (it’s XOR)

More generally for PolyCircZn :

n =

Paul Wilson*, Fabio Zanasi
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PolyCircS and POLYS

Take a morphism f : m → n of PolyCircS
It’s the same as an n-tuple of m-variable polynomials...
i.e. an element of the free module over polynomial ring
S[x1 . . . xm]n

This makes PolyCircS ∼= POLYS (POLYS is from [CCG+19])
Recall our first example:

x1 x2 7→ x1 · x2 + x1

Except something is missing for functional completeness: we need
to extend PolyCircS by adding a new operation (and we’ll no
longer have polynomials)

Paul Wilson*, Fabio Zanasi
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Functional Completeness

Why do we want it?
How do we define it?
When do we have it?
Extending PolyCircS to get it

Paul Wilson*, Fabio Zanasi
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Why do we want it?

We want to use morphisms of PolyCircS as ML models
Interpreting morphisms m → n gives us functions Sm → Sn

We would like to be able to express any function using our
syntax
If we can do this, we have functional completeness
This is like a discrete analog of ”Universal Approximator”
theorems for NNs
We will now be working only with finite semirings!

Paul Wilson*, Fabio Zanasi
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How do we define it?

More formally...
We want to interpret morphisms f : m → n of PolyCircS as
functions between sets.
Define FinSetS as the PROP whose morphisms are functions
Sm → Sn

When any function in FinSetS has a corresponding morphism
f ∈ PolyCircS, then PolyCircS is functionally complete.

Definition
We say a category C is functionally complete with respect to a
finite set S when there a full identity-on-objects functor
F : C → FinSetS.

Paul Wilson*, Fabio Zanasi
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For some S, PolyCircS is already functionally complete

Example: PolyCircZ2 ...
Addition as XOR
Multiplication as AND

...is functionally complete

Paul Wilson*, Fabio Zanasi
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... but not always!

Example: For B the boolean semiring with:
Addition as OR
Multiplication as AND

PolyCircB is not functionally complete (you need a NOT gate!)

Paul Wilson*, Fabio Zanasi
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The missing piece

compare(x, y) =
{
1 if x = y
0 otherwise

Paul Wilson*, Fabio Zanasi
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Function Tables

The idea is that because S is finite, we can simply encode the
function table of any function f : Sm → S.

e.g., for f(x1, x2) = x1 · (x2 + 1) in Z2:

x1 x2 f(x1, x2)
0 0 0
0 1 0
1 0 1
1 1 0

How do we encode this?

Paul Wilson*, Fabio Zanasi
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Function Tables II

We can encode function tables using only constants, addition, and
multiplication:

x 7→
∑
s∈Sm

compare(s, x) · f(s)

f is ‘syntactic’ above- we only use it to build the expression
compare is 1 only when s = x (i.e. exactly once!)

Example: S = Z3, m = 1, f(x) = x + 2

x 7→ compare(0, x) · 2
+ compare(1, x) · 0
+ compare(2, x) · 1

Paul Wilson*, Fabio Zanasi
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Theorem
Let S be a finite commutative semiring. A category C is
functionally complete with respect to S iff. there is a monoidal
functor F : C → FinSetS in whose image are the following
functions:

〈〉 7→ s for each s ∈ S (constants)
〈x, y〉 7→ x + y (addition)
〈x, y〉 7→ x · y (multiplication)
compare

Paul Wilson*, Fabio Zanasi
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Example: PolyCircZp

PolyCircZp is functionally complete for prime p. Fermat’s Little
Theorem says:

ap−1 ≡ 1(mod p)

for a > 0. In other words, this is the ‘nonzero indicator’ function.
We can construct the ‘zero indicator’ function like this:

δ(a) := (p − 1) · ap−1 + 1 =

{
1 if a = 0
0 otherwise

Now we can construct compare (because S is finite):

compare(x1, x2) =
∑
s∈S

δ(x1 + s) · δ(x2 + s)

Paul Wilson*, Fabio Zanasi
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PolyCirc=S

To get functional completeness, we just add one more widget,
which we will interpret as the compare function

=

and equations

=
s

s
= =

s

t
=

for s, t ∈ S with s 6= t.
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The Reverse Derivative of Comparison

To make PolyCirc=S an RDC, we need to define R[ = ] in a
way that:

Is consistent with its equations
Satisfies axioms ARD.2 - ARD.4

We choose this:
R
[

=
]
:=

This satisfies the conditions, but is it reasonable?

Paul Wilson*, Fabio Zanasi
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The Straight-Through Estimator

DNN architectures sometimes use functions with zero
derivatives
Example: ‘Thresholding’ function δx≥0

Instead of using the zero derivative, just ‘pass through’ the
gradients to not lose information
This is called the straight through estimator

R
[

=
]
:=
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Summary

We defined PolyCirc in an ‘extensible’ way
We showed how RDCs can be defined in a ‘presentation
friendly’ way too
We used our definition to extend PolyCirc with an additional
operation (comparison)
We ended up with a useful model class for machine learning

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning



. .. .. .. .. .. .. .. .. .
Motivation

. .. .. .. .. .. .. .. .. .. .. .. .. .
Reverse Derivatives

. .. .. .. .. .. .. .. .. .
Polynomial Circuits

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
Functional Completeness

Thanks for listening!

Questions?

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning



. .. .. .. .. .. .. .. .. .
Motivation

. .. .. .. .. .. .. .. .. .. .. .. .. .
Reverse Derivatives

. .. .. .. .. .. .. .. .. .
Polynomial Circuits

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
Functional Completeness

Richard F. Blute, J. R. B. Cockett, and R. A. G. Seely.
Cartesian differential categories.
Theory and Applications of Categories, 22, 2009.
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel
Sobocinski, and Fabio Zanasi.
String diagram rewrite theory i: Rewriting with frobenius
structure, 2020.
Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher,
Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon
Plotkin, and Dorette Pronk.
Reverse derivative categories, 2019.
Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish
Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit.
One model to learn them all, 2017.
Paul Wilson and Fabio Zanasi.
The cost of compositionality: A high-performance
implementation of string diagram composition, 2021.
Paul Wilson and Fabio Zanasi.
Reverse derivative ascent: A categorical approach to learning
boolean circuits.
Electronic Proceedings in Theoretical Computer Science,
333:247–260, 2021.

Paul Wilson*, Fabio Zanasi
Categories of Differentiable Polynomial Circuits for Machine Learning


	Motivation
	Reverse Derivatives
	Polynomial Circuits
	Functional Completeness

