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Motivation

m Narrow view: What's in the paper?

m Wide view: Why is what's in the paper in the paper?
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This Paper: Narrow View

m A machine learning model class PolyCircg
m A graphical account of reverse derivatives
m A recipe to construct and extend reverse derivative categories

m An extension of PolyCirc to gain functional completeness

?Dﬁ X1 X2+—>X1-(X2+1)
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Presentations by Generators and Equations

Generators (example):

—C X

Build terms with composition and tensor:

O EE S E i

Equations (example):

=
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This Paper: Wide View

Slogan: Machine Learning with String Diagrams

m ML papers often use diagrammatic exposition (below from
[KGST17])

m We want to make this completely formal

m Use string diagrams: gain access to lots of free theoretical
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‘Mixure of
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Why is graphical structure important?

Morphisms of PolyCirc will represent machine learning models. We
want to...

m ... represent terms easily on a computer [WZ21a]

® ... manipulate terms (rewriting/optimization) [BGK™20]
m ... evaluate and compile (to unusual targets!)

m ... visualise execution + model internals

Aside from this, we also have an immediate application in mind...
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Application: Gradient based learning without R |

In 5 bullet points:
m Want to learn a function f: R? — R?
m Define a model m : RP x R? — Rb

m Learning: repeatedly nudge your parameters in the ‘direction
of best improvement'.

m Final result: parameters 6 € RP
m ... giving a function m(f, —) : R? — R?

This paper: what about for arbitrary semirings instead of R?

Paul Wilson*, Fabio Zanasi
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Application: ‘Gradient’ Based Learning without R [l

Problems with R:

m We can't really represent values of R on a computer anyway

m Instead, we need to deal with finite representations

m Floating-point is relatively expensive: sometimes not available!
Another option:

m An extreme choice: use Z; instead of R [WZ21b]

= ‘Nudging an input’ = flipping a bit

m We can express any function B? — B? in terms of polynomials

over Zjy (functional completeness!)

What about other semirings S? That's where PolyCircg comes in

Paul Wilson*, Fabio Zanasi
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Summary

So we want categories which ...
m ... have RDC structure
m ... are presented by generators and relations
m ... represent a ‘suitably expressive' class of models
So that we can ...
m ... do ‘gradient’ based learning
® ... use computer representations to evaluate/compile them
m ... define an appropriate model for a given problem

PolyCirc fits these criteria

Paul Wilson*, Fabio Zanasi
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Structure of this talk

m Motivation
m Reverse Derivatives
m Polynomial Circuits

m Functional Completeness
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Presentation-Friendly Reverse Derivatives

m Original formulation
m What are reverse derivatives for?
m Alternative ‘presentation-friendly’ axioms

m ‘Extensibility theorem’

Paul Wilson*, Fabio Zanasi
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Reverse Derivative Categories (2019)

Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher,
Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon Plotkin,
Dorette Pronk

Defines categories with a reverse derivative combinator:

f
A— B A
T RIA— A
Ax B —s A g
R

obeying some axioms RD.1 - RD.7, along with some other ‘base’
structure.

Paul Wilson*, Fabio Zanasi

Categories of Differentiable Polynomial Circuits for Machine Learning



Reverse Derivatives
0080000000000

Why do we need Reverse Derivatives?

Earlier we said...
m Want to learn amap f: A— B
m Defineamodel m: Px A— B

m Learning: repeatedly nudge your parameters in the ‘direction
of best improvement'.

We need something like this:

P
A—dml—P
B/
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Reverse Derivatives

Taking the reverse derivative of our model gets us what we want:

But RDCs have some required ‘base’ structure...
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RDC Requirements |: Cartesian Structure

. means that each object A comes equipped with a copy and a

discard map:
A
A —o( A A

such that...

R Sl S
e e
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Cartesian Left Additive Structure |

A Cartesian Left-Additive Category ([CCG119], [BCS09]) is a
cartesian category in which each object A is equipped with a
commutative monoid and zero map:

Q}A — A

so that

S S e
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Cartesian Left Additive Structure II: Adding Morphisms

We used the ‘alternative’ definition of cartesian left-additive
structure. The original has these axioms:

xs(f+g) = (xsH+(x58) x30 = 0

We can recover these by defining addition and zero:

f—l—g:z 0= —o o

Then the equations above can be written diagrammatically:
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RDC Axioms |: Structural Axioms

[ARD.1] (Structural axioms, equivalent to RD.1, RD.3-5 in
[CCGT19])

Paul Wilson*, Fabio Zanasi
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RDC Axioms Il: Additivity of Change

[ARD.2] (Additivity of change, equivalent to RD.2 in [CCGT19])

R - ' SR = o
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RDC Axioms Ill: Higher Derivatives

[ARD.3] (Linearity of change, equivalent to RD.6 in [CCGT19])

D5 R[] = - AR}

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [CCGT19])

D@ =>4 D[
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Equivalence to Original Definition

m Original formulation had axioms RD.1 - RD.7
m Our formulation has axioms ARD.1 - ARD.4

m These are equivalent (Theorem 1)

Now let's use our formulation to show how to extend RDCs...

Paul Wilson*, Fabio Zanasi
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Extending RDC Presentations: A Theorem

How to extend an RDC % presented by generators ¥ and
equations E (Theorem 2):

m Add a new generator s and equations e.g. /=r
m Define R[s]
m Check R is well-defined (R[/] = R[A])
m Check R satisfies ARD.2 - ARD.4
Formally:

Theorem

Let € be the cartesian left-additive category presented by
generators (Obj, X.) and equations E. If for each s € ¥ there is
some R[s| which is well-defined with respect to E, and which
satisfies axioms ARD.1-4, then € is a reverse derivative category.
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Summary

We've done this:
m Redefined the RDC axioms in a ‘presentation friendly’ way

m Showed how we can extend an RDC with new generators and
equations

Now we can slowly build up PolyCirc from parts

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits

m Definition
m Relationship to POLYg

m Examples

Paul Wilson*, Fabio Zanasi
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Defining PolyCircg

Piece-by-piece:
m Cartesian left-additive structure
® A multiplication operation

m Constants and equations

Paul Wilson*, Fabio Zanasi
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Cartesian Left Additive Structure

Generators:

A{j A —e j\\}A — A

Equations:

e Sl
By e

P s S

The reverse derivative is fixed by ARD.1
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Cartesian Distributive Categories

Now add a multiplication “»— and 1 constant - to get a
Cartesian Distributive Category:

Satisfying cartesian left-additive and multiplicativity equations

=D 2= o=

and the distributivity and annihilation equations

et e

X1 (x+x3) =x1 X2+ x1-X3 x1-0=0
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Cartesian Distributive Categories Il: Reverse Derivative

m Take an RDC

m Add the generators and equations of Cartesian Distributive
categories

m Give it a reverse derivative:

Rl Rl

This is well-defined and satisfies ARD.1-4.

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits

We define PolyCircg as the cartesian distributive category
presented by:

m one generating object 1 (so the objects are natural numbers)
m for each s € S, a generating morphism @: 0—1,
m the ‘constant’ equations (below)

PolyCircs is an RDC with R |<§}—| = —e .

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits Examples |: PolyCircy

define each constant s € S as repeated addition:

where we define inductively as

—0D— = o - = o LD

PolyCircy is the free Cartesian Distributive Category on one
generating object

Paul Wilson*, Fabio Zanasi
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Polynomial Circuits Examples II: PolyCircy,_

PonCicm2 is the same, but we need one additional equation:

S ED SRR

This says that 1 +1 = 0 (it's XOR)
More generally for PolyCircy, :

—An>—=—e e—
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PolyCircg and POLYs

m Take a morphism f: m — n of PolyCircg
m It's the same as an n-tuple of m-variable polynomials...
m i.e. an element of the free module over polynomial ring
S[x1 ... xm]"
m This makes PolyCircg =2 POLYs (POLYs is from [CCGT19])

Recall our first example:

?Dﬁ X1 Xo > X1+ Xo + X1

Except something is missing for functional completeness: we need
to extend PolyCircg by adding a new operation (and we'll no
longer have polynomials)

Paul Wilson*, Fabio Zanasi
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Functional Completeness

m Why do we want it?
m How do we define it?
m When do we have it?

m Extending PolyCircg to get it

Paul Wilson*, Fabio Zanasi
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Why do we want it?

We want to use morphisms of PolyCircg as ML models

Interpreting morphisms m — n gives us functions S™ — 5"

We would like to be able to express any function using our
syntax

m If we can do this, we have functional completeness

m This is like a discrete analog of "Universal Approximator”
theorems for NNs

m We will now be working only with finite semirings!

Paul Wilson*, Fabio Zanasi
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How do we define it?

More formally...

m We want to interpret morphisms f: m — n of PolyCircg as
functions between sets.

m Define FinSets as the PROP whose morphisms are functions
ST 5"

m When any function in FinSets has a corresponding morphism
f € PolyCircg, then PolyCircg is functionally complete.

We say a category % is functionally complete with respect to a
finite set S when there a full identity-on-objects functor
F : ¥ — FinSets.

Paul Wilson*, Fabio Zanasi
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For some S, PolyCircg is already functionally complete

Example: PolyCircy, ...
m Addition as XOR
m Multiplication as AND

...is functionally complete

Paul Wilson*, Fabio Zanasi
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... but not always!

Example: For B the boolean semiring with:
m Addition as OR
m Multiplication as AND
PolyCircy is not functionally complete (you need a NOT gate!)

Paul Wilson*, Fabio Zanasi
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The missing piece

1 ifx=y
compare(x, ) = 0 otherwise

Paul Wilson*, Fabio Zanasi
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Function Tables

The idea is that because S is finite, we can simply encode the
function table of any function f: S™ — S.

e.g., for f(Xl,Xg) = X1 (X2 + 1) in Zo:

X1 X2 ‘ f(x1, x2)
0

= = O O
= O = O

0
1
0

How do we encode this?

Paul Wilson*, Fabio Zanasi
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Function Tables Il

We can encode function tables using only constants, addition, and
multiplication:

X Z compare(s, x) - (s)
seSsm
m fis 'syntactic’ above- we only use it to build the expression
m compare is 1 only when s = x (i.e. exactly once!)
Example: S=7Z3, m=1, f{x) = x+2

x+— compare(0, x) - 2
+ compare(1, x) - 0
+ compare(2, x) - 1

Paul Wilson*, Fabio Zanasi
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Theorem

Let S be a finite commutative semiring. A category € is
functionally complete with respect to S iff. there is a monoidal
functor F : € — FinSetg in whose image are the following
functions:

m () > s for each s € S (constants)
m (x,y) — x+ y (addition)

m (x,y) — x-y (multiplication)

m compare

Paul Wilson*, Fabio Zanasi
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Example: PolyCirc;

PonCicmP is functionally complete for prime p. Fermat’s Little

Theorem says:
2”71 = 1(mod p)

for a > 0. In other words, this is the ‘nonzero indicator’ function.
We can construct the ‘zero indicator’ function like this:

1 ifa=0
§(a):=(p—1)-aP1+1=
(a):=(p—1) 0 otherwise
Now we can construct compare (because S is finite):

compare(xi, x2) Z d(x1+5s)-0(x2+s)
seS

Paul Wilson*, Fabio Zanasi
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PolyCircg

To get functional completeness, we just add one more widget,
which we will interpret as the compare function

A=

and equations

for s,t € S with s# t.

Paul Wilson*, Fabio Zanasi
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The Reverse Derivative of Comparison

To make PolyCircg an RDC, we need to define R[B] in a
way that:

m s consistent with its equations
m Satisfies axioms ARD.2 - ARD.4

We choose this:

This satisfies the conditions, but is it reasonable?

Paul Wilson*, Fabio Zanasi
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The Straight-Through Estimator

m DNN architectures sometimes use functions with zero
derivatives

m Example: ‘Thresholding’ function d,>0

m Instead of using the zero derivative, just ‘pass through’ the
gradients to not lose information

m This is called the straight through estimator

Paul Wilson*, Fabio Zanasi
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Summary

m We defined PolyCirc in an ‘extensible’ way

m We showed how RDCs can be defined in a ‘presentation
friendly' way too

m We used our definition to extend PolyCirc with an additional
operation (comparison)

m We ended up with a useful model class for machine learning

Paul Wilson*, Fabio Zanasi
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Thanks for listening!

Questions?

Paul Wilson* Zanasi
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