On Ramsey Theory, Category Theory and
Entropy

Dragan Masulovié

Department of Mathematics and Informatics
University of Novi Sad, Serbia

ACT 2022, Glasgow (ONLINE)



Categorical Ramsey Theory

» Duality Principle facilitates reasoning about dual Ramsey
phenomena;

» piggyback proof strategies:
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Example. How “unexpected” are the following graphs?
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|Aut(G)| = 5! |Aut(G)| = 5! |Aut(G)| =2
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Example. How “unexpected”’ are the following posets?

not at all not at all somewhat
|Aut(P)| = 5! |Aut(P)| =1 |Aut(P)| =8
| linext(P) __ | linext(P) __ | linext(P) ~ 3.32

82 TAut(P)] — 82 TAut(P)] — 82 TAut(P)]
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Entropy of combinatorial structures

NB.
> \/—\ut(IG)\ = small structural Ramsey degree of a graph G
m = small structural Ramsey degree of a poset P
& H(A) = log, {(A)
ALAS, NO!

X A=< B = H(A) < H(B) for some “natural” ordering <;



Expectations

» H(A) < logd(A), where §(A) measures “diversity”;

» A= B = H(A) = H(B);

» H(A) =0iff Ais “simple”;

» A< B= H(A) < H(B) for some “natural” ordering <;

> H(A, B) = H(A) + H(B).



Structural Ramsey Theory

Deep structural property developed in the 1970's by Erdos,
Graham, Leeb, Rothschild, Rodl, Nesetfil and many more.

Definition.
A class K of finite structures has the Ramsey property if:

for all A, B € K such that A< B and all k > 2 there is a
C € K such that C — (B){.
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there is a B € (§) such that ‘X ((ﬁ))‘ =1.



SURPRISE! NO combinatorially interesting class of finite
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Structural Ramsey Theory

SURPRISE! NO combinatorially interesting class of finite
structures has the Ramsey property!

Two approaches to rectify the injustice:

1 early 1970's: add more structure
~ precompact Ramsey expansions, Nguyen Van Thé 2013

2 late 1990's: relax the Ramsey property
~» Ramsey degrees, Fouché 1997-99

2016 Andy Zucker: the two approaches are equivalent!

» An amalgamation class of finite structures has finite Ramsey
degrees iff it has a precompact Ramsey expansion.
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Structural Ramsey Theory

Examples.
!
1 [Fouché 1997/8] Finite simple graphs: £(G) = m
~ linext(P
2 [Fouché 1997/8] Finite posets: ¥(P) — m
_ convio(p)

3 [KPT 2005] Finite equiv relations: £(p) = |Aut(p)|



Categorification

C ... a category

fr~ag... f=g-aforsomeac Aut(A)

(%) ... =hom(A,B)/~a

> C — (B)},: for every coloring x : (S) — k there is a

w € hom(B, C) such that |x(w ( )| <

» Small Ramsey degrees: E(A) = minimal t such that for all k
and B there is a C with C -~ (B)k 4 or oo if no such t
exists;

» C has the Ramsey property: t(A) =1 for every A € Ob(C).



Ramsey degrees via essential partitions

C ... locally small category whose morphisms are mono
A,B ... objects of C such that A— B

Definition. A € Part(i) is essential if there is a C € Ob(C) such

that B — C and for every partition 1 € Part(i) there is a
w € hom(B, C) such that A = ¢,,)}().

Ess(5) ... all essential partitions of (%)

Lemma. #(A) = supg.a_,p5 minAeEss(i) IA].



Entropies on partitions

X ... a nonempty finite set
Part(X) ... lattice of partitions on X
Hx : Part(X) —» RU {0}

> Hy(M) < log ||

> if 122 A then Hx (M) = Hy (A);

> Hy (M) = 0iff N = {X}

» if ¥ < I then Hx(X) < Hx(N);
» Hxxy (M x A) = Hx(M) + Hy(A).



Entropies on partitions

X ... a nonempty finite set

Part(X) ... lattice of partitions on X
Hx : Part(X) —» RU {0}

Examples.

1 Boltzmann entropy:
Hx? (M) = log ||
2 Shannon entropy (where p(3) = |B|/|X]):

HZ2(M) = = > p(B)log p(B)

Ben



Ramsey entropy

C ... a small cat whose mor's are mono and homsets finite
H ... any entropy on partitions

Definition. Ramsey entropy based on H is 7 : Ob(C) — R U {oo}
defined by:

F(X) = infax—asupg.a_p MiNny cpes() H(A).

If H= HB°' we refer to 7 as the Ramsey-Boltzmann entropy

NB. 7 can be defined for any small category whose morphisms are
mono and homsets are finite!



Ramsey entropy

C ... a small cat whose mor's are mono and homsets finite
H ... any entropy on partitions

Theorem. If C has finite Ramsey degrees then C admits a Ramsey
entropy based on H (that is, 7#(A) < oo for all A € Ob(C)).



Ramsey entropy

C ... a small cat whose mor's are mono and homsets finite
H ... any entropy on partitions
Theorem.

> F(A) < log t(A)

» A B = F(A) =F(B);

» if Ais a subobject of a Ramsey object then F(A) = 0;
» A— B=F(A) < FB),

> #(A, B) < F(A) + F(B).



Ramsey-Boltzmann entropy

C ... a small cat whose mor's are mono and homsets finite
HB°! . the Boltzmann entropy on partitions

Theorem. Ramsey-Boltzman entropy is the maximal Ramsey
entropy on a category.

Theorem. C admits a Ramsey-Boltzmann entropy (that is,
F(A) < oo for all A € Ob(C)) if and only if C has finite Ramsey
degrees.



Ramsey-Boltzmann entropy

C ... a small cat whose mor's are mono and homsets finite
HB°! . the Boltzmann entropy on partitions

Theorem.
> F(A) < log £(A)

» A B = F(A) =F(B);
» 7(A) =0 iff Ais a subobject of a Ramsey object;
» A— B=F(A) < FB),

> #(A, B) = F(A) + F(B).



Concluding remarks

1 Can we use this point of view to detect the extremely elusive
Ramsey property using strategies of information theory?

2 By duality, small dual Ramsey degrees also lead to the notion
of entropy; compute Ramsey-Boltzmann entropy for the
category of finite probability distributions and compare with
Shannon entropy.



