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Categorical Ramsey Theory

▶ Duality Principle facilitates reasoning about dual Ramsey
phenomena;

▶ piggyback proof strategies:

Well-known
Ramsey
statement
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categorical
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Entropy of combinatorial structures

Example. How “unexpected” are the following graphs?

not at all not at all somewhat

|Aut(G )| = 5! |Aut(G )| = 5! |Aut(G )| = 2

log2
n!

|Aut(G)| = 0 log2
n!

|Aut(G)| = 0 log2
n!

|Aut(G)| ≈ 5.91
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Entropy of combinatorial structures

Example. How “unexpected” are the following posets?

not at all not at all somewhat

|Aut(P)| = 5! |Aut(P)| = 1 |Aut(P)| = 8

log2
linext(P)
|Aut(P)| = 0 log2
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linext(P)
|Aut(P)| ≈ 3.32
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Entropy of combinatorial structures

NB.

▶
n!

|Aut(G )|
= small structural Ramsey degree of a graph G

▶
linext(P)

|Aut(P)|
= small structural Ramsey degree of a poset P

H(A) = log2 t̃(A)

ALAS, NO!

X A ≼ B ⇒ H(A) ⩽ H(B) for some “natural” ordering ≼;
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Expectations

▶ H(A) ⩽ log δ(A), where δ(A) measures “diversity”;

▶ A ∼= B ⇒ H(A) = H(B);

▶ H(A) = 0 iff A is “simple”;

▶ A ≼ B ⇒ H(A) ⩽ H(B) for some “natural” ordering ≼;

▶ H(A,B) = H(A) + H(B).



Structural Ramsey Theory

Deep structural property developed in the 1970’s by Erdős,
Graham, Leeb, Rothschild, Rödl, Nešeťril and many more.

Definition.
A class K of finite structures has the Ramsey property if:

for all A,B ∈ K such that A ↪→ B and all k ⩾ 2 there is a
C ∈ K such that C −→ (B)Ak .



C −→ (B)Ak

CA

B



C −→ (B)Ak

CA

B

for every coloring χ :
(C
A
)
→ k



C −→ (B)Ak

CA

B

there is a B̃ ∈
(C
B
)
such that

∣∣∣χ((B̃
A
))∣∣∣ = 1.



Structural Ramsey Theory

SURPRISE! NO combinatorially interesting class of finite
structures has the Ramsey property!

Two approaches to rectify the injustice:

1 early 1970’s: add more structure
⇝ precompact Ramsey expansions, Nguyen Van Thé 2013

2 late 1990’s: relax the Ramsey property
⇝ Ramsey degrees, Fouché 1997–99

2016 Andy Zucker: the two approaches are equivalent!

▶ An amalgamation class of finite structures has finite Ramsey
degrees iff it has a precompact Ramsey expansion.



Structural Ramsey Theory

SURPRISE! NO combinatorially interesting class of finite
structures has the Ramsey property!

Two approaches to rectify the injustice:

1 early 1970’s: add more structure
⇝ precompact Ramsey expansions, Nguyen Van Thé 2013
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Structural Ramsey Theory

Relaxing the property.

CA

B

t = 2
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Structural Ramsey Theory

Examples.

1 [Fouché 1997/8] Finite simple graphs: t̃(G ) =
n!

|Aut(G )|

2 [Fouché 1997/8] Finite posets: t̃(P) =
linext(P)

|Aut(P)|

3 [KPT 2005] Finite equiv relations: t̃(ρ) =
convlo(ρ)

|Aut(ρ)|



Categorification

C . . . a category

f ∼A g . . . f = g · α for some α ∈ Aut(A)(B
A

)
. . . = hom(A,B)/∼A

▶ C
∼−→ (B)Ak,t : for every coloring χ :

(C
A

)
→ k there is a

w ∈ hom(B,C ) such that |χ(w ·
(B
A

)
)| ⩽ t.

▶ Small Ramsey degrees: t̃(A) = minimal t such that for all k
and B there is a C with C

∼−→ (B)Ak,t ; or ∞ if no such t
exists;

▶ C has the Ramsey property: t̃(A) = 1 for every A ∈ Ob(C).



Ramsey degrees via essential partitions

C . . . locally small category whose morphisms are mono

A,B . . . objects of C such that A → B

Definition. Λ ∈ Part
(B
A

)
is essential if there is a C ∈ Ob(C) such

that B → C and for every partition Π ∈ Part
(C
A

)
there is a

w ∈ hom(B,C ) such that Λ ≽ ℓ−1
w (Π).

Ess
(B
A

)
. . . all essential partitions of

(B
A

)
Lemma. t̃(A) = supB:A→B min

Λ∈Ess(BA)
|Λ|.



Entropies on partitions

X . . . a nonempty finite set

Part(X ) . . . lattice of partitions on X

HX : Part(X ) → R ∪ {∞}

▶ HX (Π) ⩽ log |Π|;
▶ if Π ∼= Λ then HX (Π) = HY (Λ);

▶ HX (Π) = 0 iff Π = {X}
▶ if Σ ≼ Π then HX (Σ) ⩽ HX (Π);

▶ HX×Y (Π× Λ) = HX (Π) + HY (Λ).



Entropies on partitions

X . . . a nonempty finite set

Part(X ) . . . lattice of partitions on X

HX : Part(X ) → R ∪ {∞}

Examples.

1 Boltzmann entropy:

HBol
X (Π) = log |Π|

2 Shannon entropy (where p(β) = |β|/|X |):

HSha
X (Π) = −

∑
β∈Π

p(β) log p(β)



Ramsey entropy

C . . . a small cat whose mor’s are mono and homsets finite

H . . . any entropy on partitions

Definition. Ramsey entropy based on H is r̃ : Ob(C) → R ∪ {∞}
defined by:

r̃(X ) = infA:X→A supB:A→B min
Λ∈Ess(BA)

H(Λ).

If H = HBol we refer to r̃ as the Ramsey-Boltzmann entropy

NB. r̃ can be defined for any small category whose morphisms are
mono and homsets are finite!



Ramsey entropy

C . . . a small cat whose mor’s are mono and homsets finite

H . . . any entropy on partitions

Theorem. If C has finite Ramsey degrees then C admits a Ramsey
entropy based on H (that is, r̃(A) < ∞ for all A ∈ Ob(C)).



Ramsey entropy

C . . . a small cat whose mor’s are mono and homsets finite

H . . . any entropy on partitions

Theorem.

▶ r̃(A) ⩽ log t̃(A)

▶ A ∼= B ⇒ r̃(A) = r̃(B);

▶ if A is a subobject of a Ramsey object then r̃(A) = 0;

▶ A → B ⇒ r̃(A) ⩽ r̃(B);

▶ r̃(A,B) ⩽ r̃(A) + r̃(B).



Ramsey-Boltzmann entropy

C . . . a small cat whose mor’s are mono and homsets finite

HBol . . . the Boltzmann entropy on partitions

Theorem. Ramsey-Boltzman entropy is the maximal Ramsey
entropy on a category.

Theorem. C admits a Ramsey-Boltzmann entropy (that is,
r̃(A) < ∞ for all A ∈ Ob(C)) if and only if C has finite Ramsey
degrees.



Ramsey-Boltzmann entropy

C . . . a small cat whose mor’s are mono and homsets finite

HBol . . . the Boltzmann entropy on partitions

Theorem.

▶ r̃(A) ⩽ log t̃(A)

▶ A ∼= B ⇒ r̃(A) = r̃(B);

▶ r̃(A) = 0 iff A is a subobject of a Ramsey object;

▶ A → B ⇒ r̃(A) ⩽ r̃(B);

▶ r̃(A,B) = r̃(A) + r̃(B).



Concluding remarks

1 Can we use this point of view to detect the extremely elusive
Ramsey property using strategies of information theory?

2 By duality, small dual Ramsey degrees also lead to the notion
of entropy; compute Ramsey-Boltzmann entropy for the
category of finite probability distributions and compare with
Shannon entropy.


