
STRUCTURED vs DECORATED COSPANS
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In 2010 I started thinking about open systems and networks,
hoping that category theory could help us understand these.



Around 2012, I asked Brendan Fong to create and study a
category having “open electrical circuits” as morphisms:

inputs outputs
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4Ω

He invented the theory of “decorated cospans” to do this.
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In 2018 Kenny Courser and I came up with “structured
cospans”, which are often simpler. Later, Christina
Vasilakopolou helped us generalize the original theory of
decorated cospans and relate it to structured cospans.



Structured and decorated cospans have by now been used to
study and design many kinds of open systems:

I open graphs
I open Petri nets
I open electrical circuits
I open Markov processes
I open dynamical systems
I open Petri nets with rates (� chemical reaction networks)
I open stock-flow diagrams

https://arxiv.org/abs/2005.06682
https://arxiv.org/abs/1808.05415
https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1508.06448
https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/2101.09363
https://arxiv.org/abs/2205.08373


In 2020, Evan Patterson implemented structured cospans in
AlgebraicJulia. Using this system to compose open Petri nets
with rates, James Fairbanks and Micah Halter reconstructed
some of a COVID-19 model used by the UK government.

https://www.algebraicjulia.org/
https://www.algebraicjulia.org/blog/post/2020/10/structured-cospans
https://www.algebraicjulia.org/blog/post/2020/10/structured-cospans


In 2022, Sophie Libkind, Andrew Baas, Micah Halter, Evan
Patterson and James Fairbanks used AlgebraicJulia to build
models of epidemiology using open Petri nets with rates:

https://arxiv.org/abs/2203.16345
https://arxiv.org/abs/2203.16345


Also in 2022, Xiaoyan Li, Sophie Libkind, Nathaniel Osgood,
Evan Patterson and I used AlgebraicJulia to create software for
collaboratively building epidemiology models by composing
open stock-flow diagrams:

https://arxiv.org/abs/2205.08373
https://arxiv.org/abs/2205.08373


The simplest example of both structured and decorated
cospans: “open graphs”.

Here is an open graph with inputs A and outputs B:
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We can compose open graphs by gluing them end to end:
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obtaining this:

•
n1

•
n2

•

n3

e1

e2

e3

e4

e5

1

2

3

A

•
x

•
x ′

•
n8

•
n9

e6

e7

e8

C

6

This composition is associative up to isomorphism. But what do
we mean by ‘isomorphism’ here?



There is a category of open graphs. For example there is a
morphism from this one:

•
n1

•
n2

•
n3

•
n4

e1

e2

e3

e4

1

2

3

A B

4

to this one:
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So:

I There are morphisms between open graphs, and
composition of these morphisms is associative.

I Open graphs are themselves morphisms: we can compose
them by gluing them end to end, and this composition is
associative up to isomorphism.

The structure that captures all this is a “double category”.



A double category has figures like this:

A B

C D

⇓ α

M

f g

N

So, it has:
I objects such as A,B,C,D,

I vertical 1-morphisms such as f and g,
I horizontal 1-cells such as M and N,
I 2-morphisms such as α.
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Vertical 1-morphisms can be composed. Horizontal 1-cells can
be composed. 2-morphisms can be composed vertically and
horizontally, and the interchange law holds:

A B

D E
⇓ α

B C

E F
⇓ β

D E

G H
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E F

H I
⇓ β′
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Vertical composition is strictly associative and unital. Horizontal
composition obeys these laws only up to isomorphism.



How can we construct the double category of open graphs?
The key is that an open graph is a cospan of sets:

A
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i o

where the apex N is equipped with extra structure:
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Given a set N, a graph on N is a set E of edges and two
functions giving the source and target of each edge:

E N
s

t

An open graph is a cospan of sets:

A

N

B

i o

together with a graph on N.

But how in general do we equip the apex of a span with extra
data?
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There are at least two ways to equip an object of a category A
with extra data:

I “Structuring.” Given a right adjoint R : X→ A, we can
give a ∈ A extra structure by choosing x ∈ X with R(x) = a.

I “Decorating.” Given F : A→ Cat, we can decorate a ∈ A
with an object d ∈ F (a).

We want to develop both approaches and then relate them.

First let’s do “decorating”, because it’s harder. Consider the
example of open graphs.
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For any finite set N, there is a category F (N) of graphs on N.
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Indeed, there’s a lax monoidal pseudofunctor

F : (FinSet,+)→ (Cat,×)

sending each finite set to the category of graphs on that set.

Roughly:
I “pseudofunctor”: F (f ) ◦ F (g) � F (f ◦ g).
I “lax monoidal”: we have φN ,M : F (N) × F (M)→ F (N + M)
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In general, given a lax monoidal pseudofunctor

F : (A,+)→ (Cat,×),

a decorated cospan is a cospan in A:

A
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together with a decoration d ∈ F (N).

So, open graphs are decorated cospans where A = Set and F
maps any set to the category of graphs on that set.



In general, given decorated cospans

A→ N ← B, d ∈ F (N) N = B → M ← C, e ∈ F (M)

we compose their underlying cospans by pushout:
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and give it the decoration that’s the image of (d ,e) under this
composite:

(d ,e) ∈ F (N) × F (M)
φN ,M
−−−−→ F (N + M)

F (ψ)
−−−−→ F (M +B N)

where φN ,M comes from F being lax monoidal.



Theorem (B–C–V). Suppose the category A has finite colimits
and F : (A,+)→ (Cat,×) is a lax monoidal pseudofunctor. Then
there is a decorated cospan double category FCsp where:
I an object is an object of A
I a vertical 1-morphism is a morphism in A
I a horizontal 1-cell is a decorated cospan:

A N B d ∈ F (N)
i o

I a 2-morphism is a commuting diagram

A

A′

N B

B′N ′

d ∈ F (N)

d ′ ∈ F (N ′)

i o

f g

i ′ o′
h

together with a decoration morphism τ : F (h)(d)→ d ′.

https://arxiv.org/abs/2101.09363


We can also “tensor” open graphs:
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by setting them side by side:
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This tensor product gives us a symmetric monoidal double
category of open graphs, thanks to this general result:

Theorem (B–C–V). Suppose the category A has finite colimits
and F : (A,+)→ (Cat,×) is a symmetric lax monoidal
pseudofunctor. Then the decorated cospan double category
FCsp is symmetric monoidal.

https://arxiv.org/abs/2101.09363


Next let’s look at structured cospans.

Given a right adjoint
R : X→ A

a structured cospan is a diagram in A of this form:

A

R(X )

B

i o

Think of A as a category of objects with “less structure”, and X
as a category of objects with “more structure”.

For open graphs A = Set,X = Graph and R(X ) is the set of
nodes of the graph X .
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Equivalently, given a left adjoint

L : A→ X

a structured cospan is a diagram in X of this form:

L(A)

X

L(B)

i o

Now we can compose structured cospans by doing pushouts in
X.

For open graphs A = Set,X = Graph and L(A) is the graph with
A as its set of nodes and no edges.



Equivalently, given a left adjoint

L : A→ X

a structured cospan is a diagram in X of this form:

L(A)

X
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i o

Now we can compose structured cospans by doing pushouts in
X.

For open graphs A = Set,X = Graph and L(A) is the graph with
A as its set of nodes and no edges.



Theorem (B–C, B–C–V). Suppose A and X have finite
colimits and L : A→ X is a left adjoint. Then there is a
symmetric monoidal structured cospan double category
LCsp(X) where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A
I a horizontal 1-cell is a structured cospan

L(A) X L(B)
i o

I a 2-morphism is a commutative diagram

L(A) X L(B)

L(A′) X ′ L(B′)

i o

i ′ o′

L(f ) h L(g)

https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/2101.09363


Not all decorated cospans can be seen as structured cospans!

Open dynamical systems can be described using decorated
cospans, but apparently not using structured cospans. The
forgetful functor from dynamical systems to finite sets has no
left adjoint B–C–V).

This is theoretically interesting — but also of practical
importance now that we’re using software to manipulate
structured and decorated cospans.

https://arxiv.org/abs/2101.09363


When are decorated copans also structured cospans?

For this we must relate the key ingredient for decorated
cospans:

F : (A,+)→ (Cat,×)

to the key ingredient for structured cospans:

R : X→ A

For any pseudofunctor F : A→ Cat we can use the
Grothendieck construction to build a category X =

∫
F and a

functor R : X→ A which is an “opfibration”.

But we’re assuming F : (A,+)→ (Cat,×) is a symmetric lax
monoidal pseudofunctor, and we want R to be a right adjoint.
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Theorem (Shulman & Moeller–Vasilakopoulou). If A has
finite coproducts, these three things correspond to each other:
I symmetric lax monoidal pseudofunctors

F : (A,+)→ (Cat,×)

I pseudofunctors F : A→ SymMonCat.
I symmetric monoidal opfibrations R : (X,⊗)→ (A,+)

https://arxiv.org/abs/0706.1286
https://arxiv.org/abs/1809.00727


Example. Take A = Set and let F : (Set,+)→ (Cat,×) send
each set N to the category F (N) of graphs on N. This is lax
symmetric monoidal where the laxator

φN ,M : F (N) × F (M)→ F (N + M)

sends a pair of graphs to their disjoint union.

Here F (N) has finite colimits, and becomes symmetric
monoidal using +. We thus get a pseudofunctor
F : A→ SymMonCat. Moreover F factors through Rex, the
2-category of categories with finite colimits.

Here X =
∫

F is the category of graphs, and R : (X,⊗)→
(Set,+), sending each graph to its set of nodes, is a
symmetric monoidal opfibration.
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Theorem (B–C–V). Suppose A has finite colimits and

F : (A,+)→ (Cat,×)

is a symmetric lax monoidal pseudofunctor. Suppose the
corresponding pseudofunctor

F : A→ SymMonCat

factors through Rex. Then the symmetric monoidal double
categories:
I FCsp of decorated cospans

and
I LCsp(

∫
F ) of structured cospans

are isomorphic, where L : A→
∫

F is a left adjoint of the functor
R :
∫

F → A given by the Grothendieck construction.

https://arxiv.org/abs/2101.09363


Open problems:

I When are decorated cospan double categories also
structured cospan double categories? (Cicala and
Vasilakopoulou know a lot about this!)

I Even when a decorated cospan double category is not a
structured cospan double category, sometimes the
corresponding category is! When does this happen?

I Can we develop a taxonomy of the useful structured and
decorated cospan double categories and maps between
them? This could be “a universal language of open
systems”.

I Will we create software to do practical things with
structured and decorated cospan double categories, not
just categories?
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