

Simplicial Distributions and Quantum Contextuality

Cihan Okay

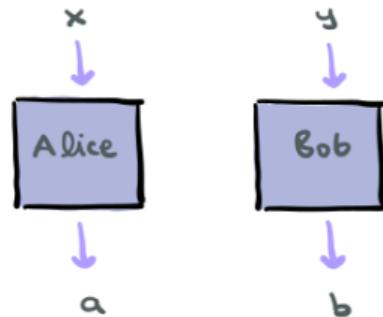
Bilkent University

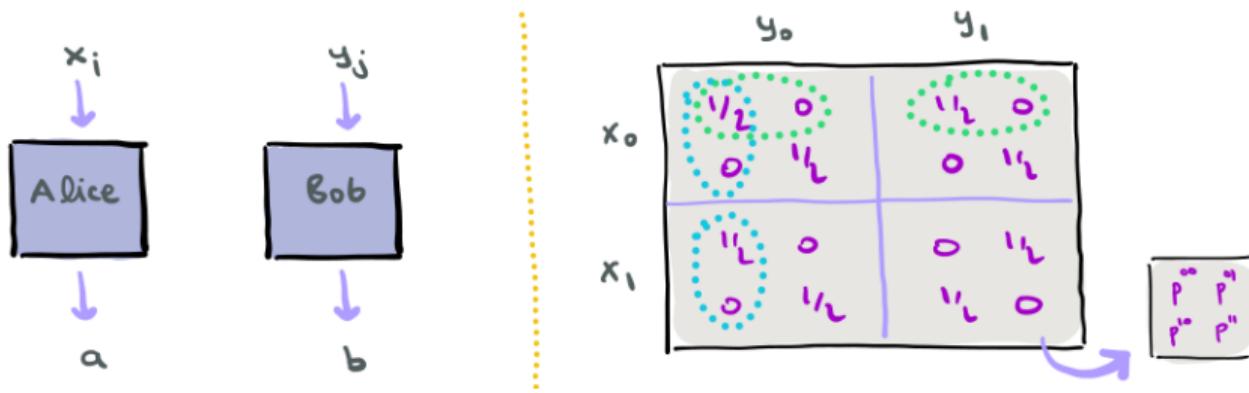
Applied Category Theory 2022

Supported by AFOSR under FA9550-21-1-0002.

Based on [arXiv:2204.06648](https://arxiv.org/abs/2204.06648) joint with Aziz Kharoof and Selman Ipek.

Can we represent measurement statistics in a topological way?





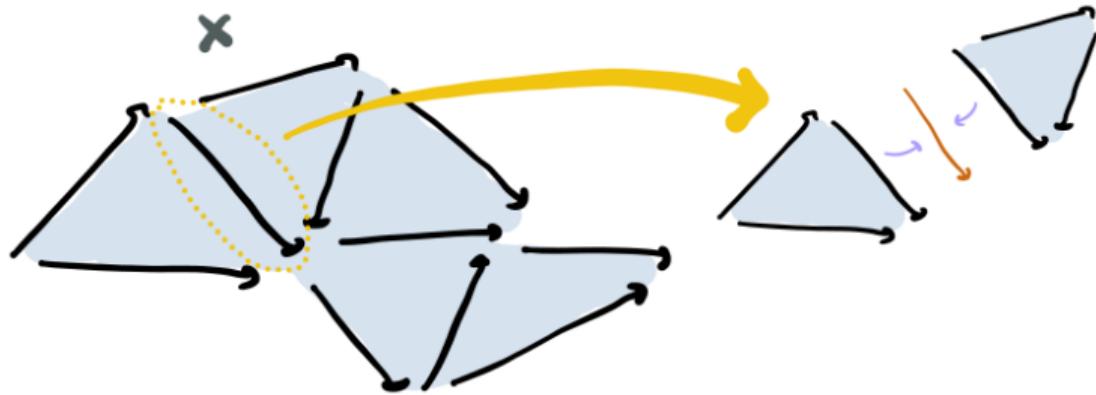
Outcome probabilities satisfy the **nonsignaling** conditions

$$p_{x_i}^a = \sum_b p_{x_i y_0}^{ab} = \sum_b p_{x_i y_1}^{ab} \quad p_{y_j}^b = \sum_a p_{x_0 y_j}^{ab} = \sum_a p_{x_1 y_j}^{ab}$$

where $a, b \in \mathbb{Z}_2 = \{0, 1\}$.

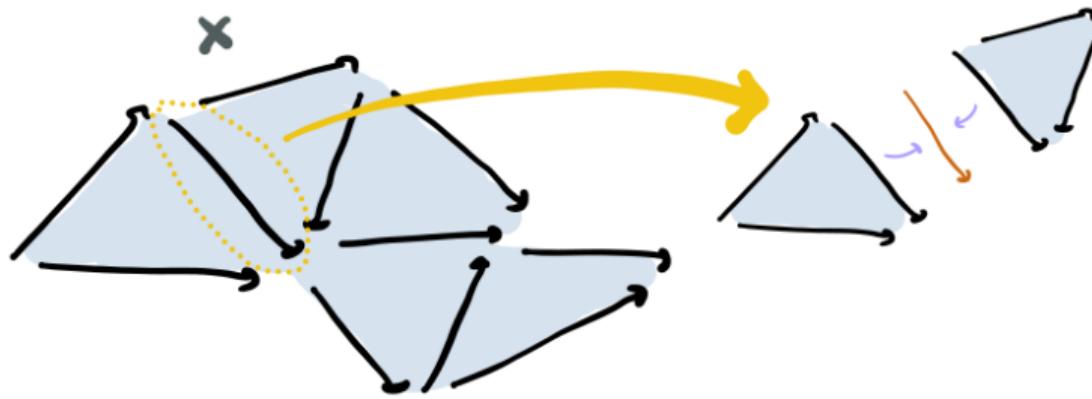
Set category of [simplicial sets](#)

- ▶ Objects: functors $X : \Delta^{\text{op}} \rightarrow \text{Set}$ where $[n] \mapsto X_n$.
- ▶ Morphisms: natural transformations $f : X \rightarrow Y$.



Set category of simplicial sets

- ▶ Objects: functors $X : \Delta^{\text{op}} \rightarrow \text{Set}$ where $[n] \mapsto X_n$.
- ▶ Morphisms: natural transformations $f : X \rightarrow Y$.

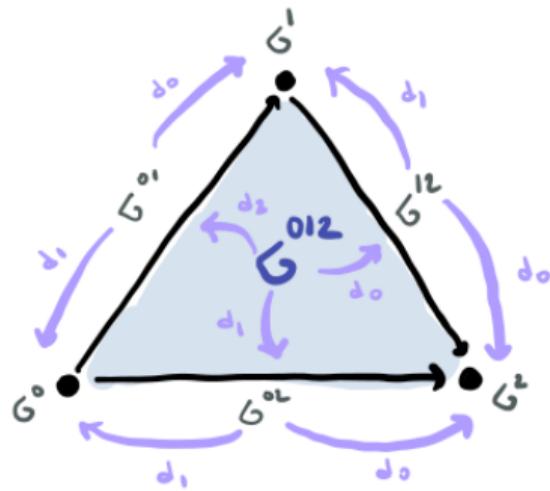


Simplex category Δ

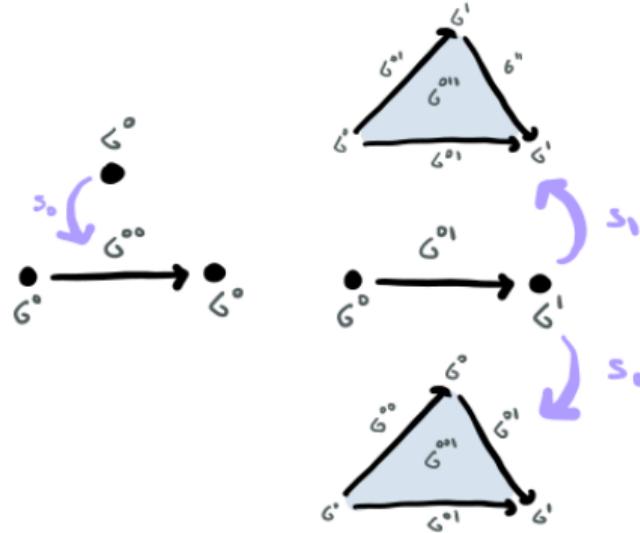
- ▶ Objects: $[n] = \{0, 1, \dots, n\}$ for $n \geq 0$.
- ▶ Morphisms: order preserving functions $\theta : [m] \rightarrow [n]$.

The n -simplex Δ^n

- ▶ Generating n -simplex: $\sigma^{01\cdots n}$.
- ▶ Face map d_i deletes the i -th index and degeneracy map s_j copies the j -th index.



⋮



The functor $D_R : \text{Set} \rightarrow \text{Set}$ for a semiring R (e.g. $\mathbb{R}_{\geq 0}$)

- ▶ $D_R(U)$ is the set of **R -distributions** on U , i.e. functions $p : U \rightarrow R$ of finite support such that

$$\sum_{u \in U} p(u) = 1.$$

- ▶ For $f : U \rightarrow V$ the function $D_R(f) : D_R(U) \rightarrow D_R(V)$ is defined by sending p to the distribution on V given by

$$v \mapsto \sum_{u \in f^{-1}(v)} p(u).$$

The functor $D_R : \text{Set} \rightarrow \text{Set}$ for a semiring R (e.g. $\mathbb{R}_{\geq 0}$)

- ▶ $D_R(U)$ is the set of **R -distributions** on U , i.e. functions $p : U \rightarrow R$ of finite support such that

$$\sum_{u \in U} p(u) = 1.$$

- ▶ For $f : U \rightarrow V$ the function $D_R(f) : D_R(U) \rightarrow D_R(V)$ is defined by sending p to the distribution on V given by

$$v \mapsto \sum_{u \in f^{-1}(v)} p(u).$$

Natural transformation $\delta : \text{Id}_{\text{Set}} \rightarrow D_R$ where $\delta_U : U \rightarrow D_R(U)$ sends $u \in U$ to the **deterministic** distribution

$$\delta^u(u') = \begin{cases} 1 & u' = u \\ 0 & \text{otherwise.} \end{cases}$$

A **simplicial scenario** consists of

- ▶ a space X of measurements where elements of X_n represent n -dimensional contexts,
- ▶ a space Y of outcomes where elements of Y_n represent n -dimensional outcomes.

A **simplicial scenario** consists of

- ▶ a space X of measurements where elements of X_n represent n -dimensional contexts,
- ▶ a space Y of outcomes where elements of Y_n represent n -dimensional outcomes.

Space of distributions on Y

$$D_R(Y) : \Delta^{\text{op}} \xrightarrow{Y} \text{Set} \xrightarrow{D_R} \text{Set}.$$

- ▶ Functor $D_R : \text{sSet} \rightarrow \text{sSet}$
- ▶ Natural transformation $\delta : \text{Id}_{\text{sSet}} \rightarrow D_R$

A **simplicial distribution** on a scenario (X, Y) is a map of simplicial sets

$$p : X \rightarrow D_R(Y).$$

Each n -context σ is assigned to a distribution p_σ on the set Y_n of n -outcomes such that

$$d_i p_\sigma = p_{d_i \sigma}$$

$$s_j p_\sigma = p_{s_j \sigma}.$$

A **simplicial distribution** on a scenario (X, Y) is a map of simplicial sets

$$p : X \rightarrow D_R(Y).$$

Each n -context σ is assigned to a distribution p_σ on the set Y_n of n -outcomes such that

$$d_i p_\sigma = p_{d_i \sigma}$$

$$s_j p_\sigma = p_{s_j \sigma}.$$

Canonical map

$$\Theta : D_R(\text{sSet}(X, Y)) \rightarrow \text{sSet}(X, D_R(Y))$$

induced by sending $r : X \rightarrow Y$ to the **deterministic** simplicial distribution

$$\delta^r : X \xrightarrow{r} Y \xrightarrow{\delta} D_R(Y).$$

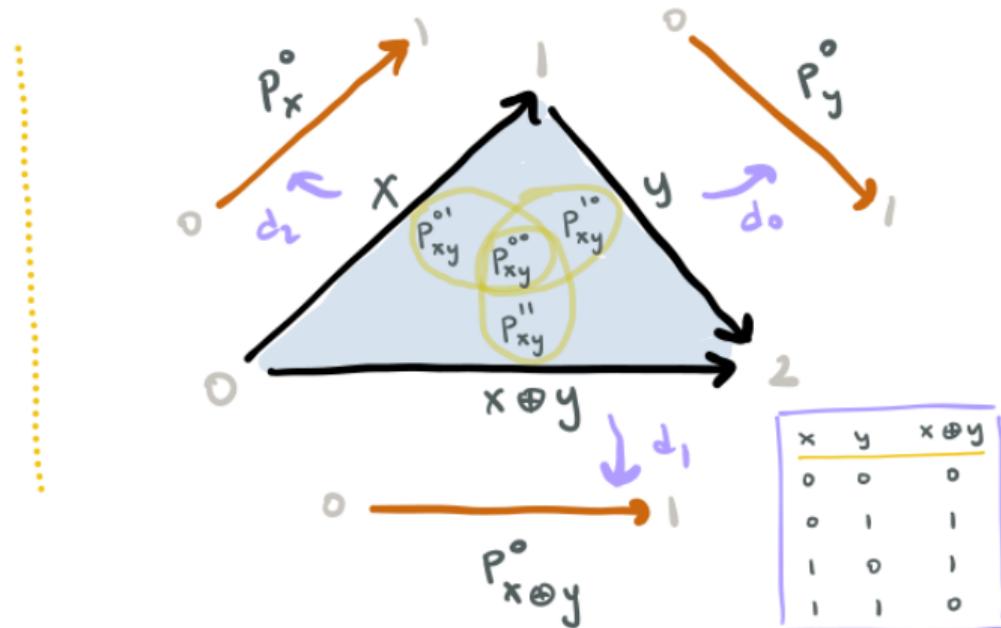
A simplicial distribution $p : X \rightarrow D_R(Y)$ is called **contextual** if it does not lie in the image of Θ . Otherwise it is called **noncontextual**.

A simplicial distribution $p : X \rightarrow D_R(Y)$ is called **contextual** if it does not lie in the image of Θ . Otherwise it is called **noncontextual**.

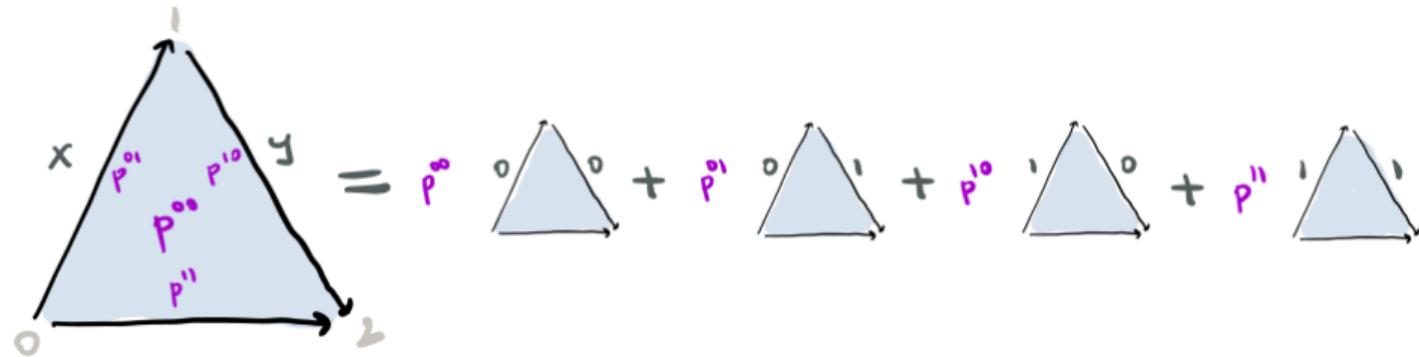
Generalizes “The sheaf-theoretic structure of non-locality and contextuality” by Abramsky and Brandenburger (2011).

Triangle scenario $p : \Delta^2 \rightarrow D_{\mathbb{R}_{\geq 0}}(N\mathbb{Z}_2)$

p_x^0	p_y^0
p_{xy}^{00}	p_{xy}^{01}
p_{xy}^{10}	p_{xy}^{11}

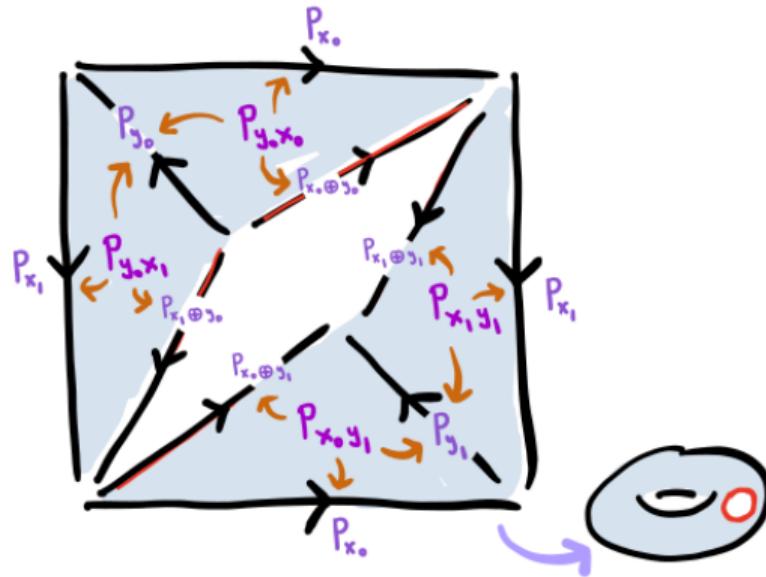


Every simplicial distribution on a triangle is noncontextual.



CHSH scenario $p : T^\circ \rightarrow D_{\mathbb{R}_{\geq 0}}(N\mathbb{Z}_2)$

	y_0	y_1
x_0	$\begin{smallmatrix} 1/2 & 0 \\ 0 & 1/2 \end{smallmatrix}$	$\begin{smallmatrix} 1/2 & 0 \\ 0 & 1/2 \end{smallmatrix}$
x_1	$\begin{smallmatrix} 1/2 & 0 \\ 0 & 1/2 \end{smallmatrix}$	$\begin{smallmatrix} 0 & 1/2 \\ 1/2 & 0 \end{smallmatrix}$



Fine's theorem (1982) A distribution on the CHSH scenario is noncontextual if and only if it satisfies the CHSH inequalities

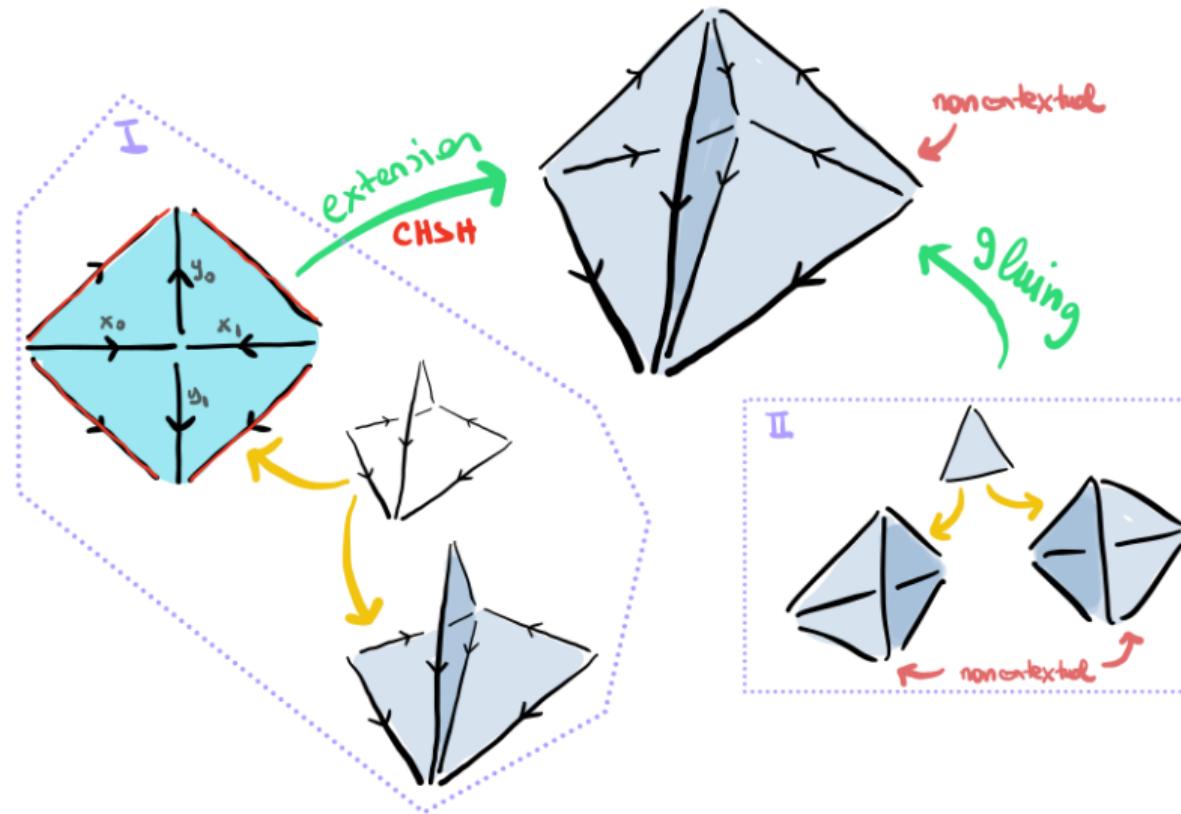
$$0 \leq p_{x_0 \oplus y_0}^0 + p_{x_0 \oplus y_1}^0 + p_{x_1 \oplus y_0}^0 - p_{x_1 \oplus y_1}^0 \leq 2$$

$$0 \leq p_{x_0 \oplus y_0}^0 + p_{x_0 \oplus y_1}^0 - p_{x_1 \oplus y_0}^0 + p_{x_1 \oplus y_1}^0 \leq 2$$

$$0 \leq p_{x_0 \oplus y_0}^0 - p_{x_0 \oplus y_1}^0 + p_{x_1 \oplus y_0}^0 + p_{x_1 \oplus y_1}^0 \leq 2$$

$$0 \leq -p_{x_0 \oplus y_0}^0 + p_{x_0 \oplus y_1}^0 + p_{x_1 \oplus y_0}^0 + p_{x_1 \oplus y_1}^0 \leq 2.$$

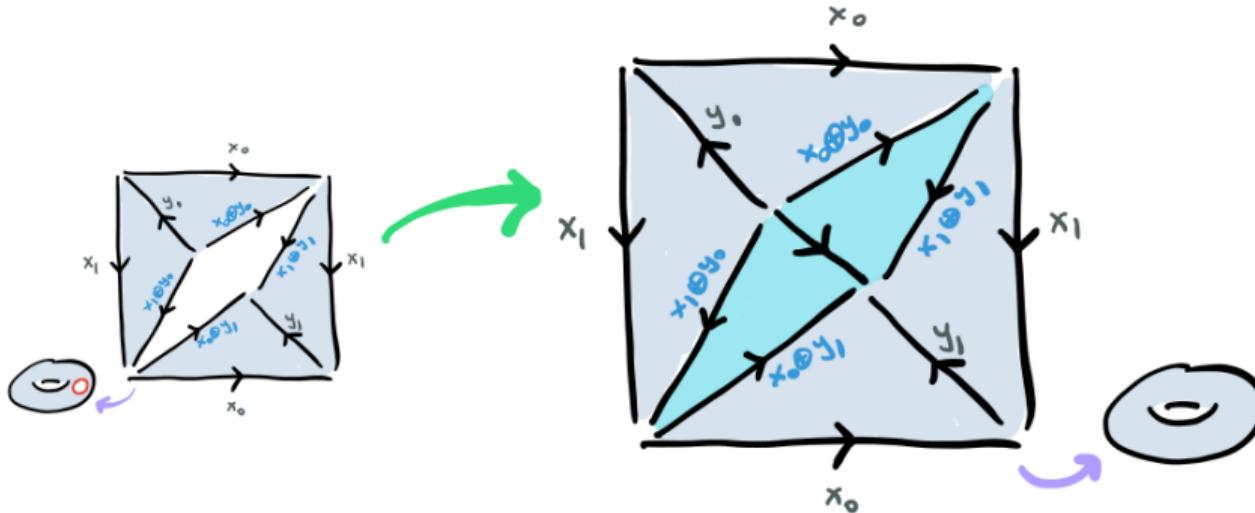
Proof¹



¹Okay, Kharoof, Ipek 2022

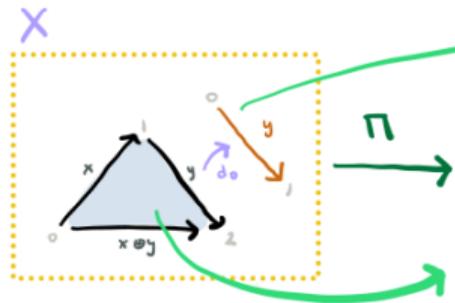
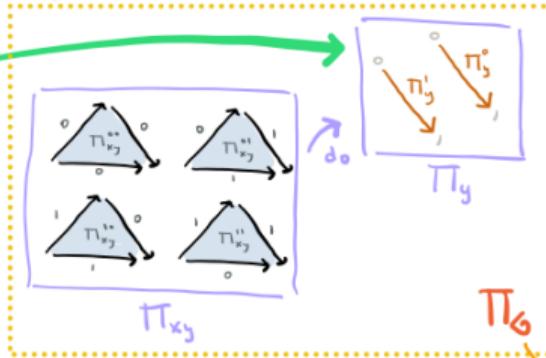
A new characterization of contextuality²

A distribution on the CHSH scenario is noncontextual if and only if it extends to the torus.

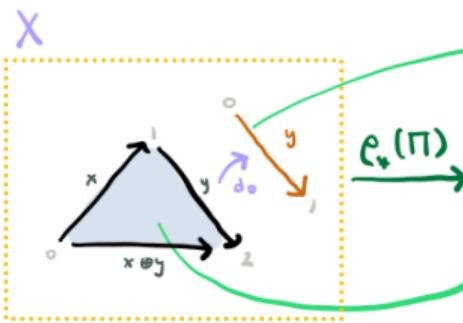
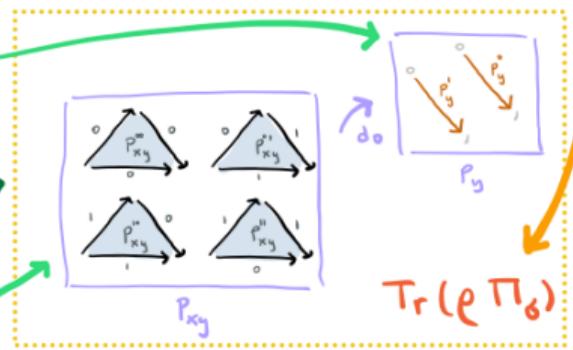


²Okay, Kharoof, Ipek 2022

$P_{\mathcal{H}}(Y)$: Space of measurements



$\downarrow \text{BR}$ $\rho_*: P_{\mathcal{H}} \rightarrow D_{\mathbb{R}_{\geq 0}}$



A quantum state ρ is **(non)contextual** with respect to $\Pi : X \rightarrow P_{\mathcal{H}}(Y)$ if the simplicial distribution $\rho_*(\Pi)$ is (non)contextual.

A quantum state ρ is **(non)contextual** with respect to $\Pi : X \rightarrow P_{\mathcal{H}}(Y)$ if the simplicial distribution $\rho_*(\Pi)$ is (non)contextual.

Generalizes “Topological proofs of contextuality in quantum mechanics” by Okay, Roberts, Bartlett, and Raussendorf (2017).

Let \mathcal{H} be a Hilbert space of dimension ≥ 3 .

Gleason's theorem (1975) Every commutative diagram of simplicial sets

$$\begin{array}{ccc} P_{\mathcal{H}}(S^1) & \xrightarrow{f} & D_{\mathbb{R}_{\geq 0}}(S^1) \\ \delta_{S^1} \uparrow & & \nearrow \delta_{S^1} \\ S^1 & & \end{array}$$

is given by the simplicial Born rule, i.e $f = (\rho_*)_S$ for some quantum state ρ .

The **circle** S^1

- ▶ Generating 1-simplex: σ^{01} .
- ▶ Identifying relation: $d_0\sigma^{01} = d_1\sigma^{01}$.

Kochen–Specker theorem (1967) The following simplicial set map does not split

$$\delta_{S^1} : S^1 \rightarrow P_{\mathcal{H}}(S^1).$$

Kochen–Specker theorem (1967) The following simplicial set map does not split

$$\delta_{S^1} : S^1 \rightarrow P_{\mathcal{H}}(S^1).$$

Every quantum state ρ is contextual with respect to $\text{Id}_{P_{\mathcal{H}}(S^1)} : P_{\mathcal{H}}(S^1) \rightarrow P_{\mathcal{H}}(S^1)$.

- ▶ $X = P_{\mathcal{H}}(S^1)$
- ▶ $Y = S^1$

Thank you for your attention!