
Open dynamical systems as polynomial coalgebras

Toby St Clere Smithe

Topos Institute

&

University of Oxford

2022 July 19

0 / 22



Introduction Motivation

Predictive coding: dynamical semantics for statistical games

I’ve been working on functors turning ...

Bayesian lenses:
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into ‘biological’ dynamical systems:

Figure: Bastos et al. [1]

This means finding categories of dynamics with the right compositional structure,

which is (in some generality) what I’ll be talking about today.
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Closed Dynamical Systems Deterministic systems

Deterministic closed dynamical systems

Given a monoid T and a space X , a deterministic, closed dynamical system is an action of T on X .
i.e., a family of maps {ϑ(t) : X → X}t:T satisfying

ϑ(0) = idX “no evolution = no change”

ϑ(t) ◦ ϑ(s) = ϑ(t + s) “evolving a bit then a bit more = evolving a little while”

Alternatively, if BT is the delooping of T and X is an object of E , then ϑ is a functor BT → E .

Deterministic closed dynamical systems are objects of the functor category Cat(BT, E).

ϑ7−→

(This perspective is, I believe, due to Lawvere.)
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Closed Dynamical Systems Deterministic systems

Examples of deterministic closed dynamical systems

1 In discrete time, with T = N, a system is simply a transition map: ϑ(t) = ϑ(1)◦t :

ϑ(0) = idX ; by induction: ϑ(t + 1) = ϑ(t) ◦ ϑ(1); ϑ(2) = ϑ(1+ 1) = ϑ(1) ◦ ϑ(1) etc.

2 Solutions to ordinary differential equations are systems with T = R:
dx
dt

= f (x) =⇒ ϑ(t) : x0 7→ x(t) for each initial condition x0

But what about other kinds of transition or system?

For predictive coding, we need at least stochastic systems ...
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Closed Dynamical Systems Stochastic systems and ‘side-effects’

Stochastic closed dynamical systems (and other transition types)

By changing the category E , we obtain different types of transition.

In particular, we can choose the Kleisli category Kℓ(M) of a monad M : E → E .
Same objects as E ; morphisms Kℓ(M)(X ,Y) = {X → MY}.
This gives M-typed transitions: e.g., stochastic when M = D, the ‘distribution’ monad.

Example: A functor BT → Kℓ(D) is a closed Markov semigroup with time T.

Transitions satisfy ϑs+t(y|x) =
∫
x′:X

ϑs(y|x ′)ϑt(dx ′|x)

Every (closed) Markov process induces a semigroup — e.g. SDE dXt = f (Xt) dWt

Note: a discrete time system ϑ : BN → Kℓ(M) is fully specified by a coalgebra X → MX

Given an endofunctor F : E → E , an M-coalgebra is just such a map
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Polynomial Functors Basics

Polynomial functors: basic definition

We use polynomial functors to model the interfaces of our systems.

A polynomial functor is a coproduct of representable copresheaves.
Write E for the ambient category. (Ideally LCC, but we won’t need all the structure today.)

We follow Spivak in writing yA for the representable copresheaf on A.
And we will write a general polynomial p as

∑
i:p(1)

yp[i].

p(1) is obtained by applying p to the terminal object 1;

each p[i] is the representing object for the ith summand.

Think of p(1) as the set/space/type of possible configurations that a system can adopt.

For each i : p(1), imagine p[i] as the type of admissible inputs in configuration i.
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Polynomial Functors Tensor, hom, substitution

Polynomial functors: tensor; morphisms

We can place systems side-by-side using

the tensor ⊗.

Z C

C Z

Y B

Y B

BZyYC ⊗ CyZ → ByY

And we can wire systems together using

morphisms of polynomials.

A little more precisely:

A morphism p
φ−→ q of polynomials is a pair:

a forwards map p(1)
φ1−→ q(1), and

a family of backwards maps q[φ1(i)]
φ#

i−−→ p[i].

PolyE is equivalently the category of dependent

lenses in E : i.e., the Grothendieck construction of

the pointwise opposite of E/(−).

The tensor ⊗ is given on objects by

p⊗ q :=
∑
i:p(1)

∑
j:q(1)

yp[i]×q[j]

and similarly on morphisms: take products in E
of forwards and backwards maps.
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Polynomial Functors Tensor, hom, substitution

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

(⊗, y) has a corresponding internal hom [−,=].

On objects: [p, q] =
∑
f :p→q

y
∑

i:p(1) q[f1(i)]

i.e., configurations are morphisms p
f−→ q, and

inputs are pairs (i, x) with i a p-configuration and x
a corresponding q-input.

Two useful facts:

1 [Ay, y] ∼= yA

2 morphisms p → y correspond to sections

of the projection

∑
i:p(1) p[i] → p(1)

Composition of polynomials as functors induces

a monoidal structure (◁, y) by substitution.

Given polynomials p and q, q ◁ p is the

polynomial q ◦ p obtained by substituting∑
i:p(1) y

p[i]
for each instance of y in q.

◁-comonoids are categories [2]: the counit

encodes identities; the comultiplication encodes

codomains and composites.

◁-comonoid homomorphisms are cofunctorsa.

a
We’ll hear more about these in the talk later today on

enriched lenses by Clarke and Di Meglio.

For a fabulous exposition of the relevant details, see Spivak and Niu [3].
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Deterministic Open Dynamical Systems Comonoid → Flow

Deterministic open dynamical systems

Definition (2.1)
A deterministic open dynamical system with interface p, state space S and time T is a

polynomial morphism β : SyS → [Ty, p] such that, for any section σ : p → y , the morphism

SyS
β−→ [Ty, p] [Ty,σ]−−−→ [Ty, y] ∼−→ yT

is a ◁-comonoid homomorphism.

β is equivalently a morphism Ty ⊗ SyS → p, and hence a pair (βo, βu), with

output map βo : T× S → p(1),
update map βu :

∑
t:T

∑
s:S p[β

o(t, s)] → S.

Comonoid SyS is the codiscrete groupoid on S; yT is the delooping BT of T;
Comonoid homomorphism axiom enforces the monoid action condition:

for any section σ : p → y , the closure βσ(t) := S
βo(t)∗σ−−−−→

∑
s:S

p[βo(t, s)]
βu

−→ S

constitutes a closed dynamical system on S
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Deterministic Open Dynamical Systems Examples

Examples of deterministic systems

Fix an interface polynomial p.

1 In discrete time, with T = N, a system β is again determined by its components at t = 1:

output βo : S → p(1),
update βu :

∑
s:S p

[
ϑo(s)

]
→ S;

this is equivalently a p-coalgebra β : S → pS — so our systems are ‘generalized p-coalgebras’.

2 Solutions to ‘open ODEs’ are systems with T = R:
suppose output ϑo : S → p(1) and ‘open’ vector field f :

∑
s:S p

[
ϑo(s)

]
→ TS,

so that

ds
dt

= f (s, x) for each x : p
[
ϑo(s)

]
;

the solutions give us a family of maps (s0, x) 7→ sx(t);
and hence an update map ϑu : (t, s0, x) 7→ sx(t);
such that pulling back along ϑo gives the closed system s0 7→ sϑo(s)(t);
thus satisfying the action condition.
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Deterministic Open Dynamical Systems (Indexed) Category

Deterministic open systems over p form a category

Recall that a morphism f : ϑ→ ψ of closed dynamical systems is a natural transformation:

X X

Y Y

f f

ϑ(t)

ψ(t)

i.e. a morphism f : X → Y of state spaces making the above squares commute for all t : T.
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Deterministic Open Dynamical Systems (Indexed) Category

Deterministic open systems over p form a category

We can extend the same idea to systems over p, using their closures.

A morphism f : ϑ→ ϕ is a map f : X → Y of state spaces, such that these commute:

X
∑
x:X

p[ϑo(t, x)] X

Y
∑
y:Y

p[ψo(t, y)] Y

ϑo(t)∗σ ϑu(t)

f f

ψo(t)∗σ ψu(t)

The identity on ϑ is just the identity map on its state space.

We denote the resulting category by CoalgTE (p).
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Deterministic Open Dynamical Systems (Indexed) Category

CoalgT
E is opindexed PolyE → Cat

Each object of CoalgTE (p) is a morphism SyS → [Ty, p] for some S.

Given a morphism φ : p → q, we can reindex covariantly:

SyS → [Ty, p] [Ty,φ]−−−−→ [Ty, q]

It is easy to show that, if f : β → β′ is a morphism of systems, then the underlying map of state

spaces gives a morphism CoalgTE (φ)(f ) : Coalg
T
E (φ)(β) → CoalgTE (φ)(β

′) after reindexing.

Hence we have an opindexed category CoalgTE : PolyE → Cat.
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Deterministic Open Dynamical Systems Systems as Coalgebras

Deterministic open systems are coalgebras

We have already seen that discrete-time systems are p-coalgebras. What about general time?

We can show that a morphism SyS → q is equivalently a map S → q(S): a q-coalgebra.

By setting q = [Ty, p], we find: each system SyS → [Ty, p] is a coalgebra S → [Ty, p](S).
but not all such coalgebras are ‘systems’ (they may not induce cofunctors)

Now what about stochastic / M-type systems?

after all, closed M-systems are M-coalgebras ...
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Stochastic and M-type Systems Polynomials With Side-Effects

Stochastic and other systems

Given a monad M : E → E , we can construct an

analogous indexed category CoalgTM.

For each polynomial p, the objects are triples
(S, βo, βu) with

state space S : E ,
output map βo : T× S → p(1), and

update map βu :
∑
t:T

∑
s:S

p[βo(t, s)] → MS,

such that for each σ : p → y , the closure

βσ(t) : S
βo(t)∗σ−−−−→

∑
s:S

p[βo(t, s)]
βu

−→ MS

induces a functor BT → Kℓ(M).

We can obtain CoalgTM by instantiating def.

(2.1) in a “cat. ofM-polynomials”, PolyM.

PolyM has same objects as PolyE ; backwards
maps are families of morphisms in Kℓ(M).

PolyM arises as a modified category of

dependent lenses.

It doesn’t have

∏
-types in general, or a

universal internal hom.

But it does have some
∏
-types, and a

‘deterministic’ hom.

i.e., enough to make the definition work!

For details, see the paper :-)

We can also make random dynamical systems work ... (but no time for that today!)
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Monoidal (Bi)categories of Open Systems

Monoidal bicategories of open dynamical systems

So, given CoalgTM, how to set up the semantics for the “predictive coding” functor?

c

c†

X

A B

Y

X

d

d†
C

Z

Y 7→

Here, we need ‘hierarchical’ dynamical systems: 1-cells with type (X ,A) → (Y ,B) ...
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Monoidal (Bi)categories of Open Systems Hierarchical / bidirectional systems

Monoidal bicategories of open dynamical systems

The answer is to construct ‘hom’ polynomials, akin to [−,=],
and then consider dynamical systems on these interfaces.

This is a very similar approach to that of Shapiro and Spivak (which we’ll hear about later),

and effectively gives rise to a generalization of Spivak’s operad Org. (See the papers for details!)

Example: for each pair of objects A,B : C, define a polynomial {A,B} := C(A,B) yC(1,A).
Then there is a natural composition morphism, cA,B,C : {A,B} ⊗ {B,C} → {A,C}.

N.b., when C = E , we have {A,B} = [Ay,By].

We obtain a bicategory Hier|C : the hom categories are given by CoalgTM
(
{A,B}

)
;

composition is given by Coalg
T
M

(
c

)
, and identities are the constant systems emitting identities.

And when C is a copy-discard category, then so is Hier|C .
This means we can give a ‘dynamical Bayes rule’ ...

... but we need to be careful to use bisimulation rather than strict equality.

(See the paper for details!)
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Monoidal (Bi)categories of Open Systems Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Example: To get closer to Org, we can define hom-categories Hier(p, q) := CoalgTM
(
[p, q]

)
.

This gives a monoidal bicategory Hier, which restricts to Hier|E on linear polynomials.

This is a bicategory of ‘dynamical dependent lenses’.

Alternatively, consider other bidirectional or ‘cybernetic’ categories — such as Bayesian lenses ...
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Monoidal (Bi)categories of Open Systems Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Example: the category of Bayesian lenses has as objects pairs (X ,A) of objects in E .
Therefore define the polynomials JXyA,YyBK := BayesLens

(
(X ,A), (Y ,B)

)
yDX×B

.

We obtain a similar composition morphism, and hence a bicategory HierInf with
hom-categories HierInf(XyA,YyB) := CoalgTM

(
JXyA,YyBK

)
.

A 1-cell ϑ : XyA → YyB is then given by a tuple (S, ϑo
1
, ϑo

2
, ϑu):

state space S;

forwards output channel ϑo
1
: T× S × X → DY ;

backwards output ϑo
2
: T× S ×DX × B → DA;

update ϑu : T× S ×DX × B → DS.

This category is what we need for the dynamical semantics of predictive coding...

(... and will be in my forthcoming preprint Compositional Active Inference II)

19 / 22



Monoidal (Bi)categories of Open Systems Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Finally, we can do something similar for any category of optics.

Recall that for an optic l : Φ → Ψ, we have a notion of ‘context’:

Ctx(l) :=
∫ M:Optic

Optic(I,M⊗ Φ)×Optic(M⊗Ψ, I)

— (it’s “everything needed to close off l”.)

We define polynomials ⟨Φ,Ψ⟩ :=
∑

l:Optic(Φ,Ψ)

yCtx(l).

The yoga of optics gives us composition morphisms ⟨Φ,Ψ⟩ ⊗ ⟨Ψ,X⟩ → ⟨Φ,X⟩.
And hence a monoidal bicategory Cilia with hom-categories Cilia(Φ,Ψ) := CoalgTM

(
⟨Φ,Ψ⟩

)
.

N.b., ‘cilia’ are the structures that control the eye.

Such categories may be useful for building dynamical systems that e.g. play open games.
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Conclusions

Conclusions

To recap:

we constructed opindexed categories CoalgTE of deterministic dynamical systems in a

(LCC) category E , for a monoid T modelling time;

we saw how to extend these to systems with different transition types, using a monad M;

we saw how these systems generalize closed systems, and how they constitute coalgebras;

and we constructed bicategories of dynamical systems for cybernetic applications.

But there are many open questions!

What is the connection to the monoidal streams of Di Lavore et al?

Is CoalgTE a topos? Can we translate ideas from coalgebraic logic?

How does this coalgebraic framework relate to Myers’ double-categorical framework?

Thanks for listening!
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Conclusions
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