Open dynamical systems as polynomial coalgebras

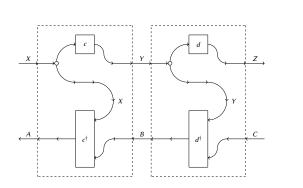
Toby St Clere Smithe

Topos Institute & University of Oxford

2022 July 19

Motivation

Predictive coding: dynamical semantics for statistical games



I've been working on functors turning ...

Bayesian lenses:

into 'biological' dynamical systems:

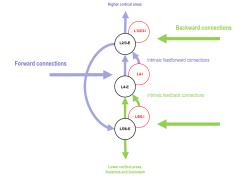


Figure: Bastos et al. [1]

This means finding categories of dynamics with the right compositional structure, which is (in some generality) what I'll be talking about today.

Outline of talk

- **1** Introduction
- **2** Closed Dynamical Systems
- **3** Polynomial Functors
- **4** Deterministic Open Dynamical Systems
- **5** Stochastic and *M*-type Systems
- 6 Monoidal (Bi)categories of Open Systems

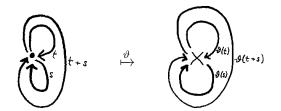
Deterministic closed dynamical systems

Given a monoid \mathbb{T} and a space *X*, a *deterministic, closed* dynamical system is an action of \mathbb{T} on *X*.

- *i.e.*, a family of maps $\{\vartheta(t) : X \to X\}_{t:\mathbb{T}}$ satisfying
 - $\vartheta(0) = id_X$ "no evolution = no change"
 - $\vartheta(t) \circ \vartheta(s) = \vartheta(t+s)$ "evolving a bit then a bit more = evolving a little while"

Alternatively, if **B** \mathbb{T} is the delooping of \mathbb{T} and *X* is an object of \mathcal{E} , then ϑ is a functor **B** $\mathbb{T} \to \mathcal{E}$.

Deterministic closed dynamical systems are objects of the functor category $Cat(B\mathbb{T}, \mathcal{E})$.



(This perspective is, I believe, due to Lawvere.)

(日)

Examples of deterministic closed dynamical systems

1 In discrete time, with $\mathbb{T} = \mathbb{N}$, a system is simply a transition map: $\vartheta(t) = \vartheta(1)^{\circ t}$:

• $\vartheta(0) = \mathrm{id}_X$; by induction: $\vartheta(t+1) = \vartheta(t) \circ \vartheta(1)$; $\vartheta(2) = \vartheta(1+1) = \vartheta(1) \circ \vartheta(1)$ etc.

Solutions to ordinary differential equations are systems with T = R:
dx/dt = f(x) ⇒ ϑ(t) : x₀ → x(t) for each initial condition x₀

But what about other kinds of transition or system?

For predictive coding, we need at least stochastic systems ...

Stochastic closed dynamical systems (and other transition types)

By changing the category $\mathcal{E},$ we obtain different types of transition.

In particular, we can choose the Kleisli category $\mathcal{K}\ell(M)$ of a monad $M: \mathcal{E} \to \mathcal{E}$.

- Same objects as \mathcal{E} ; morphisms $\mathcal{K}\ell(\mathcal{M})(X, Y) = \{X \to MY\}$.
- This gives *M*-typed transitions: *e.g.*, stochastic when M = D, the 'distribution' monad.

Example: A functor $\mathbf{B}\mathbb{T} \to \mathcal{K}\ell(\mathcal{D})$ is a *closed Markov semigroup* with time \mathbb{T} .

• Transitions satisfy
$$\vartheta_{s+t}(y|x) = \int_{x':X} \vartheta_s(y|x') \vartheta_t(dx'|x)$$

• Every (closed) Markov process induces a semigroup -e.g. SDE $dX_t = f(X_t) dW_t$

Note: a discrete time system ϑ : **B** $\mathbb{N} \to \mathcal{K}\ell(M)$ is fully specified by a *coalgebra* $X \to MX$

Given an endofunctor $F : \mathcal{E} \to \mathcal{E}$, an *M*-coalgebra is just such a map

Basics

Polynomial functors: basic definition

We use polynomial functors to model the interfaces of our systems.

A *polynomial functor* is a coproduct of representable copresheaves. Write \mathcal{E} for the ambient category. (Ideally LCC, but we won't need all the structure today.)

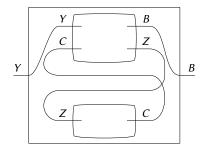
We follow Spivak in writing y^A for the representable copresheaf on A. And we will write a general polynomial *p* as $\sum y^{p[i]}$. i:p(1)

- (p(1)) is obtained by applying p to the terminal object 1;
- each p[i] is the representing object for the *i*th summand.

Think of p(1) as the set/space/type of possible configurations that a system can adopt. For each i : p(1), imagine p[i] as the type of admissible inputs in configuration *i*.

Polynomial functors: tensor; morphisms

We can place systems side-by-side using the tensor \otimes .

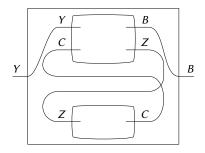


$$BZy^{YC} \otimes Cy^Z \to By^Y$$

And we can wire systems together using morphisms of polynomials.

Polynomial functors: tensor; morphisms

We can place systems side-by-side using the tensor \otimes .



$$BZy^{YC} \otimes Cy^Z \to By^Y$$

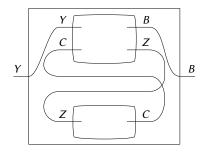
And we can wire systems together using morphisms of polynomials.

A little more precisely:

- A morphism $p \xrightarrow{\varphi} q$ of polynomials is a pair:
 - a forwards map $p(1) \xrightarrow{\varphi_1} q(1)$, and
 - a family of backwards maps $q[\varphi_1(i)] \xrightarrow{\varphi_i^{\#}} p[i]$.
- **Poly**_{*E*} is equivalently the category of dependent lenses in *E*: *i.e.*, the Grothendieck construction of the pointwise opposite of *E*/(−).

Polynomial functors: tensor; morphisms

We can place systems side-by-side using the tensor \otimes .



$$BZy^{YC} \otimes Cy^Z \to By^Y$$

And we can wire systems together using morphisms of polynomials.

A little more precisely:

- A morphism $p \xrightarrow{\varphi} q$ of polynomials is a pair:
 - a forwards map $p(1) \xrightarrow{\varphi_1} q(1)$, and
 - a family of backwards maps $q[\varphi_1(i)] \xrightarrow{\varphi_i^{\#}} p[i]$.
- **Poly**_{*E*} is equivalently the category of dependent lenses in *E*: *i.e.*, the Grothendieck construction of the pointwise opposite of *E*/(−).
- The tensor \otimes is given on objects by

$$p\otimes q:=\sum_{i:p(1)}\sum_{j:q(1)}y^{p[i] imes q[j]}$$

and similarly on morphisms: take products in $\ensuremath{\mathcal{E}}$ of forwards and backwards maps.

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

 (\otimes, y) has a corresponding internal hom [-, =].

On objects: $[p, q] = \sum_{f: p \to q} y^{\sum_{i: p(1)} q[f_1(i)]}$

i.e., configurations are morphisms $p \xrightarrow{f} q$, and inputs are pairs (i, x) with *i* a *p*-configuration and *x* a corresponding *q*-input.

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

 (\otimes, y) has a corresponding internal hom [-, =].

On objects: $[p, q] = \sum_{f: p \to q} y^{\sum_{i: p(1)} q[f_1(i)]}$

i.e., configurations are morphisms $p \xrightarrow{f} q$, and inputs are pairs (i, x) with *i* a *p*-configuration and *x* a corresponding *q*-input.

Two useful facts:

 $\blacksquare [Ay, y] \cong y^A$

2 morphisms $p \rightarrow y$ correspond to sections of the projection $\sum_{i:p(1)} p[i] \rightarrow p(1)$

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

 (\otimes, y) has a corresponding internal hom [-, =].

On objects:
$$[p, q] = \sum_{f: p \to q} y^{\sum_{i: p(1)} q[f_1(i)]}$$

i.e., configurations are morphisms $p \xrightarrow{f} q$, and inputs are pairs (i, x) with $i \ge p$ -configuration and x a corresponding q-input.

Two useful facts:

 $\blacksquare [Ay, y] \cong y^A$

2 morphisms $p \rightarrow y$ correspond to sections of the projection $\sum_{i:p(1)} p[i] \rightarrow p(1)$ Composition of polynomials as functors induces a monoidal structure (\triangleleft, y) by substitution.

Given polynomials p and q, $q \triangleleft p$ is the polynomial $q \circ p$ obtained by substituting $\sum_{i:p(1)} y^{p[i]}$ for each instance of y in q.

-comonoids are categories [2]: the counit encodes identities; the comultiplication encodes codomains and composites.

-comonoid homomorphisms are *cofunctors^a*.

For a fabulous exposition of the relevant details, see Spivak and Niu [3].

^aWe'll hear more about these in the talk later today on enriched lenses by Clarke and Di Meglio.

Deterministic open dynamical systems

Definition (2.1)

A deterministic open dynamical system with interface p, state space S and time \mathbb{T} is a polynomial morphism $\beta : Sy^S \to [Ty, p]$ such that, for any section $\sigma : p \to y$, the morphism

$$Sy^S \xrightarrow{\beta} [\mathbb{T}y, p] \xrightarrow{[\mathbb{T}y, \sigma]} [\mathbb{T}y, y] \xrightarrow{\sim} y^{\mathbb{T}}$$

is a ⊲-comonoid homomorphism.

- β is equivalently a morphism $\mathbb{T}y \otimes Sy^S \to p$, and hence a pair (β^o, β^u) , with
 - output map $\beta^o : \mathbb{T} \times S \to p(1)$,
 - update map $\beta^{u} : \sum_{t \in \mathbb{S}} p[\beta^{o}(t,s)] \to S.$
- Comonoid Sy^S is the codiscrete groupoid on S; y^T is the delooping **B** \mathbb{T} of \mathbb{T} ;
- Comonoid homomorphism axiom enforces the monoid action condition: for any section $\sigma: p \to y$, the *closure* $\beta^{\sigma}(t) := S \xrightarrow{\beta^o(t)^* \sigma} \sum p[\beta^o(t,s)] \xrightarrow{\beta^u} S$ constitutes a closed dynamical system on S

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─注

Examples

Examples of deterministic systems

Fix an interface polynomial *p*.

In discrete time, with $\mathbb{T} = \mathbb{N}$, a system β is again determined by its components at t = 1: 1

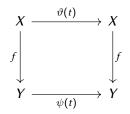
- output $\beta^o : S \to p(1)$,
- update $\beta^{u} : \sum_{a \in S} p[\vartheta^{o}(s)] \to S;$
- this is equivalently a *p*-coalgebra $\beta: S \to pS$ so our systems are 'generalized *p*-coalgebras'.

Solutions to 'open ODEs' are systems with $\mathbb{T} = \mathbb{R}$: 2

- suppose output $\vartheta^o: S \to p(1)$ and 'open' vector field $f: \sum_{s \in S} p[\vartheta^o(s)] \to TS$, so that $\frac{ds}{dt} = f(s, x)$ for each $x : p[\vartheta^o(s)];$
- the solutions give us a family of maps $(s_0, x) \mapsto s_{x}(t)$;
- and hence an update map $\vartheta^u : (t, s_0, x) \mapsto s_x(t);$
- such that pulling back along ϑ^o gives the closed system $s_0 \mapsto s_{\vartheta^o(s)}(t)$;
- thus satisfying the action condition.

Deterministic open systems over *p* **form a category**

Recall that a morphism $f: \vartheta \to \psi$ of closed dynamical systems is a natural transformation:



i.e. a morphism $f : X \to Y$ of state spaces making the above squares commute for all $t : \mathbb{T}$.

Deterministic open systems over *p* **form a category**

We can extend the same idea to systems over *p*, using their closures.

A morphism $f : \vartheta \to \phi$ is a map $f : X \to Y$ of state spaces, such that these commute:

$$\begin{array}{ccc} X \xrightarrow{\vartheta^{o}(t)^{*}\sigma} & \sum_{x:X} p[\vartheta^{o}(t,x)] \xrightarrow{\vartheta^{u}(t)} X \\ f & & & \downarrow \\ f & & & \downarrow \\ Y \xrightarrow{\psi^{o}(t)^{*}\sigma} & \sum_{y:Y} p[\psi^{o}(t,y)] \xrightarrow{\psi^{u}(t)} Y \end{array}$$

The identity on ϑ is just the identity map on its state space.

We denote the resulting category by $\mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}}(p)$.

$\textbf{Coalg}_{\mathcal{E}}^{\mathbb{T}} \text{ is opindexed } \textbf{Poly}_{\mathcal{E}} \rightarrow \textbf{Cat}$

Each object of **Coalg**^{\mathbb{T}}_{\mathcal{E}}(*p*) is a morphism $Sy^S \to [\mathbb{T}y, p]$ for some *S*.

Given a morphism $\varphi : p \rightarrow q$, we can reindex covariantly:

$$Sy^{S} \to [\mathbb{T}y, p] \xrightarrow{[\mathbb{T}y, \varphi]} [\mathbb{T}y, q]$$

It is easy to show that, if $f : \beta \to \beta'$ is a morphism of systems, then the underlying map of state spaces gives a morphism $\mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}}(\varphi)(f) : \mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}}(\varphi)(\beta) \to \mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}}(\varphi)(\beta')$ after reindexing.

Hence we have an opindexed category $\mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}} : \mathbf{Poly}_{\mathcal{E}} \to \mathbf{Cat}$.

Deterministic open systems are coalgebras

We have already seen that discrete-time systems are *p*-coalgebras. What about general time?

We can show that a morphism $Sy^S \rightarrow q$ is equivalently a map $S \rightarrow q(S)$: a *q*-coalgebra.

By setting $q = [\mathbb{T}y, p]$, we find: each system $Sy^S \to [\mathbb{T}y, p]$ is a coalgebra $S \to [\mathbb{T}y, p](S)$.

but not all such coalgebras are 'systems' (they may not induce cofunctors)

Now what about stochastic / *M*-type systems?

after all, closed *M*-systems are *M*-coalgebras ...

Stochastic and other systems

Given a monad $M : \mathcal{E} \to \mathcal{E}$, we can construct an analogous indexed category **Coalg**^T_M.

For each polynomial p, the objects are triples (S, β^o, β^u) with

- state space $S : \mathcal{E}$,
- output map β^o : $\mathbb{T} \times S \rightarrow p(1)$, and
- update map $\beta^u : \sum_{t:\mathbb{T}} \sum_{s:S} p[\beta^o(t,s)] \to MS$,

such that for each $\sigma : p \rightarrow y$, the closure

$$\beta^{\sigma}(t): S \xrightarrow{\beta^{o}(t)^{*}\sigma} \sum_{s:S} p[\beta^{o}(t,s)] \xrightarrow{\beta^{u}} MS$$

induces a functor $\mathbf{B}\mathbb{T} \to \mathcal{K}\ell(\mathcal{M})$.

Stochastic and other systems

Given a monad $M : \mathcal{E} \to \mathcal{E}$, we can construct an analogous indexed category **Coalg**^T_M.

For each polynomial p, the objects are triples (S, β^o, β^u) with

• state space $S : \mathcal{E}$,

- output map $\beta^o : \mathbb{T} \times S \to p(1)$, and
- update map $\beta^u : \sum_{t:\mathbb{T}} \sum_{s:S} p[\beta^o(t,s)] \to MS$,

such that for each $\sigma: p \rightarrow y$, the closure

$$\beta^{\sigma}(t): S \xrightarrow{\beta^{o}(t)^{*}\sigma} \sum_{s:S} p[\beta^{o}(t,s)] \xrightarrow{\beta^{u}} MS$$

induces a functor $\mathbf{B}\mathbb{T} \to \mathcal{K}\ell(\mathcal{M})$.

We can obtain $\mathbf{Coalg}_{\mathcal{M}}^{\mathbb{T}}$ by instantiating def. (2.1) in a "cat. of *M*-polynomials", $\mathbf{Poly}_{\mathcal{M}}$.

Poly_{*M*} has same objects as **Poly**_{*E*}; backwards maps are families of morphisms in $\mathcal{K}\ell(\mathcal{M})$.

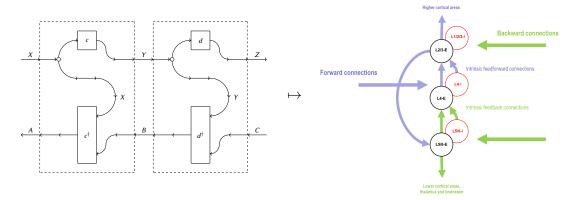
 $\mathbf{Poly}_{\mathcal{M}}$ arises as a modified category of dependent lenses.

- It doesn't have ∏-types in general, or a universal internal hom.
- But it does have *some* ∏-types, and a 'deterministic' hom.
- i.e., enough to make the definition work!

For details, see the paper :-)

We can also make random dynamical systems work ... (but no time for that today!)

So, given $\mathbf{Coalg}_{M}^{\mathbb{T}}$, how to set up the semantics for the "predictive coding" functor?



Here, we need 'hierarchical' dynamical systems: 1-cells with type $(X, A) \rightarrow (Y, B)$...

The answer is to construct 'hom' polynomials, akin to [-,=], and then consider dynamical systems on these interfaces.

This is a very similar approach to that of Shapiro and Spivak (which we'll hear about later), and effectively gives rise to a generalization of Spivak's operad Org. (See the papers for details!)

The answer is to construct 'hom' polynomials, akin to [-,=], and then consider dynamical systems on these interfaces.

This is a very similar approach to that of Shapiro and Spivak (which we'll hear about later), and effectively gives rise to a generalization of Spivak's operad Org. (See the papers for details!)

Example: for each pair of objects A, B : C, define a polynomial $\{A, B\} := C(A, B) y^{C(1,A)}$. Then there is a natural composition morphism, $c_{A,B,C} : \{A, B\} \otimes \{B, C\} \rightarrow \{A, C\}$.

• *N.b.*, when C = E, we have $\{A, B\} = [Ay, By]$.

We obtain a bicategory **Hier** $|_{\mathcal{C}}$: the hom categories are given by **Coalg** $_{\mathcal{M}}^{\mathbb{T}}(\{A, B\})$; composition is given by Coalg $_{\mathcal{M}}^{\mathbb{T}}(c)$, and identities are the constant systems emitting identities.

The answer is to construct 'hom' polynomials, akin to [-,=], and then consider dynamical systems on these interfaces.

This is a very similar approach to that of Shapiro and Spivak (which we'll hear about later), and effectively gives rise to a generalization of Spivak's operad Org. (See the papers for details!)

Example: for each pair of objects A, B : C, define a polynomial $\{A, B\} := C(A, B) y^{C(1,A)}$. Then there is a natural composition morphism, $c_{A,B,C} : \{A, B\} \otimes \{B, C\} \rightarrow \{A, C\}$.

• *N.b.*, when C = E, we have $\{A, B\} = [Ay, By]$.

We obtain a bicategory **Hier** $|_{\mathcal{C}}$: the hom categories are given by **Coalg** $_{\mathcal{M}}^{\mathbb{T}}(\{A, B\})$; composition is given by Coalg $_{\mathcal{M}}^{\mathbb{T}}(c)$, and identities are the constant systems emitting identities.

And when C is a copy-discard category, then so is **Hier** $|_{C}$.

- This means we can give a 'dynamical Bayes rule' ...
- ... but we need to be careful to use *bisimulation* rather than strict equality.
 - (See the paper for details!)

Dynamical cybernetics and 'cilia'

Example: To get closer to **Org**, we can define hom-categories $\operatorname{Hier}(p, q) := \operatorname{Coalg}_{\mathcal{M}}^{\mathbb{T}}([p, q])$. This gives a monoidal bicategory **Hier**, which restricts to $\operatorname{Hier}|_{\mathcal{E}}$ on linear polynomials. This is a bicategory of 'dynamical dependent lenses'.

Alternatively, consider other bidirectional or 'cybernetic' categories - such as Bayesian lenses ...

Dynamical cybernetics and 'cilia'

Example: the category of Bayesian lenses has as objects pairs (X, A) of objects in \mathcal{E} . Therefore define the polynomials $[Xy^A, Yy^B] :=$ **BayesLens** $((X, A), (Y, B)) y^{\mathcal{D}X \times B}$.

We obtain a similar composition morphism, and hence a bicategory **HierInf** with hom-categories $\operatorname{HierInf}(Xy^A, Yy^B) := \operatorname{Coalg}_{\mathcal{M}}^{\mathbb{T}}(\llbracket Xy^A, Yy^B \rrbracket).$

A 1-cell $\vartheta : Xy^A \to Yy^B$ is then given by a tuple $(S, \vartheta_1^o, \vartheta_2^o, \vartheta^u)$:

- state space *S*;
- forwards output channel ϑ_1^o : $\mathbb{T} \times S \times X \to \mathcal{D}Y$;
- backwards output $\vartheta_2^o : \mathbb{T} \times S \times \mathcal{D}X \times B \to \mathcal{D}A$;
- update $\vartheta^u : \mathbb{T} \times S \times \mathcal{D}X \times B \to \mathcal{D}S$.

This category is what we need for the dynamical semantics of predictive coding...

(... and will be in my forthcoming preprint Compositional Active Inference II)

Dynamical cybernetics and 'cilia'

Finally, we can do something similar for any category of optics.

Recall that for an optic $l : \Phi \rightarrow \Psi$, we have a notion of 'context':

$$Ctx(l) := \int_{-(it's "everything needed to close off l".)}^{M:Optic} Optic(I, M \otimes \Phi) \times Optic(M \otimes \Psi, I)$$

We define polynomials $\langle \Phi, \Psi \rangle := \sum_{l: \mathbf{Optic}(\Phi, \Psi)} \gamma^{\mathsf{Ctx}(l)}.$

The yoga of optics gives us composition morphisms $\langle \Phi, \Psi \rangle \otimes \langle \Psi, X \rangle \rightarrow \langle \Phi, X \rangle$. And hence a monoidal bicategory **Cilia** with hom-categories **Cilia**(Φ, Ψ) := **Coalg**^T_M($\langle \Phi, \Psi \rangle$).

■ *N.b.*, 'cilia' are the structures that control the eye.

Such categories may be useful for building dynamical systems that e.g. play open games.

Conclusions

To recap:

- we constructed opindexed categories **Coalg**^T_E of deterministic dynamical systems in a (LCC) category *E*, for a monoid T modelling time;
- we saw how to extend these to systems with different transition types, using a monad *M*;
- we saw how these systems generalize closed systems, and how they constitute coalgebras;
- and we constructed bicategories of dynamical systems for cybernetic applications.

But there are many open questions!

- What is the connection to the monoidal streams of Di Lavore *et al*?
- Is $\mathbf{Coalg}_{\mathcal{E}}^{\mathbb{T}}$ a topos? Can we translate ideas from coalgebraic logic?
- How does this coalgebraic framework relate to Myers' double-categorical framework?

Thanks for listening!

Bibliography

- 1. Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., and Friston, K.J.: Canonical microcircuits for predictive coding. Neuron 76(4), 695–711 (2012). DOI: 10.1016/j.neuron.2012.10.038
- 2. Ahman, D., and Uustalu, T.: Directed Containers as Categories. EPTCS 207, 2016, pp. 89-98 (2016). DOI: 10.4204/EPTCS.207.5
- 3. Spivak, D.I., and Niu, N.: Polynomial Functors: A General Theory of Interaction. (2021)