Open dynamical systems as polynomial coalgebras J

Toby St Clere Smithe

TO POS Topos lgr:stitute

INSTITUTE

University of Oxford

2022 July 19

0/22

Predictive coding: dynamical semantics for statistical games

I’ve been working on functors turning ...

Bayesian lenses: into ‘biological’ dynamical systems:

Higher cortical areas

. Intrinsic feedforward connections
Forward connections

U R2G

Figure: Bastos et al. [1]

This means finding categories of dynamics with the right compositional structure,
which is (in some generality) what I’ll be talking about today.

1/22

Outline of talk

H Introduction

Closed Dynamical Systems

Polynomial Functors

Deterministic Open Dynamical Systems
Stochastic and M-type Systems

@A Monoidal (Bi)categories of Open Systems

2/22

Deterministic systems

Deterministic closed dynamical systems

Given a monoid T and a space X, a deterministic, closed dynamical system is an action of T on X.
m ie,afamily of maps {¥(t) : X — X}, satisfying

| 19(0) = Idx

m J(t) o ¥(s) =¥t +s)

“no evolution = no change”

“evolving a bit then a bit more = evolving a little while”

Alternatively, if BT is the delooping of T and X is an object of £, then ¥ is a functor BT — £.

Deterministic closed dynamical systems are objects of the functor category Cat(BT,).

(This perspective is, | believe, due to Lawvere.)

3/22

Deterministic systems

Examples of deterministic closed dynamical systems

H In discrete time, with T = N, a system is simply a transition map: ¥(t) = ¥(1)°"
m J(0) = idx; by induction: 9(t 4+ 1) = 9(t) o ¥(1); ¥(2) =I(1+ 1) =9(1) 0o ¥(1) etc.

Solutions to ordinary differential equations are systems with T = R:

d
d—): = f(x) = ¥(t) : xo — x(t) for each initial condition x

But what about other kinds of transition or system?

m For predictive coding, we need at least stochastic systems ...

4/22

Stochastic systems and ‘side-effects’

Stochastic closed dynamical systems (and other transition types)

By changing the category &, we obtain different types of transition.

In particular, we can choose the Kleisli category K¢(M) of a monad M : € — £.
m Same objects as & morphisms KI{(M)(X,Y) = {X — MY}.
m This gives M-typed transitions: e.g., stochastic when M = D, the ‘distribution’ monad.

Example: A functor BT — K{(D) is a closed Markov semigroup with time T.
m Transitions satisfy Vs ¢(y|x) = / Is(y|x") 9¢(dx’|x)
x": X

m Every (closed) Markov process induces a semigroup — e.g. SDE dX; = f(X;) dW;

Note: a discrete time system ¢ : BN — /(M) is fully specified by a coalgebra X — MX

m Given an endofunctor F : £ — &, an M-coalgebra is just such a map

5/22

Basics

Polynomial functors: basic definition

We use polynomial functors to model the interfaces of our systems.

A polynomial functor is a coproduct of representable copresheaves.
Write £ for the ambient category. (Ideally LCC, but we won’t need all the structure today.)

We follow Spivak in writing y” for the representable copresheaf on A.
And we will write a general polynomial p as Z y”[i].
ip(1)
m p(1) is obtained by applying p to the terminal object 1;

= each p[i] is the representing object for the it summand.

Think of p(1) as the set/space/type of possible configurations that a system can adopt.
For each i : p(1), imagine p[i] as the type of admissible inputs in configuration i.

6/22

Tensor, hom, substitution

Polynomial functors: tensor; morphisms

We can place systems side-by-side using
the tensor ®.

Y | | B
C V4

(LJ

‘~<
I

BZyY¢ @ Cy? — ByY

And we can wire systems together using
morphisms of polynomials.

7/22

Tensor, hom, substitution

Polynomial functors: tensor; morphisms

We can place systems side-by-side using A little more precisely:

the tensor ®. m A morphism p LN g of polynomials is a pair:

m a forwards ma 1) 25 g(1 , and
Y[8 pp(1) = q(1) p
c 7 m a family of backwards maps q[p:(i)] = p[i].
v |/ | 8 m Poly, is equivalently the category of dependent

lenses in &: i.e., the Grothendieck construction of

the pointwise opposite of £/(—).

BZyY¢ @ Cy? — ByY

And we can wire systems together using
morphisms of polynomials.

7/22

Tensor, hom, substitution

Polynomial functors: tensor; morphisms

We can place systems side-by-side using
the tensor ®.

Y | | B
C V4

(Lj

‘~<
I

BZyY¢ @ Cy? — ByY

And we can wire systems together using
morphisms of polynomials.

A little more precisely:
m A morphism p 2, q of polynomials is a pair:
m a forwards map p(1) = ¢(1), and

#
m a family of backwards maps g[¢1 (/)] RN pli]-

m Poly, is equivalently the category of dependent
lenses in &: i.e., the Grothendieck construction of
the pointwise opposite of £/(—).

m The tensor ® is given on objects by
PR q:i= Z Z yPll<all
i:p(1) j:q(1)

and similarly on morphisms: take products in £
of forwards and backwards maps.

7/22

Tensor, hom, substitution

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

(®, y) has a corresponding internal hom [—, =].

On objects: [p, q] = Z y 2= A0

fp—q
i.e., configurations are morphisms p ER g, and
inputs are pairs (i, x) with i a p-configuration and x

a corresponding g-input.

8/22

Tensor, hom, substitution

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

(®, y) has a corresponding internal hom [—, =].
On objects: [p, q] = Z yZ;;pU)q[ﬁ(i)]
fip—q

i.e., configurations are morphisms p = g, and
inputs are pairs (i, x) with i a p-configuration and x

a corresponding g-input.

Two useful facts:

b [Ay,y] =y
morphisms p — y correspond to sections
of the projection >, .,y pli] = p(1)

8/22

Tensor, hom, substitution

Polynomial functors: internal hom; composition product

We need a couple more pieces of structure for our definition.

Composition of polynomials as functors induces

(®, y) has a corresponding internal hom [—, =].
a monoidal structure (<, y) by substitution.
Cacts: — 2 ip(ry LA ()]
On objects: [p, q] = Z y e Given polynomials p and g, g < p is the
fp=q ; polynomial q o p obtained by substituting
i.e., configurations are morphisms p = g, and Zi:p(1) yp[’] for each instance of y in q.

inputs are pairs (i, x) with i a p-configuration and x)))
<-comonoids are categories [2]: the counit

encodes identities; the comultiplication encodes
Two useful facts: codomains and composites.

a corresponding g-input.

~ A
[Ay,y] =y <-comonoid homomorphisms are cofunctors®.
morphisms p — y correspond to sections

“We’ll hear more about these in the talk later today on

of the projection Zi:PU) p[l] - P(1) enriched lenses by Clarke and Di Meglio.

For a fabulous exposition of the relevant details, see Spivak and Niu [3].
8/22

Deterministic open dynamical systems

Definition (2.1)

A deterministic open dynamical system with interface p, state space S and time T is a
polynomial morphism 3 : Sy — [Ty, p] such that, for any section o : p — y, the morphism

ﬁ FEY7U] ~
Sy* = [Ty, pl == [Ty,y] = y"

is a <-comonoid homomorphism.

m (3 is equivalently a morphism Ty ® Sy — p, and hence a pair (3°, 8Y), with
m output map 8°: T x S — p(1),
m update map 3 : > 1> s p[Bo(t,s)] = S.
m Comonoid Sy’ is the codiscrete groupoid on S; y' is the delooping BT of T;
m Comonoid homomorphism axiom enforces the monoid action condition:

for any section o : p — y, the closure 57 (t) := S e, Zp[ﬁo(t, s)] s
s:S

constitutes a closed dynamical system on S

9/22

Examples of deterministic systems

Fix an interface polynomial p.

In discrete time, with T = N, a system (3 is again determined by its components at t = 1:
m output 5°: S — p(1),
= update 3 : Y p[0°(s)] = S;
m this is equivalently a p-coalgebra 3 : S — pS — so our systems are ‘generalized p-coalgebras’.

Solutions to ‘open ODEs’ are systems with T = R:
= suppose output ¥° : S — p(1) and ‘open’ vector field f : > ¢ p[9°(s)] — TS,
d
so that d—i = f(s,x) for each x : p[9°(s)];
the solutions give us a family of maps (sp, x) — s¢(¢);
and hence an update map 9" : (t, so, x) — s(¢);

such that pulling back along ¥° gives the closed system sy = sy0(5)(1);
thus satisfying the action condition.

10/22

(Indexed) Category

Deterministic open systems over p form a category

Recall that a morphism f : 9 — 1) of closed dynamical systems is a natural transformation:

X X
Y Y

i.e. a morphism f : X — Y of state spaces making the above squares commute for all ¢ : T.

9(t)
_—
_

¥(1)

11/22

(Indexed) Category

Deterministic open systems over p form a category

We can extend the same idea to systems over p, using their closures.

A morphism f : ¥ — ¢ isamap f : X — Y of state spaces, such that these commute:
* ,ﬂu
X TS5 ploe()] % x
f f

Y e y:YpW (] —ay 200

The identity on 4 is just the identity map on its state space.

We denote the resulting category by Coalg(p).

12/22

Coalgg is opindexed Poly. — Cat

Each object of Coalg (p) is a morphism Sy> — [Ty, p] for some S.

Given a morphism ¢ : p — g, we can reindex covariantly:
s [Ty.¢]
Sy” = [Ty, pl — [Ty, q]
It is easy to show that, if f : 3 — [’ is a morphism of systems, then the underlying map of state
spaces gives a morphism Coalgz(¢)(f) : Coalgs(p)(3) — Coalgy(¢)(8') after reindexing.

Hence we have an opindexed category CoalgsT : Polys — Cat.

13/22

Systems as Coalgebras

Deterministic open systems are coalgebras

We have already seen that discrete-time systems are p-coalgebras. What about general time?
We can show that a morphism Sy> — q is equivalently a map S — q(S): a g-coalgebra.

By setting g = [Ty, p], we find: each system Sy> — [Ty, p| is a coalgebra S — [Ty, p](S).

m but not all such coalgebras are ‘systems’ (they may not induce cofunctors)

Now what about stochastic / M-type systems?

m after all, closed M-systems are M-coalgebras ...

14/22

Polynomials With Side-Effects

Stochastic and other systems

Given a monad M : £ — £, we can construct an
analogous indexed category Coalg;[\r,,.

For each polynomial p, the objects are triples
(S, 82, 8Y) with

m state space S: &,

m output map 8°: T x S — p(1), and

m update map B : %%p[ﬁ"(t, s)] = MS,

such that for each o : p — y, the closure
o 5 t)'o o
870 5 0 3l s)) £ s

induces a functor BT — K/(M).

15/22

Stochastic and other systems

Given a monad M : £ — £, we can construct an
analogous indexed category Coalg;[\r,,.

For each polynomial p, the objects are triples
(S, 82, 8Y) with

m state space S: &,

m output map 8°: T x S — p(1), and

m update map B : .Zﬂ‘zsp[ﬁ"(t, s)] = MS,

such that for each o : p — y, the closure
o 5) o o
870 5 0 3l s)) £ s

induces a functor BT — K/(M).

Polynomials With Side-Effects

We can obtain Coalg?\r,, by instantiating def.
(2.1) in a “cat. of M-polynomials”, Poly,,.

Poly,, has same objects as Poly,; backwards
maps are families of morphisms in K¢(M).

Poly,, arises as a modified category of
dependent lenses.

m It doesn’t have [[-types in general, or a
universal internal hom.

m But it does have some [[-types, and a
‘deterministic’ hom.

i.e., enough to make the definition work!

For details, see the paper :-)

We can also make random dynamical systems work ... (but no time for that today!)

15/22

Monoidal bicategories of open dynamical systems

So, given Coalg}\r,,, how to set up the semantics for the “predictive coding” functor?

Higher corticalareas

. Intrinsic feedforward connections
Forward connections

Here, we need ‘hierarchical’ dynamical systems: 1-cells with type (X, A) — (Y, B) ...

16/22

Hierarchical / bidirectional systems

Monoidal bicategories of open dynamical systems

The answer is to construct ‘hom’ polynomials, akin to [—, =],
and then consider dynamical systems on these interfaces.

m This is a very similar approach to that of Shapiro and Spivak (which we’ll hear about later),
and effectively gives rise to a generalization of Spivak’s operad Org. (See the papers for details!)

17/22

Hierarchical / bidirectional systems

Monoidal bicategories of open dynamical systems

The answer is to construct ‘hom’ polynomials, akin to [—, =],
and then consider dynamical systems on these interfaces.

m This is a very similar approach to that of Shapiro and Spivak (which we’ll hear about later),
and effectively gives rise to a generalization of Spivak’s operad Org. (See the papers for details!)

Example: for each pair of objects A, B : C, define a polynomial {A, B} := C(A, B) y¢('),
Then there is a natural composition morphism, c4 g.c : {A, B} ® {B,C} — {A, C}.

m N.b,when C = &, we have {A, B} = [Ay, By].
We obtain a bicategory Hier|c: the hom categories are given by Coalg?\r,,({A, B});

composition is given by Coalg% (c), and identities are the constant systems emitting identities.

17/22

Hierarchical / bidirectional systems

Monoidal bicategories of open dynamical systems

The answer is to construct ‘hom’ polynomials, akin to [—, =],
and then consider dynamical systems on these interfaces.

m This is a very similar approach to that of Shapiro and Spivak (which we’ll hear about later),
and effectively gives rise to a generalization of Spivak’s operad Org. (See the papers for details!)

Example: for each pair of objects A, B : C, define a polynomial {A, B} := C(A, B) y¢('),
Then there is a natural composition morphism, c4 g.c : {A, B} ® {B,C} — {A, C}.
m N.b,when C = &, we have {A, B} = [Ay, By].
We obtain a bicategory Hier|c: the hom categories are given by Coalg?\r,,({A, B});
composition is given by Coalg% (c), and identities are the constant systems emitting identities.

And when C is a copy-discard category, then so is Hier|c.
m This means we can give a ‘dynamical Bayes rule’ ...

m ... but we need to be careful to use bisimulation rather than strict equality.
m (See the paper for details!)

17/22

Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Example: To get closer to Org, we can define hom-categories Hier(p, q) := Coalg}&([p, q)).
This gives a monoidal bicategory Hier, which restricts to Hier|g on linear polynomials.
This is a bicategory of ‘dynamical dependent lenses’.

Alternatively, consider other bidirectional or ‘cybernetic’ categories — such as Bayesian lenses ...

18/22

Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Example: the category of Bayesian lenses has as objects pairs (X, A) of objects in £.
Therefore define the polynomials [Xy*, Yy®] := BayesLens((X, A), (Y, B)) yPXxB,

We obtain a similar composition morphism, and hence a bicategory HierInf with
hom-categories HierInf(Xy", Yy5) := Coalg%([[XyA, Yy®]).

A 1-cell 9 : Xy — YyBis then given by a tuple (S, 99, 99, 9¥):
m state space S;
m forwards output channel 99 : T x S x X — DY,
m backwards output 99 : T X S X DX x B — DA;
m update 9" : T x S x DX x B— DS.

This category is what we need for the dynamical semantics of predictive coding...

(... and will be in my forthcoming preprint Compositional Active Inference II)

19/22

Dynamical Cybernetic Systems

Dynamical cybernetics and ‘cilia’

Finally, we can do something similar for any category of optics.
Recall that for an optic [: & — W, we have a notion of ‘context’:

M:Optic
Ctx(!) := / Optic(/, M ® ®) x Optic(M @ V,)

— (it’s “everything needed to close off [”.)

We define polynomials (¢, W) ;= > yCx(),
:Optic(®,V)

The yoga of optics gives us composition morphisms (¢, V) @ (V,X) — (d,X).
And hence a monoidal bicategory Cilia with hom-categories Cilia(®, V) := Coalg}&((fb, \Il>)

B N.b, ‘cilia’ are the structures that control the eye.

Such categories may be useful for building dynamical systems that e.g. play open games.

20/22

Conclusions

To recap:

m we constructed opindexed categories CoalggT of deterministic dynamical systems in a
(LCC) category &, for a monoid T modelling time;

m we saw how to extend these to systems with different transition types, using a monad M,
m we saw how these systems generalize closed systems, and how they constitute coalgebras;

m and we constructed bicategories of dynamical systems for cybernetic applications.

But there are many open questions!
m What is the connection to the monoidal streams of Di Lavore et al?
m s Coalgg a topos? Can we translate ideas from coalgebraic logic?

m How does this coalgebraic framework relate to Myers’ double-categorical framework?

Thanks for listening!

21/22

Bibliography

1. Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., and Friston, K.J.: Canonical microcircuits for
predictive coding. Neuron 76(4), 695-711(2012). poi: 10.1016/j .neuron.2012.10.038

2. Ahman, D., and Uustalu, T.: Directed Containers as Categories. EPTCS 207, 2016, pp. 89-98 (2016). poi:
10.4204/EPTCS. 207.5

3. Spivak, D.I,, and Niu, N.: Polynomial Functors: A General Theory of Interaction. (2021)

22/22

https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.4204/EPTCS.207.5

	Introduction
	Motivation
	Overview

	Closed Dynamical Systems
	Deterministic systems
	Stochastic systems and `side-effects'

	Polynomial Functors
	Basics
	Tensor, hom, substitution

	Deterministic Open Dynamical Systems
	Comonoid Flow
	Examples
	(Indexed) Category
	Systems as Coalgebras

	Stochastic and M-type Systems
	Polynomials With Side-Effects

	Monoidal (Bi)categories of Open Systems
	Hierarchical / bidirectional systems
	Dynamical Cybernetic Systems

	Conclusions

