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Gödel’s Dialectica Interpretation

Dialectica Interpretation is based on a theory, called System T ,
in a many-sorted language L and such that any formula of T is
quantifier free. Whenever A is a formula in the language of
arithmetic, then we inductively define a formula AD in the
language L of the form ∃x.∀y.AD, where AD is quantifier free.
This interpretation satisfies the following:

Theorem
If HA proves a formula A, then T proves AD(t, y) where t is a
sequence of closed terms.



Dialectica construction

De Paiva’s notion of Dialectica category Dial(C) associated to a
category with finite limits C is the first attempt of internalising
Gödel’s Dialectica interpretation.

An object of Dial(C) is a triple (X,U, α), which we think of as a
formula (∃x)(∀u)α(x, u), where α is a subobject of X × U in C.
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Dialectica construction

An arrow from (∃x)(∀u)α(x, u) to (∃y)(∀v)β(y, v) is a pair
(F : X −→ Y, f : X × V −→ U), i.e. a pair
(F (x) : Y, f(x, v) : U) of terms in context satisfying the
condition:

α(x, f(x, v)) ≤ β(F (x), v)

between the reindexed subobjects, where the squares:

α(x, f(x, v)) //

��

α

��
X × V

⟨prX ,f⟩
// X × U

β(F (x), v) //

��

β

��
X × V

F×1V
// Y × V

are pullbacks.
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The notion of morphism of Dial(C) is motivated by the definition
of the dialectica interpretation for formulas of the form A→ B:

(A→ B)D := (∃F )(∃f)(∀x)(∀v)( AD(x, f(x, v)) → BD(F (x), v) ).

The action of (−)D on A→ B is heuristically motivated by the
Principle of Independence of Premise:

⊤ ⊢ (θ → (∃u)η(u)) → (∃u)(θ → η(u))

and Markov Principle:

⊤ ⊢ ¬(∀x)ϕ(x) → (∃x)¬ϕ(x)

by which one can show that:

AD → BD ⊣⊢ (A→ B)D.



(A presentation of) the generalised dialectica
construction (proof-irrelevant setting)

Let P : Cop → Pos be a doctrine. The dialectica doctrine
Dial(P ) : Cop → Pos associated to P is defined as follows:
▶ Fibres. The objects of Dial(P )(A) are 4-tuples (A,X,U, α)

where A,X and U are objects of C and α ∈ P (A×X × U);
it is the case that (A,X,U, α) ≤ (A, Y, V, β) when there is a
pair (A×X

F−→ Y, A×X × V
f−→ U) such that:

α(a, x, f(a, x, v)) ⊢ β(a, F (a, x), v).

▶ Reindexing. Whenever g is an arrow B → A of C, it is the
case that Dial(P )(f)(A,X,U, α) is:

(B,X,U, α(g(b), x, u))

of Dial(P )(B).



Previous result

If C is cartesian closed, then a doctrine P : Cop → Pos is the
dialectica completion of some doctrine P ′′ precisely when P is a
Gödel doctrine, that is (e.g.):

1. the doctrine P is existential and universal ;
2. the doctrine P has enough existential-free predicates;
3. the existential-free objects of P are stable under universal

quantification, i.e. if α is an element of P (A) and it is
existential-free, then ∀pr(α) is existential-free for every
projection pr from A;

4. the subdoctrine P ′ : Cop → Pos of the existential-free
predicates of P has enough universal-free predicates.

In this case, the doctrine P ′′ such that Dial(P ′′) ∼= P is the full
subdoctrine of the universal-free predicates of P ′ (also called
quantifier-free predicates of P ).



Existential doctrines and existential-free elements
A fibration P : Cop → Pos is existential if:

Ppr : P (A) → P (A×B)

has a left adjoint ∃pr : P (A×B) → P (A) for any projection
A×B

pr−→ A of the base category (satisfying the BC condition).

Let P : Cop → Pos be an existential doctrine. We say that a
predicate α(i) in P (I) is existential-free if it enjoys the
following universal property:

for every arrow A
f−→ I of C such that:

α(f(a)) ⊢ (∃b : B)β(a, b)

in P (A), where β(a, b) is a predicate in P (A×B), there exist a
unique arrow A

g−→ B such that:

α(f(a)) ⊢ β(a, g(a))

in P (A).
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Logical principles

Proposition (Prenex normal form)
If a doctrine P : Cop → Pos is a Gödel doctrine, then, for any
predicate α in P (A), it is the case that:

α(a) ⊣⊢ (∃x : X)(∀y : Y )β(x, y, a)

where β is a quantifier-free predicate in P (X × Y ×A).

Proposition (Skolemisation)
If a doctrine P : Cop → Pos is a Gödel doctrine, then, for any
predicate β in P (X × Y ×A), it is the case that:

(∀x : X)(∃y : Y )β(x, y, a) ⊣⊢ (∃f : Y X)(∀x : X)β(x, ev(f, x), a).



Logical principles

Theorem
Let P : Cop → Pos be a Gödel doctrine. Then for every ψD in
P (I ×U ×X) and ϕD in P (I × V × Y ) quantifier-free predicates
of P it is the case that:

i : I | (∃u)(∀x)ψD(i, u, x) ⊢ (∃v)(∀y)ϕD(i, v, y)

if and only if there exist I × U
f0−→ V and I × U × Y

f1−→ X such
that:

i : I, u : U, y : Y | ψD(i, u, f1(i, u, y)) ⊢ ϕD(i, f0(i, u), y).

Goal. To say something about the internal logic of a Dialectica
hyperdoctrine that relates it to the framework of the Dialectica
translation.
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Dialectica rules

Proposition
Every Gödel hyperdoctrine P : Cop // HeyAlg validates the
Rule of Independence of Premise:

if a : A | ⊤ ⊢ α(a) → (∃b)β(a, b) then a : A | ⊤ ⊢ (∃b)(α(a) → β(a, b))

whenever β ∈ P (A×B) and α ∈ P (A) is an existential-free
predicate.

Proposition
Every Gödel hyperdoctrine P : Cop // HeyAlg satisfies the
following Markov Rule:

if a : A | ⊤ ⊢ ((∀b)α(a, b)) → β(a)

then a : A | ⊤ ⊢ (∃b)(α(a, b) → β(a))

whenever β ∈ P (A) is a quantifier-free predicate and
α ∈ P (A×B) is an existential-free predicate.



Dialectica rules

The Rule of Independece of Premise and the Markov Rule are
needed, in addition to the inference rules of intuitionistic
first-order logic, in order to justify the definition of the
Dialectica translation of formulas of arithmetic of the form
A→ B. This fact underscores how faithful the modelling is.



Dialectica principles

If in addition we assume that, for a Gödel hyperdoctrine
P : Cop // HeyAlg , the existential-free elements are closed
under finite conjunction and implication, then it is the case that:

Theorem
The doctrine P models the Principle of Independence of
Premise:

a : A | ⊤ ⊢ ( α(a) → (∃b)β(a, b) ) → (∃b)(α(a) → β(a, b))

whenever β ∈ P (A×B) and α ∈ P (A) is an existential-free
predicate; and the Markov Principle:

a : A | ⊤ ⊢ ( (∀b)α(a, b) → β(a) ) → (∃b)(α(a, b) → β(a))

whenever β ∈ P (A) is a quantifier-free predicate and
α ∈ P (A×B) is an existential-free predicate.



Internal logic of a Dialectica doctrine

Any boolean doctrine satisfies the Principle of Independence of
Premises and the Markov Principle, but in general these are not
satisfied by a usual hyperdoctrine.
It turns out that the set of deduction rules modelled by a Gödel
hyperdoctrine is right in-between intuitionistic first-order and
classical first-order logic: it is powerful enough to guarantee the
equivalences that justify the Dialectica interpretation of the
implication.

What about AD → BD ↔ (A→ B)D?
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Main result: soundness of AD → BD ↔ (A → B)D

Theorem
Let P : Cop // HeyAlg be a Gödel hyperdoctrine such that:
▶ existential-free elements are closed with respect to

implication and finite conjunction;
▶ falsehood ⊥ is a quantifier-free predicate.

Then for every ψD in P (I × U ×X) and ϕD in P (I × V × Y )
quantifier-free predicates of P it is the case that the formula:

i : I | ∃u.∀x.ψD(i, u, x) → ∃v.∀y.ϕD(i, v, y)

is provably equivalent to:

i : I | ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → ϕD(i, f0(i, u), y)).
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