

Applied Category Theory 2022
22nd of July, University of Strathclyde, Glasgow

Dialectica: fibrations and logical principles

based on a joint work with Davide Trotta (University of Pisa)
& Valeria de Paiva (Topos Institute)

speaker Matteo Spadetto (University of Leeds)

Content

1. Notion of *Gödel doctrine* and motivation
2. Internal logic

Gödel's Dialectica Interpretation

Dialectica Interpretation is based on a theory, called System T , in a many-sorted language \mathcal{L} and such that any formula of T is quantifier free. Whenever A is a formula in the language of arithmetic, then we inductively define a formula A^D in the language \mathcal{L} of the form $\exists x. \forall y. A_D$, where A_D is quantifier free. This interpretation satisfies the following:

Theorem

If HA proves a formula A , then T proves $A_D(t, y)$ where t is a sequence of closed terms.

Dialectica construction

De Paiva's notion of Dialectica category $\text{Dial}(\mathcal{C})$ associated to a category with finite limits \mathcal{C} is the first attempt of internalising Gödel's Dialectica interpretation.

Dialectica construction

De Paiva's notion of Dialectica category $\text{Dial}(\mathcal{C})$ associated to a category with finite limits \mathcal{C} is the first attempt of internalising Gödel's Dialectica interpretation.

An **object** of $\text{Dial}(\mathcal{C})$ is a triple (X, U, α) , which we think of as a formula $(\exists x)(\forall u)\alpha(x, u)$, where α is a subobject of $X \times U$ in \mathcal{C} .

Dialectica construction

An **arrow** from $(\exists x)(\forall u)\alpha(x, u)$ to $(\exists y)(\forall v)\beta(y, v)$ is a pair $(F: X \rightarrow Y, f: X \times V \rightarrow U)$, i.e. a pair $(F(x) : Y, f(x, v) : U)$ of terms in context satisfying the condition:

$$\alpha(x, f(x, v)) \leq \beta(F(x), v)$$

between the reindexed subobjects, where the squares:

$$\begin{array}{ccc} \alpha(x, f(x, v)) & \xrightarrow{\hspace{2cm}} & \alpha \\ \downarrow & & \downarrow \\ X \times V & \xrightarrow{\langle \text{pr}_X, f \rangle} & X \times U \end{array} \quad \begin{array}{ccc} \beta(F(x), v) & \xrightarrow{\hspace{2cm}} & \beta \\ \downarrow & & \downarrow \\ X \times V & \xrightarrow{F \times 1_V} & Y \times V \end{array}$$

are pullbacks.

Dialectica construction

An **arrow** from $(\exists x)(\forall u)\alpha(x, u)$ to $(\exists y)(\forall v)\beta(y, v)$ is a pair $(F: X \rightarrow Y, f: X \times V \rightarrow U)$, i.e. a pair $(F(x) : Y, f(x, v) : U)$ of terms in context satisfying the condition:

$$\alpha(x, f(x, v)) \leq \beta(F(x), v)$$

between the reindexed subobjects, where the squares:

$$\begin{array}{ccc} \alpha(x, f(x, v)) & \xrightarrow{\hspace{2cm}} & \alpha \\ \downarrow & & \downarrow \\ X \times V & \xrightarrow{\langle \text{pr}_X, f \rangle} & X \times U \end{array} \quad \begin{array}{ccc} \beta(F(x), v) & \xrightarrow{\hspace{2cm}} & \beta \\ \downarrow & & \downarrow \\ X \times V & \xrightarrow{F \times 1_V} & Y \times V \end{array}$$

are pullbacks.

The notion of morphism of $\text{Dial}(\mathcal{C})$ is motivated by the definition of the dialectica interpretation for formulas of the form $A \rightarrow B$:

$$(A \rightarrow B)^D := (\exists F)(\exists f)(\forall x)(\forall v)(A_D(x, f(x, v)) \rightarrow B_D(F(x), v)).$$

The action of $(-)^D$ on $A \rightarrow B$ is heuristically motivated by the Principle of Independence of Premise:

$$\top \vdash (\theta \rightarrow (\exists u)\eta(u)) \rightarrow (\exists u)(\theta \rightarrow \eta(u))$$

and Markov Principle:

$$\top \vdash \neg(\forall x)\phi(x) \rightarrow (\exists x)\neg\phi(x)$$

by which one can show that:

$$A^D \rightarrow B^D \dashv\vdash (A \rightarrow B)^D.$$

(A presentation of) the generalised dialectica construction (proof-irrelevant setting)

Let $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ be a doctrine. The **dialectica doctrine** $\text{Dial}(P): \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ associated to P is defined as follows:

- ▶ **Fibres.** The objects of $\text{Dial}(P)(A)$ are 4-tuples (A, X, U, α) where A, X and U are objects of \mathcal{C} and $\alpha \in P(A \times X \times U)$; it is the case that $(A, X, U, \alpha) \leq (A, Y, V, \beta)$ when there is a pair $(A \times X \xrightarrow{F} Y, A \times X \times V \xrightarrow{f} U)$ such that:

$$\alpha(a, x, f(a, x, v)) \vdash \beta(a, F(a, x), v).$$

- ▶ **Reindexing.** Whenever g is an arrow $B \rightarrow A$ of \mathcal{C} , it is the case that $\text{Dial}(P)(f)(A, X, U, \alpha)$ is:

$$(B, X, U, \alpha(g(b), x, u))$$

of $\text{Dial}(P)(B)$.

Previous result

If \mathcal{C} is cartesian closed, then a doctrine $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ is the dialectica completion of some doctrine P'' precisely when P is a **Gödel doctrine**, that is (e.g.):

1. the doctrine P is *existential* and *universal*;
2. the doctrine P has enough *existential-free predicates*;
3. the existential-free objects of P are stable under universal quantification, i.e. if α is an element of $P(A)$ and it is existential-free, then $\forall_{\text{pr}}(\alpha)$ is existential-free for every projection pr from A ;
4. the subdoctrine $P': \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ of the existential-free predicates of P has enough *universal-free predicates*.

In this case, the doctrine P'' such that $\text{Dial}(P'') \cong P$ is the full subdoctrine of the universal-free predicates of P' (also called *quantifier-free predicates* of P).

Existential doctrines and existential-free elements

A fibration $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ is **existential** if:

$$P_{\text{pr}}: P(A) \rightarrow P(A \times B)$$

has a left adjoint $\exists_{\text{pr}}: P(A \times B) \rightarrow P(A)$ for any projection

$A \times B \xrightarrow{\text{pr}} A$ of the base category (satisfying the BC condition).

Existential doctrines and existential-free elements

A fibration $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ is **existential** if:

$$P_{\text{pr}}: P(A) \rightarrow P(A \times B)$$

has a left adjoint $\exists_{\text{pr}}: P(A \times B) \rightarrow P(A)$ for any projection $A \times B \xrightarrow{\text{pr}} A$ of the base category (satisfying the BC condition).

Let $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ be an existential doctrine. We say that a predicate $\alpha(i)$ in $P(I)$ is **existential-free** if it enjoys the following universal property:

for every arrow $A \xrightarrow{f} I$ of \mathcal{C} such that:

$$\alpha(f(a)) \vdash (\exists b: B)\beta(a, b)$$

in $P(A)$, where $\beta(a, b)$ is a predicate in $P(A \times B)$, there exist a unique arrow $A \xrightarrow{g} B$ such that:

$$\alpha(f(a)) \vdash \beta(a, g(a))$$

in $P(A)$.

Logical principles

Proposition (Prenex normal form)

If a doctrine $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ is a Gödel doctrine, then, for any predicate α in $P(A)$, it is the case that:

$$\alpha(a) \dashv\vdash (\exists x: X)(\forall y: Y)\beta(x, y, a)$$

where β is a quantifier-free predicate in $P(X \times Y \times A)$.

Proposition (Skolemisation)

If a doctrine $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ is a Gödel doctrine, then, for any predicate β in $P(X \times Y \times A)$, it is the case that:

$$(\forall x: X)(\exists y: Y)\beta(x, y, a) \dashv\vdash (\exists f: Y^X)(\forall x: X)\beta(x, \text{ev}(f, x), a).$$

Logical principles

Theorem

Let $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ be a Gödel doctrine. Then for every ψ_D in $P(I \times U \times X)$ and ϕ_D in $P(I \times V \times Y)$ quantifier-free predicates of P it is the case that:

$$i : I \mid (\exists u)(\forall x)\psi_D(i, u, x) \vdash (\exists v)(\forall y)\phi_D(i, v, y)$$

if and only if there exist $I \times U \xrightarrow{f_0} V$ and $I \times U \times Y \xrightarrow{f_1} X$ such that:

$$i : I, u : U, y : Y \mid \psi_D(i, u, f_1(i, u, y)) \vdash \phi_D(i, f_0(i, u), y).$$

Logical principles

Theorem

Let $P: \mathcal{C}^{\text{op}} \rightarrow \mathbf{Pos}$ be a Gödel doctrine. Then for every ψ_D in $P(I \times U \times X)$ and ϕ_D in $P(I \times V \times Y)$ quantifier-free predicates of P it is the case that:

$$i : I \mid (\exists u)(\forall x)\psi_D(i, u, x) \vdash (\exists v)(\forall y)\phi_D(i, v, y)$$

if and only if there exist $I \times U \xrightarrow{f_0} V$ and $I \times U \times Y \xrightarrow{f_1} X$ such that:

$$i : I, u : U, y : Y \mid \psi_D(i, u, f_1(i, u, y)) \vdash \phi_D(i, f_0(i, u), y).$$

Goal. To say something about the internal logic of a Dialectica hyperdoctrine that relates it to the framework of the Dialectica translation.

Dialectica rules

Proposition

Every Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{HeyAlg}$ validates the Rule of Independence of Premise:

if $a : A \mid \top \vdash \alpha(a) \rightarrow (\exists b)\beta(a, b)$ then $a : A \mid \top \vdash (\exists b)(\alpha(a) \rightarrow \beta(a, b))$

whenever $\beta \in P(A \times B)$ and $\alpha \in P(A)$ is an existential-free predicate.

Proposition

Every Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{HeyAlg}$ satisfies the following Markov Rule:

if $a : A \mid \top \vdash ((\forall b)\alpha(a, b)) \rightarrow \beta(a)$

then $a : A \mid \top \vdash (\exists b)(\alpha(a, b) \rightarrow \beta(a))$

whenever $\beta \in P(A)$ is a quantifier-free predicate and $\alpha \in P(A \times B)$ is an existential-free predicate.

Dialectica rules

The Rule of Independence of Premise and the Markov Rule are needed, in addition to the inference rules of intuitionistic first-order logic, in order to justify the definition of the Dialectica translation of formulas of arithmetic of the form $A \rightarrow B$. This fact underscores how faithful the modelling is.

Dialectica principles

If in addition we assume that, for a Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{HeyAlg}$, the existential-free elements are closed under finite conjunction and implication, then it is the case that:

Theorem

The doctrine P models the Principle of Independence of Premise:

$$a : A \mid \top \vdash (\alpha(a) \rightarrow (\exists b)\beta(a, b)) \rightarrow (\exists b)(\alpha(a) \rightarrow \beta(a, b))$$

whenever $\beta \in P(A \times B)$ and $\alpha \in P(A)$ is an existential-free predicate; and the Markov Principle:

$$a : A \mid \top \vdash ((\forall b)\alpha(a, b) \rightarrow \beta(a)) \rightarrow (\exists b)(\alpha(a, b) \rightarrow \beta(a))$$

whenever $\beta \in P(A)$ is a quantifier-free predicate and $\alpha \in P(A \times B)$ is an existential-free predicate.

Internal logic of a Dialectica doctrine

Any boolean doctrine satisfies the Principle of Independence of Premises and the Markov Principle, but in general these are not satisfied by a usual hyperdoctrine.

It turns out that *the set of deduction rules modelled by a Gödel hyperdoctrine is right in-between intuitionistic first-order and classical first-order logic*: it is powerful enough to guarantee the equivalences that justify the Dialectica interpretation of the implication.

Internal logic of a Dialectica doctrine

Any boolean doctrine satisfies the Principle of Independence of Premises and the Markov Principle, but in general these are not satisfied by a usual hyperdoctrine.

It turns out that *the set of deduction rules modelled by a Gödel hyperdoctrine is right in-between intuitionistic first-order and classical first-order logic*: it is powerful enough to guarantee the equivalences that justify the Dialectica interpretation of the implication.

What about $A^D \rightarrow B^D \leftrightarrow (A \rightarrow B)^D$?

Main result: soundness of $A^D \rightarrow B^D \leftrightarrow (A \rightarrow B)^D$

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{HeyAlg}$ be a Gödel hyperdoctrine such that:

- ▶ existential-free elements are closed with respect to implication and finite conjunction;
- ▶ falsehood \perp is a quantifier-free predicate.

Then for every ψ_D in $P(I \times U \times X)$ and ϕ_D in $P(I \times V \times Y)$ quantifier-free predicates of P it is the case that the formula:

$$i : I \mid \exists u. \forall x. \psi_D(i, u, x) \rightarrow \exists v. \forall y. \phi_D(i, v, y)$$

is provably equivalent to:

$$i : I \mid \exists f_0, f_1. \forall u, y. (\psi_D(i, u, f_1(i, u, y)) \rightarrow \phi_D(i, f_0(i, u), y)).$$

References

- Trotta, Spadetto, de Paiva. *The Gödel fibration*. MFCS 2021. [LIPIcs link here](#). [arXiv 2104.14021](#) (extended version).
- Trotta, Spadetto, de Paiva. *Dialectica logical principles*. LFCS 2022. [Springer link here](#). [arXiv 2109.08064](#).
- Trotta, Spadetto, de Paiva. *Dialectica Principles via Gödel Doctrines*. [arXiv 2205.07093](#).

References

- ❑ F. Lawvere. 1969. *Adjointness in foundations*. *Dialectica*, 23:281–296.
- ❑ M. Hyland, P. Johnstone and A. Pitts. 1980. *Tripos theory*. *Math. Proc. Camb. Phil. Soc.*, 88:205–232.
- ❑ V. de Paiva. 1991. *The Dialectica categories*. PhD Thesis, University of Cambridge.
- ❑ M. Hyland. 2002. *Proof theory in the abstract*. *Annals of Pure and Applied Logic*, 114:43–78.
- ❑ P. Hofstra. 2011. *The Dialectica monad and its cousins*. *Models, logics, and higherdimensional categories: a tribute to the work of Mihály Makkai*, 53:107-139
- ❑ D. Trotta and M. E. Maietti. 2021. *Generalised existential completions and their regular and exact completions*. Preprint.