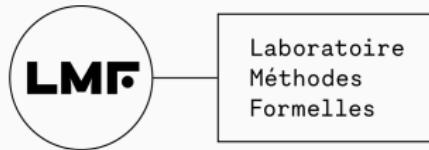


Central Submonads and Notions of Computation

Titouan Carette, [Louis Lemonnier](#), Vladimir Zamdzhiev



20 July, 2022 @ ACT'22

Overview

- For any monoid M , its centre $Z(M)$ is a commutative submonoid;
- For any semiring R , its centre $Z(R)$ is a commutative subsemiring.
- For any group G , its centre $Z(G)$ is a commutative subgroup (aka abelian subgroup);

Overview

- For any monoid M , its centre $Z(M)$ is a commutative submonoid;
- For any semiring R , its centre $Z(R)$ is a commutative subsemiring.
- For any group G , its centre $Z(G)$ is a commutative subgroup (aka abelian subgroup);
- What about monads?

Overview

- For any monoid M , its centre $Z(M)$ is a commutative submonoid;
- For any semiring R , its centre $Z(R)$ is a commutative subsemiring.
- For any group G , its centre $Z(G)$ is a commutative subgroup (aka abelian subgroup);
- What about monads?

Context:

- a symmetric monoidal category (\mathbf{C}, I, \otimes) ,
- a strong monad $(\mathcal{T}, \eta, \mu, \tau)$.

Overview

- For any monoid M , its centre $Z(M)$ is a commutative submonoid;
- For any semiring R , its centre $Z(R)$ is a commutative subsemiring.
- For any group G , its centre $Z(G)$ is a commutative subgroup (aka abelian subgroup);
- What about monads?

Context:

- a symmetric monoidal category (\mathbf{C}, I, \otimes) ,
- a strong monad $(\mathcal{T}, \eta, \mu, \tau)$.

We wonder:

- Is there a commutative submonad of \mathcal{T} which is its centre? When does it exist?
- Is there an appropriate computational interpretation?

Background

The Strength of a Monad

- For a monoid M , its centre is defined as

$$Z(M) \stackrel{\text{def}}{=} \{x \in M \mid \forall y \in M. x \cdot y = y \cdot x\}.$$

- Notice there is an implicit *swap* in the arguments.
- *But*, the definition of a monad is independent of any monoidal structure on the base category.
- Unclear how to define a suitable notion of centre for such monads.
- Instead, we introduce the centre for *strong* monads acting on symmetric monoidal categories.
- The monadic strength is a natural transformation $\tau_{X,Y}: X \otimes \mathcal{T}Y \rightarrow \mathcal{T}(X \otimes Y)$ that satisfies some coherence conditions w.r.t. monoidal structure.
- The monadic costrength is a natural transformation $\tau'_{X,Y}: \mathcal{T}X \otimes Y \rightarrow \mathcal{T}(X \otimes Y)$ that may be defined via τ and the monoidal symmetry.

Commutative Monads

Definition (Commutative Monad)

A strong monad \mathcal{T} is said to be *commutative* if the following diagram:

$$\begin{array}{ccccc} \mathcal{T}X \otimes \mathcal{T}Y & \xrightarrow{\tau_{\mathcal{T}X, Y}} & \mathcal{T}(\mathcal{T}X \otimes Y) & \xrightarrow{\mathcal{T}\tau'_{X, Y}} & \mathcal{T}^2(X \otimes Y) \\ \tau'_{X, \mathcal{T}Y} \downarrow & & & & \downarrow \mu_{X \otimes Y} \\ \mathcal{T}(X \otimes \mathcal{T}Y) & \xrightarrow{\mathcal{T}\tau_{X, Y}} & \mathcal{T}^2(X \otimes Y) & \xrightarrow{\mu_{X \otimes Y}} & \mathcal{T}(X \otimes Y) \end{array}$$

commutes for every choice of objects X and Y .

Commutative vs Strong Monads

- The Kleisli category of a strong monad \mathcal{T} does *not* have a canonical monoidal structure, in general. It has a canonical *premonoidal* structure [Power and Robinson, 1997].
- This premonoidal structure is monoidal iff \mathcal{T} is commutative.
- This has important consequences for the computational interpretation as well.

Central Submonads on Set

The first example

Given a monoid (M, e, m) , the writer monad: $(M \times -) : \mathbf{Set} \rightarrow \mathbf{Set}$ has the following monad structure:

- $\eta_X : X \rightarrow M \times X :: x \mapsto (e, x)$;
- $\mu_X : M \times (M \times X) \rightarrow M \times X :: (z, (z', x)) \mapsto (m(z, z'), x)$,
- $\tau_{X,Y} : X \times (M \times Y) \rightarrow M \times (X \times Y) :: (x, (z, y)) \mapsto (z, (x, y))$.

What should be the centre? What about $Z(M) \times -$?

Indeed, it is a commutative submonad of $(M \times -)$.

Commutative Monads in Set

$\mathcal{T} : \mathbf{Set} \rightarrow \mathbf{Set}$ is said to be *commutative* if the following diagram:

$$\begin{array}{ccccc} \mathcal{T}X \times \mathcal{T}Y & \xrightarrow{\tau_{\mathcal{T}X, Y}} & \mathcal{T}(\mathcal{T}X \times Y) & \xrightarrow{\mathcal{T}\tau'_{X, Y}} & \mathcal{T}^2(X \times Y) \\ \tau'_{X, \mathcal{T}Y} \downarrow & & & & \downarrow \mu_{X \times Y} \\ \mathcal{T}(X \times \mathcal{T}Y) & \xrightarrow{\mathcal{T}\tau_{X, Y}} & \mathcal{T}^2(X \times Y) & \xrightarrow{\mu_{X \times Y}} & \mathcal{T}(X \times Y) \end{array}$$

commutes for every choice of sets X and Y .

Commutative Monads in Set

$\mathcal{T} : \mathbf{Set} \rightarrow \mathbf{Set}$ is said to be *commutative* if the following diagram:

$$\begin{array}{ccccc} TX \times TY & \xrightarrow{\tau_{TX,Y}} & \mathcal{T}(TX \times Y) & \xrightarrow{\mathcal{T}\tau'_{X,Y}} & \mathcal{T}^2(X \times Y) \\ \tau'_{X,TY} \downarrow & & & & \downarrow \mu_{X \times Y} \\ \mathcal{T}(X \times TY) & \xrightarrow{\mathcal{T}\tau_{X,Y}} & \mathcal{T}^2(X \times Y) & \xrightarrow{\mu_{X \times Y}} & \mathcal{T}(X \times Y) \end{array}$$

commutes for every choice of sets X and Y .

How would you define a central submonad \mathcal{Z} of \mathcal{T} ?

Central Subset

The trick is to consider all the monadic elements of $\mathcal{T}X$ that make the previous diagram commute.

Definition (Centre)

Given a set X , the *centre* of \mathcal{T} at X , written $\mathcal{Z}X$, is defined to be the set

$$\mathcal{Z}X \stackrel{\text{def}}{=} \{t \in \mathcal{T}X \mid \forall Y \in \text{Ob}(\mathbf{Set}). \forall s \in \mathcal{T}Y. \mu(\mathcal{T}\tau'(\tau(t, s))) = \mu(\mathcal{T}\tau(\tau'(t, s)))\}.$$

We write $\iota_X : \mathcal{Z}X \subseteq \mathcal{T}X$ for the indicated subset inclusion.

The Central Submonad

- **Lemma:** The assignment $\mathcal{Z}(-)$ extends to a functor $\mathcal{Z} : \mathbf{Set} \rightarrow \mathbf{Set}$ when we define

$$\mathcal{Z}f \stackrel{\text{def}}{=} \mathcal{T}f|_{\mathcal{Z}X} : \mathcal{Z}X \rightarrow \mathcal{Z}Y,$$

for any function $f : X \rightarrow Y$.

- **Lemma:** For any two sets X and Y , the monadic unit $\eta_X : X \rightarrow \mathcal{T}X$, the monadic multiplication $\mu_X : \mathcal{T}^2X \rightarrow \mathcal{T}X$, and the monadic strength $\tau_{X,Y} : X \times \mathcal{T}Y \rightarrow \mathcal{T}(X \times Y)$ (co)restrict respectively to functions $\eta_X^{\mathcal{Z}} : X \rightarrow \mathcal{Z}X$, $\mu_X^{\mathcal{Z}} : \mathcal{Z}^2X \rightarrow \mathcal{Z}X$ and $\tau_{X,Y}^{\mathcal{Z}} : X \times \mathcal{Z}Y \rightarrow \mathcal{Z}(X \times Y)$.
- **Theorem:** The assignment $\mathcal{Z}(-)$ extends to a *commutative submonad* $(\mathcal{Z}, \eta^{\mathcal{Z}}, \mu^{\mathcal{Z}}, \tau^{\mathcal{Z}})$ of \mathcal{T} with $\iota_X : \mathcal{Z}X \subseteq \mathcal{T}X$ the submonad morphism. Furthermore, there exists a canonical¹ isomorphism $\mathbf{Set}_{\mathcal{Z}} \cong \mathcal{Z}(\mathbf{Set}_{\mathcal{T}})$.

¹Details later.

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.
- If \mathcal{T} is commutative, its centre is itself.

Examples

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \rightarrow \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.
- If \mathcal{T} is commutative, its centre is itself.
- The centre of $(M \times -)$ is indeed $(Z(M) \times -)$.

Centralisable Monads in Symmetric Monoidal Categories

What about other categories?

- We saw that every monad on **Set** is centralisable.

What about other categories?

- We saw that every monad on **Set** is centralisable.
- What about strong monads in other categories?

What about other categories?

- We saw that every monad on **Set** is centralisable.
- What about strong monads in other categories?
- For this, we introduce the notion of central cone first.

Central cones

Definition (Central Cone)

A *central cone* of \mathcal{T} at X is given by a pair (Z, ι) , an object Z and a morphism $\iota : Z \rightarrow \mathcal{T}X$, such that the diagram:

$$\begin{array}{ccccc} Z \otimes \mathcal{T}Y & \xrightarrow{\iota \otimes \mathcal{T}Y} & TX \otimes \mathcal{T}Y & \xrightarrow{\tau'_{X, TY}} & \mathcal{T}(X \otimes TY) \\ \iota \otimes \mathcal{T}Y \downarrow & & & & \downarrow \mathcal{T}\tau_{X, Y} \\ TX \otimes \mathcal{T}Y & & & & \mathcal{T}^2(X \otimes Y) \\ \tau_{TX, Y} \downarrow & & & & \downarrow \mu_{X \otimes Y} \\ \mathcal{T}(TX \otimes Y) & \xrightarrow{\mathcal{T}\tau'_{X, Y}} & \mathcal{T}^2(X \otimes Y) & \xrightarrow{\mu_{X \otimes Y}} & \mathcal{T}(X \otimes Y) \end{array}$$

commutes.

Centralisable Monad

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X , then a *morphism of central cones* $\varphi : (Z', \iota') \rightarrow (Z, \iota)$ is a morphism $\varphi : Z' \rightarrow Z$, such that $\iota \circ \varphi = \iota'$.

Centralisable Monad

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X , then a *morphism of central cones* $\varphi : (Z', \iota') \rightarrow (Z, \iota)$ is a morphism $\varphi : Z' \rightarrow Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism.

Centralisable Monad

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X , then a *morphism of central cones* $\varphi : (Z', \iota') \rightarrow (Z, \iota)$ is a morphism $\varphi : Z' \rightarrow Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism.

Definition

We say that the monad \mathcal{T} is *centralisable* if for any object X , a terminal central cone of \mathcal{T} at X exists. We write $(\mathcal{Z}X, \iota_X)$ for the terminal central cone of \mathcal{T} at X .

Centralisable Monad

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X , then a *morphism of central cones* $\varphi : (Z', \iota') \rightarrow (Z, \iota)$ is a morphism $\varphi : Z' \rightarrow Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism.

Definition

We say that the monad \mathcal{T} is *centralisable* if for any object X , a terminal central cone of \mathcal{T} at X exists. We write $(\mathcal{Z}X, \iota_X)$ for the terminal central cone of \mathcal{T} at X .

Theorem

The assignment $\mathcal{Z}(-)$ extends to a commutative submonad $(\mathcal{Z}, \eta^{\mathcal{Z}}, \mu^{\mathcal{Z}}, \tau^{\mathcal{Z}})$ of \mathcal{T} with $\iota : \mathcal{Z} \Rightarrow \mathcal{T}$ the submonad monomorphism.

Note that a submonad morphism induces a canonical embedding $\mathcal{I} : \mathbf{C}_{\mathcal{Z}} \rightarrow \mathbf{C}_{\mathcal{T}}$.

Kleisli Categories and Premonoidal Categories

Premonoidal category

- If \mathbf{C} is symmetric monoidal and $\mathcal{T} : \mathbf{C} \rightarrow \mathbf{C}$ a strong monad;
- then $\mathbf{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,

Premonoidal category

- If \mathbf{C} is symmetric monoidal and $\mathcal{T} : \mathbf{C} \rightarrow \mathbf{C}$ a strong monad;
- then $\mathbf{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- $\mathbf{C}_{\mathcal{T}}$ has a *premonoidal structure* [Power and Robinson, 1997].

Premonoidal category

- If \mathbf{C} is symmetric monoidal and $\mathcal{T} : \mathbf{C} \rightarrow \mathbf{C}$ a strong monad;
- then $\mathbf{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- $\mathbf{C}_{\mathcal{T}}$ has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors $(- \otimes_l X')$ and $(X \otimes_r -)$ on $\mathbf{C}_{\mathcal{T}}$.

Premonoidal category

- If \mathbf{C} is symmetric monoidal and $\mathcal{T} : \mathbf{C} \rightarrow \mathbf{C}$ a strong monad;
- then $\mathbf{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- $\mathbf{C}_{\mathcal{T}}$ has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors $(- \otimes_l X')$ and $(X \otimes_r -)$ on $\mathbf{C}_{\mathcal{T}}$.

Definition (Central morphism [Power and Robinson, 1997])

A morphism $f: X \rightarrow Y$ in $\mathbf{C}_{\mathcal{T}}$ is *central* if for any morphism $f': X' \rightarrow Y'$

$$\begin{array}{ccc} X \otimes X' & \xrightarrow{f \otimes_l X'} & Y \otimes X' \\ \downarrow X \otimes_r f' & & \downarrow Y \otimes_r f' \\ X \otimes Y' & \xrightarrow{f \otimes_l Y'} & Y \otimes Y' \end{array}$$

in $\mathbf{C}_{\mathcal{T}}$, the following diagram:

commutes in $\mathbf{C}_{\mathcal{T}}$.

Premonoidal category

- If \mathbf{C} is symmetric monoidal and $\mathcal{T} : \mathbf{C} \rightarrow \mathbf{C}$ a strong monad;
- then $\mathbf{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- $\mathbf{C}_{\mathcal{T}}$ has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors $(- \otimes_l X')$ and $(X \otimes_r -)$ on $\mathbf{C}_{\mathcal{T}}$.

Definition (Central morphism [Power and Robinson, 1997])

A morphism $f: X \rightarrow Y$ in $\mathbf{C}_{\mathcal{T}}$ is *central* if for any morphism $f': X' \rightarrow Y'$

$$\begin{array}{ccc} X \otimes X' & \xrightarrow{f \otimes_l X'} & Y \otimes X' \\ \downarrow X \otimes_r f' & & \downarrow Y \otimes_r f' \\ X \otimes Y' & \xrightarrow{f \otimes_l Y'} & Y \otimes Y' \end{array}$$

in $\mathbf{C}_{\mathcal{T}}$, the following diagram:

commutes in $\mathbf{C}_{\mathcal{T}}$.

Central cones and central morphisms are actually equivalent notions!

Premonoidal Centre

- $Z(\mathbf{C}_T)$: the wide subcategory of \mathbf{C}_T with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

- $Z(\mathbf{C}_T)$: the wide subcategory of \mathbf{C}_T with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

Proposition

If the strong monad T is centralisable, then the canonical embedding $\mathcal{I} : \mathbf{C}_Z \rightarrow \mathbf{C}_T$ corestricts to an isomorphism of categories $\hat{\mathcal{I}} : \mathbf{C}_Z \rightarrow Z(\mathbf{C}_T)$.

- $Z(\mathbf{C}_{\mathcal{T}})$: the wide subcategory of $\mathbf{C}_{\mathcal{T}}$ with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

Proposition

If the strong monad \mathcal{T} is centralisable, then the canonical embedding $\mathcal{I} : \mathbf{C}_{\mathcal{Z}} \rightarrow \mathbf{C}_{\mathcal{T}}$ corestricts to an isomorphism of categories $\hat{\mathcal{I}} : \mathbf{C}_{\mathcal{Z}} \rightarrow Z(\mathbf{C}_{\mathcal{T}})$.

This is why we call \mathcal{Z} the central submonad of \mathcal{T} .

Premonoidal adjunction

Kleisli adjunction

- In the Kleisli adjunction between \mathbf{C} and $\mathbf{C}_{\mathcal{T}}$, the left adjoint, $\mathcal{J} : \mathbf{C} \rightarrow \mathbf{C}_{\mathcal{T}}$ always corestricts to $\hat{\mathcal{J}} : \mathbf{C} \rightarrow Z(\mathbf{C}_{\mathcal{T}})$.

Kleisli adjunction

- In the Kleisli adjunction between \mathbf{C} and $\mathbf{C}_{\mathcal{T}}$, the left adjoint, $\mathcal{J} : \mathbf{C} \rightarrow \mathbf{C}_{\mathcal{T}}$ always corestricts to $\hat{\mathcal{J}} : \mathbf{C} \rightarrow Z(\mathbf{C}_{\mathcal{T}})$.

Proposition

If the strong monad \mathcal{T} is centralisable, then $\hat{\mathcal{J}}$ is also a left adjoint and the adjunction induces the central submonad \mathcal{Z} .

Characterisation

The Main Theorem

Theorem (Centralisability)

Let \mathbf{C} be a symmetric monoidal category and \mathcal{T} a strong monad on it. The following are equivalent:

1. For any object X of \mathbf{C} , \mathcal{T} admits a terminal central cone at X ;
2. There exists a commutative submonad \mathcal{Z} of \mathcal{T} such that the canonical embedding functor $\mathcal{I} : \mathbf{C}_{\mathcal{Z}} \rightarrow \mathbf{C}_{\mathcal{T}}$ corestricts to an isomorphism of categories $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$;
3. The corestriction of the Kleisli left adjoint $\mathcal{J} : \mathbf{C} \rightarrow \mathbf{C}_{\mathcal{T}}$ to the premonoidal centre $\hat{\mathcal{J}} : \mathbf{C} \rightarrow Z(\mathbf{C}_{\mathcal{T}})$ also is a left adjoint.

Some Centralisable Monads and a non Centralisable one

- Using the main theorem, it follows every strong monad on many categories of interest (e.g., **Set**, **DCPO**, **Meas**, **Top**, **Hilb**, **Vect**) is centralisable.
- If **C** is a symmetric monoidal closed category that is total, then every strong monad on it is centralisable.
- If \mathcal{T} is a commutative monad, then \mathcal{T} is centralisable and its centre coincides with itself.

Is every strong monad centralisable?

Some Centralisable Monads and a non Centralisable one

- Using the main theorem, it follows every strong monad on many categories of interest (e.g., **Set**, **DCPO**, **Meas**, **Top**, **Hilb**, **Vect**) is centralisable.
- If **C** is a symmetric monoidal closed category that is total, then every strong monad on it is centralisable.
- If \mathcal{T} is a commutative monad, then \mathcal{T} is centralisable and its centre coincides with itself.

Is every strong monad centralisable? No!

Example built with a full subcategory **C** of **Set** where not all subsets of $\mathcal{T}X$ are objects of **C**.

More monads with non-trivial centres

Example

The valuation monad $\mathcal{V}: \mathbf{DCPO} \rightarrow \mathbf{DCPO}$ is strong, but its commutativity is an open problem [Jones, 1990]. The central submonad of \mathcal{V} is precisely the "central valuations monad" described in [Jia et al., 2021].

More monads with non-trivial centres

Example

The valuation monad $\mathcal{V}: \mathbf{DCPO} \rightarrow \mathbf{DCPO}$ is strong, but its commutativity is an open problem [Jones, 1990]. The central submonad of \mathcal{V} is precisely the "central valuations monad" described in [Jia et al., 2021].

Example

The *unbounded* Giry monad $\mathcal{G}: \mathbf{Meas} \rightarrow \mathbf{Meas}$, which assigns the space of all (possibly unbounded) measures to a measurable space, is a strong monad which is *not* commutative. This monad is centralisable and its central submonad \mathcal{Z} is such that $\mathcal{Z}X$ contains all discrete measures on the measurable space X (and possibly others).

Computational interpretation

A meta language

Refinement of Moggi's metalanguage;

A meta language

Refinement of Moggi's metalanguage;

$A, B ::= 1 \mid A \times B \mid A \rightarrow B \mid \mathcal{Z}A \mid \mathcal{T}A$

A meta language

Refinement of Moggi's metalanguage;

$$A, B ::= 1 \mid A \times B \mid A \rightarrow B \mid \mathcal{Z}A \mid \mathcal{T}A$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A. M : A \rightarrow B}$$

$$\frac{\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{ret}_{\mathcal{Z}} M : \mathcal{Z}A}$$

$$\frac{\Gamma \vdash M : \mathcal{Z}A \quad \Gamma, x : A \vdash N : \mathcal{Z}B}{\Gamma \vdash \text{do } x \leftarrow_{\mathcal{Z}} M ; N : \mathcal{Z}B}$$

$$\frac{\Gamma \vdash M : \mathcal{Z}A}{\Gamma \vdash \iota M : \mathcal{T}A}$$

$$\frac{\Gamma \vdash M : \mathcal{T}A \quad \Gamma, x : A \vdash N : \mathcal{T}B}{\Gamma \vdash \text{do } x \leftarrow_{\mathcal{T}} M ; N : \mathcal{T}B}$$

Computational use case for the centre of a monad

do

```
x <- op1  
y <- op2  
f x y
```

do

```
y <- op2  
x <- op1  
f x y
```

If *at least one* of op1 or op2 is central, then the two programs are contextually equivalent!

Thank you!

 Jia, X., Mislove, M. W., and Zamdzhev, V. (2021).
The central valuations monad (early ideas).
In Gadducci, F. and Silva, A., editors, *9th Conference on Algebra and Coalgebra in Computer Science, CALCO 2021, August 31 to September 3, 2021, Salzburg, Austria*, volume 211 of *LIPCS*, pages 18:1–18:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

 Jones, C. (1990).

Probabilistic Non-determinism.

PhD thesis, University of Edinburgh, UK.

 Power, J. and Robinson, E. P. (1997).

Premonoidal categories and notions of computation.

Math. Struct. Comput. Sci., 7:453–468.