
Statistical programming with
categorical measure theory &
LazyPPL
Swaraj Dash, Younesse Kaddar, Hugo Paquet, Sam Staton

 

Statistical programming with categorical measure theory and LazyPPL

lazyppl.bitbucket.io 1

https://lazyppl.github.io/
http://lazyppl.bitbucket.io/


Probabilistic Programming
Bayes’ law

​ ∝

posterior

​p(x ∣ d) ​ ×

likelihood

​p(d ∣ x) ​

prior

​p(x)

sample : prior

observe : likelihood, conditioning on the observed datapoints 

infer / normalize : posterior, inference from effects (observations
) to causes (parameters )

Statistical programming with categorical measure theory and LazyPPL

d

d x

lazyppl.bitbucket.io 2

http://lazyppl.bitbucket.io/


Demo
linear :: Prob (Double -> Double)

linear = do

  a <- normal 0 3

  b <- normal 0 3

  let f = \x -> a * x + b

  return f


regress :: Double -> Prob (a -> Double) -> [(a, Double)] -> Meas (a -> Double)

regress σ prior dataset = do

    f <- sample prior

    mapM_ (\(x, y) -> score $ normalPdf (f x) σ y) dataset

    return f


Statistical programming with categorical measure theory and LazyPPL

lazyppl.bitbucket.io 3

http://lazyppl.bitbucket.io/


Semantically

Inference:

pick a parameter  by sampling a point from the area under the
curve of the weight function 

use this parameter  to determine a result .

Statistical programming with categorical measure theory and LazyPPL

p

l

p r(p)

lazyppl.bitbucket.io 4

http://lazyppl.bitbucket.io/


Problems
 not cartesian closed:

no function space like Double -> Double

Not known if there is a strong monad of measures
the category of s-finite kernels is distributive symmetric
monoidal
but is it a Kleisli category?

Statistical programming with categorical measure theory and LazyPPL

Meas

lazyppl.bitbucket.io 5

http://lazyppl.bitbucket.io/


Inverse Transform Sampling

Given a parameterized probability distribution ,
there is a function  such that for all ,

k(a) =D f (a, u) where u ∼ U ([0, 1])

k(a) = do { u ← uniform 0 1; return f (a, p)


Statistical programming with categorical measure theory and LazyPPL

Noise outsourcing lemma: The law of every Borel-valued
random variable can be obtained as a pushforward of the
uniform measure .

“

[0, 1] “
k：A → P(B)

f：A × [0, 1] → B a

lazyppl.bitbucket.io 6

http://lazyppl.bitbucket.io/


Quasi-Borel Spaces
: fixed uncountable standard Borel space

LazyPPL: infinite rose trees, with splitting 

quasi-Borel space : set  of random elements

: cartesian closed, commutative monad of measures

LazyPPL: Prob  vs Meas  ⟶ two Kleisli categories

Laziness in program evaluation: monoidal category 
has a terminal unit

Statistical programming with categorical measure theory and LazyPPL

Ω
γ：Ω ≅ Ω × Ω

X M ​ ⊆X XΩ

Qbs

Kl(Prob)

lazyppl.bitbucket.io 7

http://lazyppl.bitbucket.io/


Proba and Measure Kernels
Prob : Probability kernels  modulo equivalence

Composition: 

Monad on : 

Meas : Measure kernels  mod equiv

Composition: compose the proba kernels, multiply the weights

Monad on : 

Statistical programming with categorical measure theory and LazyPPL

f：X × Ω → Y

X × Ω ​

X×γ
X × Ω × Ω ​

f×Ω
Y × Ω ​

g
Z

Qbs X ↦ XΩ

[0, ∞] ​

l
X × Ω ​

f
Y

Qbs X ↦ (X × R)Ω

lazyppl.bitbucket.io 8

http://lazyppl.bitbucket.io/


Correspondence
Proba Categorical Proba Prob Prog

Spaces Objects Types

Proba kernels Morphisms Programs

Fubini’s
theorem

Interchange law /
Commutativity Reordering lines

Marginalisation
Semi-cartesianness /
Affineness

Discarding /
Laziness

Statistical programming with categorical measure theory and LazyPPL

lazyppl.bitbucket.io 9

http://lazyppl.bitbucket.io/


Demo
Poisson point process
Piecewise regression
Program induction
Wiener process
More on
https://lazyppl.bitbucket.io/!

Statistical programming with categorical measure

lazyppl.bitbucket.io 10

https://lazyppl.bitbucket.io/
http://lazyppl.bitbucket.io/

