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Motivation

Several structure–semantics adjunctions and monad–theory
equivalences have been established in category theory.

In [6, 7], Lawvere and Linton established a structure–semantics
adjunction between Lawvere theories and tractable Set-valued
functors. For a complete symmetric monoidal closed category V ,
Dubuc [4] established a structure–semantics adjunction between
V -theories and tractable V -valued V -functors.
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Motivation

Linton [7] also showed that there is an equivalence between Lawvere
theories and finitary monads on Set. Lucyshyn-Wright [8] generalized
this result by showing that if J ↪→ V is any eleutheric system of
arities in a closed category V , then there is an equivalence between
J -theories and J -ary V -monads on V .

Building on work of Power and Nishizawa [11], Bourke and Garner [2]
recently showed that if J ↪→ C is any small subcategory of arities in
a locally presentable V -category C enriched over a locally presentable
closed category V , then there is an equivalence between J -theories
and J -nervous V -monads on C .
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Objectives

Neither monad–theory equivalence of Lucyshyn-Wright [8] or
Bourke–Garner [2] subsumes the other; can both equivalences, along
with the aforementioned structure–semantics adjunctions, be captured
and unified by a common framework that also provides new examples?

Yes! Given a subcategory of arities J ↪→ C in a V -category C
enriched over a closed category V , we will identify hypotheses on
these data that entail a structure–semantics adjunction, a
monad–theory equivalence, and a rich theory of presentations for
enriched monads and theories.

Moral of the story: these “nice” subcategories of arities admit
extremely rich and useful treatments of enriched algebra, in some
completely new settings.
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Basic definitions

We fix a subcategory of arities j : J ↪→ C , i.e. a small, full, and
dense sub-V -category, in a V -category C enriched over a complete
and cocomplete symmetric monoidal closed category V .

We have a fully faithful V -functor

Nj : C → [J op,V ]

NjC = C (j−,C )

that we call the j-nerve V -functor. The presheaves in its essential
image are called j-nerves.
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Pretheories and their algebras

(Linton [7], Diers [3], Bourke–Garner [2]) A J -pretheory is an
identity-on-objects V -functor τ : J op → T , while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve. We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V -category T -Alg of T -algebras is
defined by the following pullback in V -CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



Pretheories and their algebras

(Linton [7], Diers [3], Bourke–Garner [2]) A J -pretheory is an
identity-on-objects V -functor τ : J op → T ,

while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve. We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V -category T -Alg of T -algebras is
defined by the following pullback in V -CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



Pretheories and their algebras

(Linton [7], Diers [3], Bourke–Garner [2]) A J -pretheory is an
identity-on-objects V -functor τ : J op → T , while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve.

We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V -category T -Alg of T -algebras is
defined by the following pullback in V -CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



Pretheories and their algebras

(Linton [7], Diers [3], Bourke–Garner [2]) A J -pretheory is an
identity-on-objects V -functor τ : J op → T , while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve. We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V -category T -Alg of T -algebras is
defined by the following pullback in V -CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



Pretheories and their algebras

(Linton [7], Diers [3], Bourke–Garner [2]) A J -pretheory is an
identity-on-objects V -functor τ : J op → T , while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve. We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V -category T -Alg of T -algebras is
defined by the following pullback in V -CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



Amenable subcategories of arities

A J -pretheory T is admissible if UT : T -Alg→ C has a left
adjoint (i.e. if T admits free algebras).

The subcategory of arities J ↪→ C is amenable if every J -theory is
admissible, and is strongly amenable if every J -pretheory T is
admissible.
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J -tractable V -categories

An object G : A → C of V -CAT/C is a J -tractable V -category
over C if C admits the weighted limit {C (J,G−),G} for each
J ∈ obJ . Then J -Tract(C ) is the full subcategory of V -CAT/C
consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories. We can then define a semantics
functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
.

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



J -tractable V -categories

An object G : A → C of V -CAT/C is a J -tractable V -category
over C if C admits the weighted limit {C (J,G−),G} for each
J ∈ obJ .

Then J -Tract(C ) is the full subcategory of V -CAT/C
consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories. We can then define a semantics
functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
.

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



J -tractable V -categories

An object G : A → C of V -CAT/C is a J -tractable V -category
over C if C admits the weighted limit {C (J,G−),G} for each
J ∈ obJ . Then J -Tract(C ) is the full subcategory of V -CAT/C
consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories. We can then define a semantics
functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
.

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



J -tractable V -categories

An object G : A → C of V -CAT/C is a J -tractable V -category
over C if C admits the weighted limit {C (J,G−),G} for each
J ∈ obJ . Then J -Tract(C ) is the full subcategory of V -CAT/C
consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories.

We can then define a semantics
functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
.

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



J -tractable V -categories

An object G : A → C of V -CAT/C is a J -tractable V -category
over C if C admits the weighted limit {C (J,G−),G} for each
J ∈ obJ . Then J -Tract(C ) is the full subcategory of V -CAT/C
consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories. We can then define a semantics
functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
.

R. Lucyshyn-Wright and J. Parker Enriched structure–semantics adjunctions and monad–theory...



J -structure

Let G : A → C be a J -tractable V -category over C . We define a
J -theory τG : J op → StrG , the J -structure of G , by taking the
(identity-on-objects, fully faithful) factorization of the composite
V -functor

J op C op [A ,V ].

StrG

jop NGop

τG
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The structure–semantics adjunction

Theorem

Let J ↪→ C be an amenable subcategory of arities. Then the semantics
functor Sem : Pretha

J (C )op →J -Tract(C ) has a left adjoint Str that
sends each J -tractable V -category over C to its J -structure. This
adjunction is idempotent, and also induces an idempotent
monad–pretheory adjunction

Pretha
J (C ) Mnd(C ),

Ψ

Φ

`

where Φ sends a V -monad T to its Kleisli J -theory, while Ψ sends an
admissible J -pretheory T to its free T -algebra V -monad.
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The monad–theory equivalence

A V -monad T on C is J -nervous if T ∼= ΨT for some admissible
J -pretheory T (there are other equivalent definitions too).

Theorem

Let J ↪→ C be an amenable subcategory of arities. Then the idempotent
monad–pretheory adjunction Ψ a Φ restricts to an adjoint equivalence

ThJ (C ) MndJ (C )
Ψ

Φ

between J -theories and J -nervous V -monads, which commutes with
semantics in an appropriate sense.
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Additional consequences of strong amenability

Theorem

Let C be complete and cocomplete, and suppose that J ↪→ C is strongly
amenable. Then:

1 PrethJ (C ),ThJ (C ), and MndJ (C ) are all algebraically
cocomplete.

2 MndJ (C ) is monadic over a category of J -signatures, so that
J -nervous V -monads admit a rich and useful theory of
presentations.
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First example: bounded and eleutheric subcategories of
arities

A subcategory of arities J ↪→ C is eleutheric [8, 10] if C is a free
cocompletion of J under a class of weighted colimits, and it is
bounded [10] if each J ∈ obJ is suitably “compact” or
“presentable”. For example:

I The full sub-V -category of enriched α-presentable objects in a locally
α-presentable V -category C enriched over a locally α-presentable V .

I The “strongly finitary” subcategory of arities SF(V ) ↪→ V consisting
of the finite copowers of the terminal object (i.e. the natural number
arities) in any complete and cocomplete cartesian closed category V .

I The Yoneda embedding y : A op ↪→ [A ,V ] for a small V -category A .
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First example: bounded and eleutheric subcategories of
arities

Theorem

Every eleutheric subcategory of arities is amenable, and every bounded and
eleutheric subcategory of arities is strongly amenable.

For suitable choices of eleutheric (and bounded) J ↪→ C , we then recover
the enriched structure–semantics adjunctions and monad–theory
equivalences of Lawvere and Linton [6, 7], Dubuc [4], Lucyshyn-Wright [8],
and Bourke–Garner [2].

By omitting eleuthericity and strengthening the notion of boundedness, we
can also obtain other classes of examples of strongly amenable
subcategories of arities.
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New example in locally bounded closed categories

A V -category C is V -sketchable if it is equivalent to the V -category of
models of a small weighted limit theory.

Theorem

Every subcategory of arities J ↪→ C in a V -sketchable V -category C
enriched over a locally bounded closed category V is strongly amenable.
In particular, every subcategory of arities J ↪→ V in a locally bounded
closed category V is strongly amenable.
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New example in locally bounded closed categories

We have the following examples (and more!) of locally bounded closed
categories [9]:

Every locally presentable closed category (incl. every Grothendieck
topos, Set, Cat, Pos, Ab, Met...).

Every cocomplete locally cartesian closed category with a small
generator (e.g. Dubuc’s categories of concrete sheaves [5] and the
convenient categories of smooth spaces of Baez–Hoffnung [1],
incl. simplicial complexes).

Every symmetric monoidal closed topological category over Set.

Many convenient (cartesian closed) categories of topological spaces.

All of these closed categories will now admit extremely rich and useful
treatments of enriched algebra. For example, we can now construct
enriched monads and theories almost “at will” on many closed categories
of relevance for topology, differential geometry, analysis, and programming
language semantics, many of which we have seen at ACT (sSet, Poly,
Qbs, DCPO...).
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In conclusion

We have developed a general axiomatic framework for enriched
structure–semantics adjunctions and monad–theory equivalences for
subcategories of arities, which subsumes most (all?) known results of
this kind and provides some completely new classes of examples.

As seen in Rory’s talk, we also have extremely flexible and practical
methods for easily constructing enriched monads and theories in these
classes of examples, using enriched operations and equations.

If you have a favourite symmetric monoidal closed category V (or
V -category) on which you want to construct and study enriched
monads, please talk to us! :)
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Thank you!

Comments and questions are welcome!
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