Fuzzy Type Theory for Opinion Dynamics

Shreya Arya, Greta Coraglia, Paige North, <u>Sean O'Connor</u>, Hans Riess, Ana Tenório

ACT

2022

Our group

Left to right: Greta, Shreya, Sean, Ana, Paige, Hans

Fuzzy Type Theory for Opinion Dynamics

The idea

The math

MODELING OPINIONS

Want to model "proof-relevant opinions" We need

- types as opinions
- ► terms as proofs of/reasons for opinions
- ► fuzzy logic as confidence/certainty/strength of opinions

Type Theories and Fuzzy Logic

Enriching over a different monoidal category gives us a different type theory/logic

	binary	fuzzy
propositions	$\{0,1\}$	[0, 1]
types	Set	$\Sigma_{S:\mathbf{Set}} S \to [0,1]$

CATEGORIES AND TYPE THEORIES

Type theories $\xrightarrow{}$ *Categories*

Given a type theory we can obtain a category where:

- the objects are contexts Γ
- ► the morphisms are (lists of) terms

CATEGORICAL SEMANTICS

$\begin{array}{ll} \text{types in context} & \text{a class of maps } (\textit{projections}) \\ \Gamma \vdash A \text{ type} & \Gamma.A \xrightarrow{p_A} \Gamma \end{array}$

termssections of projections $\Gamma \vdash a : A$ $\Gamma A \xrightarrow[]{a}{p_A} \Gamma$

substitution pullback along projections

ENRICHED CATEGORIES AND FUZZY TYPES

Our strategy: enrich the categories, read the type theory!

Call $V = \Sigma_{S:Set} S \rightarrow [0, 1]$ the category whose

- ▶ objects are pairs (S, | _ |_S) with S a set and | _ |_S : S → [0, 1] a function, called *valuation*
- ▶ morphisms $f : (S, |_{-}|_{S}) \rightarrow (T, |_{-}|_{T})$ are order-preserving functions between *S* and *T*

Fuzzy type theories
$$\longrightarrow$$
 V- Categories

Intuition

a V-category $\mathcal C$	an agent in the system
a context	a set of beliefs
a type (in context)	a belief (and its premises)
a term of type A	a proof of the belief A

- we want definite beliefs \Rightarrow non-fuzzy types
- ► but their reasons might be subject to uncertainty ⇒ fuzzy terms

Fuzzy Type Theory for Opinion Dynamics

The idea

The math

Projections and Sections

Axiom: Types are not fuzzy For all *A*, $|p_A|_{hom(\Gamma,A,\Gamma)} = 1$.

Normally, terms are sections of projections, but

$$\Gamma \xrightarrow{id} \Gamma \xrightarrow{s} \Gamma.A \xrightarrow{p_A} \Gamma$$

 $|id| = 1 \implies |p_A| \cdot |s| = 1 \implies |p_A| = |s| = 1$ This is too much of a restriction for us!

α -sections

Definition: α -sections

We say *s* is a α -section of *p* if $p \circ s = id$ as functions and $|p| \cdot |s| \ge \alpha$

Denoted
$$\Gamma \vdash s :_{\alpha} A$$

and we have $\frac{\Gamma \vdash s :_{\alpha} A}{\Gamma \vdash s :_{\beta} A}$ for all $\beta \le \alpha$

SUBSTITUTION AND PULLBACKS

Classically, substitution is performed as pullback along projections. Problem is that in the enriched case we need to consider weighted pullbacks!

Weighted pullbacks are a special case of weighted limits, which replace limits in enriched settings.

This can be used to determine the universal property of weighted pullbacks in *V*-categories

Weighted Pullbacks

Consider a pullback in **Set**-categories

$$\begin{array}{ccc} A \times_C B \longrightarrow B \\ \downarrow & \downarrow \\ A \longrightarrow C \end{array}$$

What in **Set**-categories is the bijection

 $hom(Z, A \times_C B) \cong hom(Z, A) \times_{hom(Z, C)} hom(Z, B)$

can be viewed as a weighted pullback in which

2

$$\hom(Z, A \times_C B) \cong \hom(Z, A)^{\mathbb{1}} \times_{\hom(Z, C)^{\mathbb{1}}} \hom(Z, B)^{\mathbb{1}}$$

With this perspective, we say that a regular pullback is (1, 1, 1)-weighted, with $1 = \{*\}$

FUZZY SUBSTITUTION I

We need to find reasonable weights!

- (1,1,1) with 1 the terminal object doesn't work with fuzzy terms
- We can denote $\mathbb{1}_x = (\{*\}, const(x))$ to use as our weights
- $\blacktriangleright (\mathbb{1}_{val(-)}, \mathbb{1}, \mathbb{1}_{val(-)})$

Something weird

But the top-left **1**.*A* is obtained by pullback along a map of value α , so it isn't the same object at **1**.*A*.

Resolution

We can denote the top-left 1.A as $1.A_{\alpha}$ and we can read

$$\frac{\vdash s :_{\alpha} A}{\vdash t :_{1} A_{\alpha}}$$

as "Given a proof of *A* with confidence α , we can prove with confidence 1 that we can prove *A* with confidence α ".

FUZZY SUBSTITUTION II

VALIDITY

Theorem

Such a *V*-category satisfies (a fuzzy version of) all structural rules of (not-yet-dependent) type theory.

Therefore we have categories to encode the logical system of the agents in our system.

The Dynamic

- ► The work of Jakob Hansen and Robert Ghrist uses a cellular sheaf $F : Inc(G) \rightarrow Vect$ to study opinion dynamics
- ▶ The work of Hans Riess and Robert Ghrist studies cellular sheaves of the form $F : Inc(G) \rightarrow Lattices$
- We want to explore $F : Inc(G) \rightarrow V$ Cat

Future Work

- Give an enriched categorical interpretation for the dependent fuzzy types (and address definitional equality);
- ▶ Replace [0,1] by any ordered monoid *M*;
- Explore the dynamic side

References I

GHRIST, R., AND RIESS, H.

Cellular sheaves of lattices and the Tarski laplacian. Homology, Homotopy and Applications 24, 1 (2022), 325–345.

Hansen, J., and Ghrist, R.

Opinion dynamics on discourse sheaves, 2020.

Hofmann, M.

Syntax and semantics of dependent types. In *Extensional Constructs in Intensional Type Theory*. Springer, 1997, pp. 13–54.

The	IDEA	
000	00000	

Thank you!