Catergorical Causal Models with intervention 2-cells, cycles & compositionality

Adjoint school group 3

TA: Mario Román

Students: Ruben van Belle, Sidharth Bhat, **Pim de Haan**, Miguel Lopez

Bayesian Causal Networks

- Directed Acyclic Graph $G = (\mathcal{V}, \mathcal{E})$
- For each vertex $v \in \mathcal{V}$, measurable space X_v
 - Assumed finite
- For each vertex, a conditional probability distribution

 $P(X_v | \prod_{p \in Pa(v)} X_p)$

• Binary

Example:

• P(G), P(S|G), P(C|S,G)

Syntax Category

- Given DAG $G = (\mathcal{V}, \mathcal{E})$
- Syntax category Syn_G
 - Symmetric Monoidal
 - Objects (tensor products of) $v \in \mathcal{V}$
 - Discrete Markov Restriction
 - Morphism from parents for each vertex
 - Graph encoded as endomorphism

Semantics functor $F: Syn_G \to Kl(D_{\leq 1})$

- $Kl(D_{\leq 1})$ has:
 - Objects: measurable spaces
 - Morphisms: Markov kernels to measures (not necessarily probability measures)
- F maps object v to measurable space X_v
- F maps morphisms • F maps comparator • F maps comparator

Solution

- Embed $Syn_{\rm G}$ in compact closed category $\overline{Syn_{\rm G}}$, including monoid unit
- Compact closure for $Kl(D_{\leq 1})$ is $Mat(\mathbb{R}_{\geq 0})$ of non-negative matrices, with unit (1, 1, ...)
- Obtain solution by precomposition with unit

<u>л</u>.С.

Intervention 2-cells

- Enrich $Syn_{\rm G}$ with poset generated by
- Allows for interventions

- Solution with input S and output C
 - In causal notation written as P(C|do(S))

Compositionality

• Corresponds to soft intervention on S, changing conditional P(S|G)

- RHS is a solution to cyclic model if it does not contain comparator or monoid unit
- For deterministic maps *f*, *g*, *h*: uniform distribution over fixpoints

Open questions

- Implement DRM categories via probabilistic programming
 - How to take conditionals, possibly via normalization
- Formalize notion of solution
- Generalize to infinite spaces
- Bicategorical structures on stochastic maps
- Do-calculus & causal inference
 - Cf. Jacobs et al "Causal Inference via String diagram Surgery" (2019)