Guantum Software (a) Quantinuum

QUANTINUUM

Honeywell

Quantum Solutions

Quantum Software

Quantum Hardware

Quantum Software?

System Software

- Compiler / optimiser
- Programming system and runtime
- Online services
- Quantum Error Correction

Applications

- Computational chemistry and materials science
- Machine learning
- Monte Carlo methods
- Natural language processing

Security / Crypto

Make a quantum computer do something usefu

The Complexity Theory

- Examples of quadratic speed up widespread
- Poly-time quantum vs best known classical exp-time
- Contrived/restricted problems with an exponential speed up
- Exponential speed-up conjectured for some quantum simulation problems

GENERAL WORKFLOW

Input InQuantization Methods Methods Define and efficiently encode to greatly reduce problem space Pharmaceuticals Methods Choose from the latest quantum algorithms & methods Molecular Chemistry Variational Quantum Eigensolver

- Automotive
- Semiconductors
- Energy
- Metals

- Periodic Boundary Conditions
- Density Matrix Embedding Theory
- QM/MM

- ADAPT-VQE
- Variational Quantum Simulations
- Iterative Qubit-excitation Based
 Variational Quantum Eigens ollver
- Quantum Subspace Expansion
- Variational Quantum Deflation
- Penalty VQE

Error Mitigation

- PMSV (Partition Measurement Symmetry Verification)
- SPAM (State-Preparation And Measurement)
- Ground & Excited States
- Spectroscopy
- Molecular Geometry
- Transition States
- Reaction Pathways
- Ligand Protein Binding
- Molecular Mechanics

Molecules, Spin orbitals, Energy levels,

Irfan

Research Software Engineer Quantum Chemistry Circuits

Counts

Hard Real Time

Near Time

Hard Real Time

Slow runtime

Near Time

Hard Real Time

Compile time

Slow runtime

Near Time

Hard Real Time

Each box is:

- a different time regime
- a different set of capabilities
- a different scope

The program as a whole must be correctly distributed between them

Quantum Computers

- Superconducting IBM, Google, Rigetti, OQC...
- Ion traps
 Quantinuum, IonQ, AQT,
- Cold atoms
 Cold Quanta, Pasqal, ...
- Photonic
 Psi Quantum, Quandela, ORCA ...
- Semiconductors
 Intel, Quantum Motion, ...

ETH Zürich

Noisy Intermediate-Scale Quantum

"INTSQ"

Noisy Intermediate-Scale Quantum

Noisy Intermediate-Scale Quantum

50—100 qubits

Enough to be hard to simulate

Not enough for error correction

Noisy Intermediate-Scale Quantum

Noisy Intermediate-Scale Quantum

Everything has a limited fidelity
Qubits have finite coherence time
Errors can vary across the machine
Errors can vary across time
Errors are correlated, non-markovian
Errors are not always well understood

Noisy Intermediate-Scale Quantum

- Noise implies scale limitations
- There will be errors
- Whole stack must actively work to manage noise
- Not all interesting algorithms are possible
- The quantities we are computing are statistical

Quantum Compilation

Now Open Source!

t ket>

A language and platform agnostic retargetable compiler for NISQ devices

pip install pytket

TKET

skit Cirq

rigetti

QUANTINUUM

pytket-qiskit

Qiskit

IBM-Q, Aer

pytket-cirq

Cira

pytket-pyquil

pyquil

QCS, QVM

pytket-qsharp

Azure Quantum pytketquantinuum

Quantinuum H-series

pytket

Compiler

C++ Library

Quantum Compiler Phases

"Language" dependent

Parsing Lexing Type checking

Circuit Synthesis

Circuit Optimisation

Gate Conversion

Noise Shaping

Qubit Mapping

Analogue / RT Control

Machine dependent

Quantum Compiler Phases

Compiler Passes

- Synthesise many qubit operations to 1-, 2-qubit gates
- Symbolic expression optimisation
- Resynthesise sub-circuits via special representations
 - ZX-terms, Clifford tableaux, Phase-polynomials
- Exact and approximate synthesis of unitaries
- Architecture aware synthesis
- Mapping to chosen gate basis
- Allocating "virtual" qubits to physical qubits
- Mapping and routing circuits to fixed architectures
- more!

Composable Error Mitigation

Mitigation vs Correction

Error Correction

- Map "logical" qubits into a larger code space of many physical qubits and perform encoded operations on code space
- Frequently measure ancillary qubits to detect errors
- Intervene in circuit to correct observed errors
- Every circuit evaluation is "correct"
- Terrifyingly high resource overheads (x10000s of qubits)

Error Mitigation

- Accept the statistical nature of the results and try to improve the accuracy of the final output.
- Generally aim to extract more signal from noise
- Typically involves computing many variations of the desired circuit and combining them with classical side processing
- Can intervene at almost any point of the overall computation
- Can also involve high overheads in terms of circuit executions

Introducing....

OERICITE OF THE PROPERTY OF TH

- Fully compositional Quantum Error Mitigation toolkit
- Extensible and open source
- Many error mitigation methods implemented and benchmarked

pip install qermit

Variational Quantum Algorithms

Kinds of Mitigation

- "MitRes": transform the distribution of results of a circuit
- "MitEx": transform the expectation of some computed quantity

Frame Randomisation

SPAM Correction

Academic Collaborations

Chalmers

Resources for Quantum Chemistry

Tokyo

Distributed QC

UCL

MBQC

CQ

ULB

Device Independent Crypto

Cambridge

Quantum Chemistry Algorithms

Edinburgh / NPL

Noise at large scale

Strathclyde

Quantum PL

NPL

Noise-resilient algorithms

MPQ / TUM

Condensed Matter Simulations

Thanks.

If you are looking for a job or an internship email careers@cambridgequantum.com