
A data type of intrinsically plane graphs

Malin Altenmüller

BCTCS 2025

String diagrams (1)

• Interested in monoidal categories with

– sequential composition: f # g

– parallel composition: f ⊗ g .

• Nice graphical syntax of string diagrams:

1 / 28

String diagrams (1)

• Interested in monoidal categories with

– sequential composition: f # g

– parallel composition: f ⊗ g .

• Nice graphical syntax of string diagrams:

1 / 28

String diagrams (2)

• Properties of the category translate to its diagrams,
e.g. symmetric vs. braided monoidal categories:

• Some equations hold automatically,
e.g. interchange law (f ⊗ h) # (g ⊗ k) = (f # g)⊗ (h # k):

2 / 28

String diagrams (2)

• Properties of the category translate to its diagrams,
e.g. symmetric vs. braided monoidal categories:

• Some equations hold automatically,
e.g. interchange law (f ⊗ h) # (g ⊗ k) = (f # g)⊗ (h # k):

2 / 28

Why graphs?

• Formalise string diagrams and their rewriting theory.

Definition

A graph G is a tuple (V ,E , s, t) with a set of vertices V , a set of edges E , source and target

functions s, t : E → V .

• Rewriting theory for string diagrams becomes graph rewriting:

3 / 28

Why plane graphs?

• Monoidal categories with specific topological properties: no crossing wires allowed!

• Generalisation of symmetric and braided monoidal categories.

• Certain theories do not come with a builtin SWAP operation.

Graphs are not suitable, we need plane graphs!

4 / 28

Why plane graphs?

• Monoidal categories with specific topological properties: no crossing wires allowed!

• Generalisation of symmetric and braided monoidal categories.

• Certain theories do not come with a builtin SWAP operation.

Graphs are not suitable, we need plane graphs!

4 / 28

Surface-embeddings of graphs

• Drawing of a graph onto a surface (without edges crossing):

• A surface-embedding is characterised by its faces.

5 / 28

Rotation systems

= order of edges around each vertex.

Theorem

A rotation systems determines a graph’s surface-embedding.

Plane graph:

Toroidal graph:

6 / 28

Rotation systems

= order of edges around each vertex.

Theorem

A rotation systems determines a graph’s surface-embedding.

Plane graph:

Toroidal graph:

6 / 28

Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?

7 / 28

Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?

7 / 28

Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?

7 / 28

Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?

7 / 28

Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?

7 / 28

Spanning trees to the rescue

graph = spanning tree (incl. root) + non-tree edges

8 / 28

Spanning trees to the rescue

graph = spanning tree (incl. root) + non-tree edges

8 / 28

Spanning trees to the rescue

graph = spanning tree (incl. root) + non-tree edges

8 / 28

An inductive data type

graph = spanning tree (incl. root) + non-tree edges

+ corners

9 / 28

An inductive data type

graph = spanning tree (incl. root) + non-tree edges + corners

9 / 28

An ordered data type

• A graph is the clockwise traversal of its spanning tree:

• Edge set E is split into tree edges and non-tree edges.

10 / 28

An ordered data type

• A graph is the clockwise traversal of its spanning tree:

• Edge set E is split into tree edges and non-tree edges.

10 / 28

Indexing type

Lemma

In a clockwise traversal, corners and edges always alternate.

• Store this information in a simple data type:

data Next : Set where
edge : Next

corner : Next

• Traversal of the tree is guided by an indexing type:

TravTy : Set

TravTy = List E × Next

11 / 28

Indexing type

Lemma

In a clockwise traversal, corners and edges always alternate.

• Store this information in a simple data type:

data Next : Set where
edge : Next

corner : Next

• Traversal of the tree is guided by an indexing type:

TravTy : Set

TravTy = List E × Next

11 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

A stack of non-tree edges

12 / 28

Indexing type – example

• Every corner is indexed by a stack of edges characterising its face:

• A plane graph has index ([] , corner) ([] , corner)

.

13 / 28

Indexing type – example

• Every corner is indexed by a stack of edges characterising its face:

• A plane graph has index ([] , corner) ([] , corner).

13 / 28

Stack structure determines faces

• Every non-tree edges closes a face of the graph embedding:

• We can calculate the faces of the embedding by observing the changes of the edge stack.

14 / 28

Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28

Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28

Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28

Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28

The type of steps

data Step : TravTy → TravTy → Set where
corner : (c : C) → Step (es , corner) (es , edge)

push : (e : E) → Step (es , edge) (e ,- es , corner)

pop : (e : E) → Step (e ,- es , edge) (es , corner)

span : (e : E) (v : V) → Star Step (es , corner) (es′ , edge) → Step (es , edge) (es′ , corner)

A Graph is a sequence of steps: Star Step ([] , corner) ([] , corner)

16 / 28

The type of steps

data Step : TravTy → TravTy → Set where
corner : (c : C) → Step (es , corner) (es , edge)

push : (e : E) → Step (es , edge) (e ,- es , corner)

pop : (e : E) → Step (e ,- es , edge) (es , corner)

span : (e : E) (v : V) → Star Step (es , corner) (es′ , edge) → Step (es , edge) (es′ , corner)

A Graph is a sequence of steps: Star Step ([] , corner) ([] , corner)

16 / 28

Planarity

Theorem

A stack of non-tree edges ensures planarity of a graph.

To prove this, we use the following fact:

Lemma

Contracting a plane subgraph does not change the genus of a graph’s embedding.

• Plan: contract the entire spanning tree of a graph.

• All the surface information is stored in the non-tree edges of a graph.

17 / 28

Planarity

Theorem

A stack of non-tree edges ensures planarity of a graph.

To prove this, we use the following fact:

Lemma

Contracting a plane subgraph does not change the genus of a graph’s embedding.

• Plan: contract the entire spanning tree of a graph.

• All the surface information is stored in the non-tree edges of a graph.

17 / 28

Planarity

Theorem

A stack of non-tree edges ensures planarity of a graph.

To prove this, we use the following fact:

Lemma

Contracting a plane subgraph does not change the genus of a graph’s embedding.

• Plan: contract the entire spanning tree of a graph.

• All the surface information is stored in the non-tree edges of a graph.

17 / 28

Contracting the spanning tree

Non-tree edges form a well bracketed word abbcca.
(cf. context-free grammars, Dyck language,. . .)

18 / 28

Contracting the spanning tree

Non-tree edges form a well bracketed word abbcca.
(cf. context-free grammars, Dyck language,. . .)

18 / 28

Zippers1 for graphs

• Structure to focus on a sector in the graph.

• Useful to to highlight a certain subgraph (and rewrite it).

• Zipper = path to the focus + sibling structures alongside it.

• Store the path bottom-up: fast access to nearby elements.

• Mimic a cursor structure: forwards/backwards lists everywhere.

1Huet, “The Zipper”.

19 / 28

Zipper example

• Start at the focus:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E

20 / 28

Zipper example

• Move up along the path one step at a time:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E

20 / 28

Zipper example

• Move up along the path one step at a time:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E

20 / 28

Zipper example

• Full path defines a layer structure:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E

20 / 28

Zipper example

• Full path defines a layer structure:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E

20 / 28

Re-rooting the tree

• Start from a zipper of a graph.

• Idea: move the spanning tree’s root to the sector in focus:

• This changes the order of traversal of the spanning tree.

21 / 28

Goal: turn the tree upside down

• Compute the new traversal order: edge stack structure has to change.

22 / 28

Turn non-tree edges

Edge e has to be turned around in the re-rooting operation,. . .

23 / 28

Turn non-tree edges

. . . therefore the indices at the root and focus are exchanged:

Theorem

Re-rooting preserves planarity.

Proof: by very careful turning of non-tree edges during the operation.

24 / 28

Turn non-tree edges

. . . therefore the indices at the root and focus are exchanged:

Theorem

Re-rooting preserves planarity.

Proof: by very careful turning of non-tree edges during the operation.

24 / 28

Making planarity intrinsic

• Planarity is part of the data type of graphs.

• Any element of this type is by definition plane.

• Any operation defined on this type preserves planarity by definition.

• Use it to implement rewriting of subgraphs (planarity preserving).

25 / 28

More ideas (1)

Equip corners with data: the graph re-rooted to here.
This gives a context comonad2.

2Uustalu and Vene, “Comonadic Notions of Computation”.

26 / 28

More ideas (2)

What about different surfaces from the plane?
Higher genus surfaces?
Non-orientable surfaces?
What to use instead of a stack?

(valid and non-valid embedding on the torus →)

27 / 28

Thank you for your attention!

A data type of intrinsically plane graphs

Malin Altenmüller

malin.altenmuller@ed.ac.uk

28 / 28

Huet, Gérard P. “The Zipper”. In: J. Funct. Program. 7.5 (1997), pp. 549–554. url:
http://journals.cambridge.org/action/displayAbstract?aid=44121.

Uustalu, Tarmo and Varmo Vene. “Comonadic Notions of Computation”. In: Proceedings of
the Ninth Workshop on Coalgebraic Methods in Computer Science, CMCS 2008, Budapest,
Hungary, April 4-6, 2008. Ed. by Jiŕı Adámek and Clemens Kupke. Vol. 203. Electronic Notes
in Theoretical Computer Science 5. Elsevier, 2008, pp. 263–284. doi:
10.1016/j.entcs.2008.05.029. url: https://doi.org/10.1016/j.entcs.2008.05.029.

http://journals.cambridge.org/action/displayAbstract?aid=44121
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

	References

