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String diagrams (1)

• Interested in monoidal categories with

– sequential composition: f # g

– parallel composition: f ⊗ g .

• Nice graphical syntax of string diagrams:
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String diagrams (2)

• Properties of the category translate to its diagrams,
e.g. symmetric vs. braided monoidal categories:

• Some equations hold automatically,
e.g. interchange law (f ⊗ h) # (g ⊗ k) = (f # g)⊗ (h # k):
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Why graphs?

• Formalise string diagrams and their rewriting theory.

Definition

A graph G is a tuple (V ,E , s, t) with a set of vertices V , a set of edges E , source and target

functions s, t : E → V .

• Rewriting theory for string diagrams becomes graph rewriting:
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Why plane graphs?

• Monoidal categories with specific topological properties: no crossing wires allowed!

• Generalisation of symmetric and braided monoidal categories.

• Certain theories do not come with a builtin SWAP operation.

Graphs are not suitable, we need plane graphs!

4 / 28



Why plane graphs?

• Monoidal categories with specific topological properties: no crossing wires allowed!

• Generalisation of symmetric and braided monoidal categories.

• Certain theories do not come with a builtin SWAP operation.

Graphs are not suitable, we need plane graphs!

4 / 28



Surface-embeddings of graphs

• Drawing of a graph onto a surface (without edges crossing):

• A surface-embedding is characterised by its faces.
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Rotation systems

= order of edges around each vertex.

Theorem

A rotation systems determines a graph’s surface-embedding.

Plane graph:

Toroidal graph:
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Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

• Graphs are cyclic, but we would like an inductive type.

• How to enforce the planarity?
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Spanning trees to the rescue

graph = spanning tree (incl. root) + non-tree edges
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An inductive data type

graph = spanning tree (incl. root) + non-tree edges

+ corners
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An inductive data type

graph = spanning tree (incl. root) + non-tree edges + corners
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An ordered data type

• A graph is the clockwise traversal of its spanning tree:

• Edge set E is split into tree edges and non-tree edges.
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Indexing type

Lemma

In a clockwise traversal, corners and edges always alternate.

• Store this information in a simple data type:

data Next : Set where
edge : Next

corner : Next

• Traversal of the tree is guided by an indexing type:

TravTy : Set

TravTy = List E × Next
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A stack of non-tree edges
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A stack of non-tree edges
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Indexing type – example

• Every corner is indexed by a stack of edges characterising its face:

• A plane graph has index ([ ] , corner) ([ ] , corner)

.
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Stack structure determines faces

• Every non-tree edges closes a face of the graph embedding:

• We can calculate the faces of the embedding by observing the changes of the edge stack.
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Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28



Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28



Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28



Possible steps in the traversal

One step in the clockwise traversal of the spanning tree:

15 / 28



The type of steps

data Step : TravTy → TravTy → Set where
corner : (c : C ) → Step (es , corner) (es , edge)

push : (e : E ) → Step (es , edge) (e ,- es , corner)

pop : (e : E ) → Step (e ,- es , edge) (es , corner)

span : (e : E ) (v : V ) → Star Step (es , corner) (es′ , edge) → Step (es , edge) (es′ , corner)

A Graph is a sequence of steps: Star Step ([ ] , corner) ([ ] , corner)
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Planarity

Theorem

A stack of non-tree edges ensures planarity of a graph.

To prove this, we use the following fact:

Lemma

Contracting a plane subgraph does not change the genus of a graph’s embedding.

• Plan: contract the entire spanning tree of a graph.

• All the surface information is stored in the non-tree edges of a graph.
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Contracting the spanning tree

Non-tree edges form a well bracketed word abbcca.
(cf. context-free grammars, Dyck language,. . . )
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Zippers1 for graphs

• Structure to focus on a sector in the graph.

• Useful to to highlight a certain subgraph (and rewrite it).

• Zipper = path to the focus + sibling structures alongside it.

• Store the path bottom-up: fast access to nearby elements.

• Mimic a cursor structure: forwards/backwards lists everywhere.

1Huet, “The Zipper”.
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Zipper example

• Start at the focus:

• Continue using the stack structure to ensure planarity:

record ZipTy : Set where
field ahead : List E

here : Next

behind : List E
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Re-rooting the tree

• Start from a zipper of a graph.

• Idea: move the spanning tree’s root to the sector in focus:

• This changes the order of traversal of the spanning tree.
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Goal: turn the tree upside down

• Compute the new traversal order: edge stack structure has to change.
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Turn non-tree edges

Edge e has to be turned around in the re-rooting operation,. . .
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Turn non-tree edges

. . . therefore the indices at the root and focus are exchanged:

Theorem

Re-rooting preserves planarity.

Proof: by very careful turning of non-tree edges during the operation.
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Making planarity intrinsic

• Planarity is part of the data type of graphs.

• Any element of this type is by definition plane.

• Any operation defined on this type preserves planarity by definition.

• Use it to implement rewriting of subgraphs (planarity preserving).
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More ideas (1)

Equip corners with data: the graph re-rooted to here.
This gives a context comonad2.

2Uustalu and Vene, “Comonadic Notions of Computation”.
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More ideas (2)

What about different surfaces from the plane?
Higher genus surfaces?
Non-orientable surfaces?
What to use instead of a stack?

(valid and non-valid embedding on the torus →)
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Thank you for your attention!

A data type of intrinsically plane graphs

Malin Altenmüller

malin.altenmuller@ed.ac.uk
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