
Breaking records

Structural subtyping as a language design principle

Jakub Bachurski (University of Cambridge)

Supervisors: Dominic Orchard and Alan Mycroft

15 April 2025

Introduction

Motivation

• People use dynamically typed languages {Python, Lua, ...}.

• Static typing is a great idea!

• =⇒ We should improve {optional} static type systems for those languages.

1

Motivation

• People use dynamically typed languages {Python, Lua, ...}.

• Static typing is a great idea!

• =⇒ We should improve {optional} static type systems for those languages.

1

Motivation

• People use dynamically typed languages {Python, Lua, ...}.

• Static typing is a great idea!

• =⇒ We should improve {optional} static type systems for those languages.

1

Quack

Duck typing is a common idiom in dynamic languages.

We should aim to check it statically.

def quack(x):

return x.quack()

Clearly, x needs to be an object with a quack method. Notionally:

x ⩽ {quack : () → α}

2

Quack!

We need this to work in more complex cases, e.g. involving higher-order functions:

def quack(x, is_duck):

if random.randint(0, 1):

f = lambda y: y.quack()

else:

f = lambda y: y.honk()

return f(x)

x needs to have both a quack and a honk.

x ⩽ {quack : () → α, honk : () → α}

Question. What typing discipline do we follow?

3

Nominal, structural, dynamic

Nominal

In nominal type systems, we compare types by name.

type 'a option = None | Some of 'a (* this type, specifically! *)

let map (f : 'a -> 'b) (x : 'a option) =

match x with

| None -> None

| Some x -> Some (f x)

4

Structural

In structural type systems, we compare types by defined structure.

let map (f : 'a -> 'b) (x : [< `None | `Some of 'a]) =

match x with

| `None -> `None

| `Some x -> `Some (f x)

5

Dynamic

With dynamic typing, we only check types at runtime.

let map f x =

match x with

| `None -> `None

| `Some x -> `Some (f x)

6

A gradient of type systems

Claim. Structural type systems have a special role in statically typing existing

dynamic languages.

• Generally, we can translate a nominally typed language to a structurally typed

one by erasing names.

• Afterwards, erase types entirely to move to a dynamically typed language.

For well-behaved programs, type inference can recover types.

• Moving along this gradient we make the type system less restrictive – more

programs type check.

nominal
erase names−−−−−−−→ structural

erase types−−−−−−→ dynamic

Questions. Can these translations be formalised? Do they have an interesting form?

7

Ideas come to life

Contribution

Translation from Featherweight Java {Igarashi et al.} into a structurally typed

record calculus {Cardelli and Mitchell}.

The source and target languages of this translation serve as prototypical languages:

• FJ {a core calculus of Java} – nominally typed OOP language.

• Record calculus – language with structurally typed records.

• Untyped record calculus – dynamic OOP lang. {a core of Python, Lua, JavaScript, ...}.

All of these rely on a notion of subtyping (A ⩽ B – an A can be used in place of a B).

8

Lost in translation

Here is a simple example program in Featherweight Java:

class Bird extends Object {

String name;

Bird(String name) { super(); this.name = name; }

String name() { return this.name; }

}

class Duck extends Bird {

Duck(String name) { super(name); }

String quack() { return "quack"; }

}

(new Duck("mallard")).quack()

9

Break on through

Translation preserving well-typedness into record calculus – λ calculus with extensible

records {{ℓ = e | r} updates r with ℓ = e}. The translation uses a prototype-based style.

Objectproto = {}
Object = λo. λ(). o

Birdproto = {name = λthis. λ(). this.name}
Bird = λo. λname. {name = name | Object o ()}

Duckproto = {quack = λthis. λ(). "quack" | Birdproto}
Duck = λo. λname.Bird o name

Duckquack = λo. o.quack o ()

Duckquack (DuckDuckproto "mallard") 10

Are we structurally typing yet?

We have seen we can usefully translate from nominal to structural typing.

Ponder. Why are types in static languages mostly nominal?

Nominal types are a convenient assumption.

• It is natural to give names to things.

• Can be what you want {e.g. primitives} – want nominal and structural {Binder et al.}.

• Easier type inference – unification, Hindley-Milner.

Structural typing, especially in the presence of subtyping, is tricky to include in a

language – it introduces complexity.

Question. What abstraction helps us manage this complexity?

11

Algebraic subtyping

Algebraic viewpoint

Subtyping ⩽ is a partial order on types τ .

We usually consider type systems with an implicit coercion rule:

Γ ⊢ e : τ τ ⩽ τ ′

Γ ⊢ e : τ ′

In algebraic subtyping, we consider ⩽ which form a distributive lattice algebra – we

have a meet ∧ (least upper bound) and join ∨ (greatest lower bound) with axioms.

τ ⩽ τ ′ ⇐⇒ τ = τ ∧ τ ′ ⇐⇒ τ ′ = τ ∨ τ ′

Nice algebraic properties lead us to nice properties of the type system: like ML-style

principal type inference {orig. due to Dolan in MLsub; Parreaux: simple(r) constraint solving}.

12

Example type lattice

τ ::=⊤ | ⊥ (top, bottom)

| int | float (primitives)

| τ → τ (functions)

| {ℓ : τ, . . . } (records)

τ π τ ∧ π τ ∨ π

int int int int

int float ⊥ ⊤
int → int ⊥ → ⊤ int → int ⊥ → ⊤
{ℓ : int} {ℓ′ : float} {ℓ : int, ℓ′ : float} {}

{ℓ : int} → int {ℓ′ : float} → ⊤ {} → int {ℓ : int, ℓ′ : float} → ⊤
13

Asking the right question

Γ ⊢ e : τ

Type inference from a Curry-Howard perspective: what is the statement τ proven by e?

Determine constraint system for expression e, then find general solution for its type τ .

Sketch of constraint solver {Pottier; Parreaux}:

• Intro type variables α, β, . . . and track bounds αlo ⩽ α ⩽ αhi (constraint graph).

• Factor: a ∨ b ⩽ c ⇐⇒ (a ⩽ c)& (b ⩽ c) and a ⩽ b ∧ c ⇐⇒ (a ⩽ b)& (a ⩽ c).

• Take transitive closure: (a ⩽ b)& (b ⩽ c) =⇒ a ⩽ c . Check αlo ⩽ αhi.

14

Example constraint-based type inference

expression e ⇝ constraints c ⇝ type τ

λx . if x .flag

then x .foo

else x .bar+ x .baz

⇝

x ⩽ {flag : β}

β ⩽ bool

x ⩽ {foo : ι}

x ⩽ {bar : ι1}

x ⩽ {baz : ι2}

ι1, ι2 ⩽ int

⇝

{flag : bool, foo : ι,

bar : int,baz : int}
→ ι ∨ int

15

Limitations and extensions

There are limitations {Dolan’s MLsub}: the polarity restriction.

Recent work {Parreaux’s MLstruct} improves on this by considering a Boolean lattice.

However, we still cannot type common record operations (in FJ translation!) without

row polymorphism, as done for systems without subtyping {preliminarily: Marques et al.}.

16

Type inference with lattice homomorphisms

Contribution

(Meta)functions on types – type lattice homomorphisms with “adjoints” – work in

type inference =⇒ can infer types for extensible records via dropℓ homomorphisms:

dropfoo({foo : int,bar : float}) = {bar : float}

Example. Take the flag field of a record a and update it to the result of not:

⋄ ⊢ λa.
{
flag = a.flag.not () | a \ flag

}
: α ∧ {flag : {not : () → ν}} → dropflag(α) ∧ {flag : ν}

{{ℓ = e | r} extends r with ℓ = e; r \ ℓ removes ℓ from r .}

Future work. General, constraint-based formulation of type inference for algebraic

subtyping with this extension – prior art focuses on specific cases. 17

Language design – Fabric

Fabric’s design

Fabric

• purely functional – imperative mutability is hard as always!

• statically typed with a focus on structural types and subtyping

• features usual extensible records and variants, and richer arrays.

• admits ML-style type inference thanks to algebraic subtyping.

• compiles to WebAssembly.

Principle. Replicate flexibility of dynamic languages, but safely (structural subtyping).

Goal. Extend existing languages – or their tooling – with Fabric’s features.

18

Fabric’s implementation

Prototype compiler in OCaml, making ideas come to life.

• I implemented Parreaux’s Simple-sub/MLstruct-style algebraic subtyping type

inference. Difficulty: type simplification.

• WebAssembly code generation using the Binaryen toolchain (now with GC!).

Can optimize and lower further to native code. Difficulty: unstable toolchain.

WebAssembly is a modern portable target with interesting verification/design work.

Future work. Investigate performance implications of different runtime representations

for record and variant types, which admit structural subtyping.

19

Structuring arrays

Why arrays?

We look at array programming as a practical reason for revisiting structural typing.

Array programs might look like this (matrix multiplication):

C = Φ i .Φj .Σ k.A[i , k] · B[k, j] (pointful style)

C = sum(1)
(
expand(2)(A) · expand(0)(B)

)
(point-free style)

C = mapA (λa.mapBT (λb. sum (map2 (×) a b))) (combinator-based)

Type checking array programs is tricky. There are array type systems, but most resort

to dependent types {type-level arithmetic}. Practitioners stick to blissful untypedness.

Question. Can structural typing help construct a type system for array programming?

20

Seeing stars

Existing systems rely on n-dimensional arrays (tensors) – a shape is a tuple of integers.

shape

[
(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

]
= (2, 3)

Contribution

Novel array calculus: Star. Features algebraic, structurally typed array shapes,

admitting ML-style type inference via algebraic subtyping.

Key idea. product {|ℓ : s, ℓ′ : s ′, . . .|} and concatenation JT : s,T ′ : s ′, . . .K shapes –

closely tied to structural record and variant types, which are used for indexing.

Under review for ARRAY 2025.

21

Example of structural shapes

An array of shape of type:

{|row : JTop : #,Mid : #,Bot : #K, col : JLeft : #,Mid : #,Right : #K|}

is indexed by values of the type of records-of-variants (e.g. {row : Top 5, col : Mid 4}):

{row : [Top : int,Mid : int,Bot : int], col : [Left : int,Mid : int,Right : int]}

We can visualise this shape as a padded matrix, composed of 9 regions:

col

row

 Top, Left Top, Mid Top, Right

Mid, Left Mid, Mid Mid, Right

Bot, Left Bot, Mid Bot, Right

This is much more familiar than tracking a shape (t + n+ b)(l +m+ r) (polynomial!).

22

Conclusions

Summary

• Structural subtyping is a promising direction to revisit for designing optional

static type systems for dynamic languages – formalise why via translations.

• Algebraic subtyping would enable type inference for such type systems. We can

find novel extensions, and e.g. type records with type lattice homomorphisms.

• Designing languages like Fabric is a useful way of playing around with extensions

for existing systems, even if the language is not meant for practical use.

• Revisiting old problems and rephrasing them can be good – there is an

interesting structural type system for array programs, without dependent types.

Thank you!

23

Summary

• Structural subtyping is a promising direction to revisit for designing optional

static type systems for dynamic languages – formalise why via translations.

• Algebraic subtyping would enable type inference for such type systems. We can

find novel extensions, and e.g. type records with type lattice homomorphisms.

• Designing languages like Fabric is a useful way of playing around with extensions

for existing systems, even if the language is not meant for practical use.

• Revisiting old problems and rephrasing them can be good – there is an

interesting structural type system for array programs, without dependent types.

Thank you!

23

	Introduction
	Nominal, structural, dynamic
	Algebraic subtyping
	Language design – Fabric
	Structuring arrays
	Conclusions

