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Railway Verification Overview: Testing
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Railway Verification Overview: Verification & Testing
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Railway Verification Overview: Verification, Checking & Testing
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Railway Verification Overview: Z3 + Rocq
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Z3 Theorem Prover

Z3 is a high-performance theorem prover developed by Microsoft Research

Includes solvers for both SAT and SMT problems

Offers efficient solving algorithms and supports various input formats and programming
languages

Z3 provides precise and efficient results

A Model is produced when Satisfiable
A Proof is produced when Unsatisfiable
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PhD Project Goal

The Problem:

SMT solvers such as Z3 are tools often applied to safety critical systems

However, these may have flaws or optimisations that produce incorrect results

We require more than a True or False result, we want a justified and verified result
with a certificate
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SMT solvers such as Z3 are tools often applied to safety critical systems

However, these may have flaws or optimisations that produce incorrect results

We require more than a True or False result, we want a justified and verified result
with a certificate

Our Goal:

Build a verified proof checker to independently verify Z3’s results

Why It Matters:

This increases confidence in using SMT solvers in our Industrial Partner’s tools
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The need for a Bespoke Proof Checker

Why it is needed:

Currently there is no Proof Checker for the current Z3 format

Checker should be “simple” in comparison to the SMT Solvers

Checker should obey Standard Industrial Validation Methods

Our Approach:
Option 1: Write checker by hand

- Risk of introducing errors

Option 2: Formalise in a Theorem Prover, Prove it, then Extract the code

- Provides added Safety because the Checker is verified
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Section 2

The Z3 Proof Rules
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Comparing the Z3 Proof Formats
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Reverse Unit Propagation (RUP)

RUP Inference

A clause C = {x1, x2, . . . , xk} is a RUP Inference from a formula F if:
The unit clauses {¬x1}, {¬x2}, . . . , {¬xk}, when added to F ,
make the formula refutable via Unit-Clause Propagation (UCP).

RUP Proof

A sequence of clauses C1,C2, . . . , where each Ci is a RUP Inference from the formula:

Fj = Fj−1 ∪ {Cj}, j ≥ 1.

If a clause is a RUP Inference, its negation will lead to a contradiction via UCP.

RUP Refutation

A RUP Proof in which some clause Cj = ∅. This indicates that F0 is unsatisfiable.
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Connection to Resolution

Standard Resolution: Reverse Unit Propagation:

Resolution is replaced by RUP

{B ∨ D} is a Valid RUP Inference derived
from the clauses {A ∨ B} and {¬A ∨ D}
Clauses used to find the Inference are not
stored

Easier to verify via Unit Propagation than
finding the Clauses

From {B ∨ D}, derive clauses {¬B} and
{¬D} to be added to the formula
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Validating RUP Inferences

Checking a RUP Inference:

{A ∨ B}
∧{¬A ∨ D}
∧¬B
∧¬D

Unit-Clause Propagation Applied
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Validating RUP Inferences

Propagating Leads to a Contradiction:

A

∧¬A
∧¬B
∧¬D

∅ is derived, therefore, a valid Inference
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Section 3

Proving the Rules to be Correct
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Proof Checker Development Plan

Stage 1

Write Z3
SMT Proof

Rules in Rocq

Prove Rules are
Correct in Rocq

Extract Rocq
Functions into OCaml

(and later C++)

Stage 2

Translate Z3
Proofs into

Checker Format

For each Proof
step is the result

derivable?
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TreeProofs for Unit Propagation

Unit Propagation applies a series of Unit Resolutions to derive a contradiction

A Unit Resolution Proof can be represented as a tree

{}

B

{A ∨ B}¬A

¬B
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Proving RUP in Rocq

RUP relies on Unit-Clause Propagation, which applies Unit Resolution:
Therefore, for every step in Unit-Clause Propagation, we can create a TreeProof

Valid RUP Inference:

1 Unit-Clause Propagation returns {}?
2 For all TreeProofs produced in doing so, are they correct?

Application to Unit Resolution:

Acquiring a complete proof rather than generating TreeProofs is ongoing.
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Proving Unit Resolution in Rocq

Goal:

Prove that if a Unit Resolution Proof is Correct, then it can be modelled as a Unit Resolution
in Rocq, and then it will be Entailed

Inductive unitres : formula −> clause −> Prop
:=

| subsumption : forall (c c2 : clause ) (f :
formula) ,
In c f −>
subset c c2 −>
unitres f c2

| resolution : forall (c : clause ) ( l : literal )
( f : formula) ,

unitres f c −>
is literal in clause l c −>

unitres f (cons (opposite l ) []) −>
unitres f ( remove literal from clause l c) .

Definition entails ( f : formula) (c : clause ) :
Prop :=

( forall (m : model),
Models formula m f −> Models clause m c).
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Proving Unit Resolution in Rocq

Proving each Unit Resolution will remove a literal from a clause while preserving satisfiability:

TreeProof Correctness ⇒
Unit Resolution

Lemma treeproof implies unitres :
forall (t : TreeProof) (ass : Assumption),
correct ass t = true −>
unitres ass ( conclusion ass t) .

Proof.

Unit Resolution ⇒
Entailment

Lemma URes implies Entailment :
forall ( f : formula) (c : clause ) ,
unitres f c −>
entails f c.

Proof.
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Proving Unit Resolution in Rocq

Entailment of Falsity (Single Literal)

Lemma entailsFalsity1 :
forall (A : formula) (c : clause ) (x :

literal ) ,
entails ([[ opposite x ]] ++ A) [] −>
entails A [x ].

Proof.

Entailment of Falsity (Multiple Literals)

Lemma entailsFalsity2 :
forall (A : formula) (c : clause )

(x : literal ) (xs : list literal ) ,
entails ([[ opposite x ]] ++ A) xs −>
entails A (x :: xs) .

Proof.

General Entailment of Falsity

Lemma entailsFalsity :
forall (A : formula) (xs : list literal ) ,
entails ( negate clause xs ++ A) [] −>
entails A xs.

Proof.
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Section 4

Z3 Proof Checker Prototype
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Proof Checker Status

Overview:

A Proof-of-Concept SAT proof checker built and extracted in Rocq

Designed for integration with an industrial verification tool

Focus:

RUP is the new basis for the checker

Other rules, such as the Tseitin Transformation, have been implemented

Current Status:

A full SAT Proof Checker is now operational

Tested on small examples to verify correctness

Verification of SAT Proof Checker is nearing completion
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Checking a Railway Example
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Checking a Railway Example

We do not want opposing signals being green simultaneously
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Checking a Railway Example
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Checking a Railway Example

Signal Conditions:
Signals depend on track segments and points
S0 & S1, and S2 & S3 cannot both be green

Train Movement Conditions:
Trains enter tracks if signals are green
No two trains on the same track simultaneously

Track Occupation:
Track Segments are occupied if:

There is a train in the segment before
The corresponding signal is green

Contradiction Creation: Assumes S0 & S1, S2 & S3 are green

Satisfiability Check: Unsatisfiable, signals are safe
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Checking a Railway Example

Checker Output:

Summary:

Checker returns true for the list of steps

Therefore, we have trust in Z3’s response

Therefore, opposing signals cannot both
be green
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Section 5

Future Work
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The Next Steps

Continue testing the SAT Checker on Industrial Scale Examples

Formalise and Prove further Z3 Proof Rules for SMT Examples in Rocq

How to deal with SMT decision procedures

Enable us to perform proof checking on all our Industrial Partner’s tools

Perform Industrial Testing of the final checker
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Summary

The Proof Checker will independently verify formal Z3 proofs

The Checker will be extracted from proven code to assure that it is also correct

Proof Checking provides further assurance to the verification process

This further increases trust in the Railway Interlockings
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Thank You for Listening
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