
Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 1 / 29

Overview

1 Railway Verification and Proof Checkers

2 The Z3 Proof Rules

3 Proving the Rules to be Correct

4 Z3 Proof Checker Prototype

5 Future Work

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 2 / 29

Railway Verification Overview: Testing

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 3 / 29

Railway Verification Overview: Verification & Testing

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 4 / 29

Railway Verification Overview: Verification, Checking & Testing

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 5 / 29

Railway Verification Overview: Z3 + Rocq

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 6 / 29

Z3 Theorem Prover

Z3 is a high-performance theorem prover developed by Microsoft Research

Includes solvers for both SAT and SMT problems

Offers efficient solving algorithms and supports various input formats and programming
languages

Z3 provides precise and efficient results

A Model is produced when Satisfiable
A Proof is produced when Unsatisfiable

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 7 / 29

PhD Project Goal

The Problem:

SMT solvers such as Z3 are tools often applied to safety critical systems

However, these may have flaws or optimisations that produce incorrect results

We require more than a True or False result, we want a justified and verified result
with a certificate

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 8 / 29

PhD Project Goal

The Problem:

SMT solvers such as Z3 are tools often applied to safety critical systems

However, these may have flaws or optimisations that produce incorrect results

We require more than a True or False result, we want a justified and verified result
with a certificate

Our Goal:

Build a verified proof checker to independently verify Z3’s results

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 8 / 29

PhD Project Goal

The Problem:

SMT solvers such as Z3 are tools often applied to safety critical systems

However, these may have flaws or optimisations that produce incorrect results

We require more than a True or False result, we want a justified and verified result
with a certificate

Our Goal:

Build a verified proof checker to independently verify Z3’s results

Why It Matters:

This increases confidence in using SMT solvers in our Industrial Partner’s tools

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 8 / 29

The need for a Bespoke Proof Checker

Why it is needed:

Currently there is no Proof Checker for the current Z3 format

Checker should be “simple” in comparison to the SMT Solvers

Checker should obey Standard Industrial Validation Methods

Our Approach:
Option 1: Write checker by hand

- Risk of introducing errors

Option 2: Formalise in a Theorem Prover, Prove it, then Extract the code

- Provides added Safety because the Checker is verified

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 9 / 29

Section 2

The Z3 Proof Rules

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 10 / 29

Comparing the Z3 Proof Formats

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 11 / 29

Reverse Unit Propagation (RUP)

RUP Inference

A clause C = {x1, x2, . . . , xk} is a RUP Inference from a formula F if:
The unit clauses {¬x1}, {¬x2}, . . . , {¬xk}, when added to F ,
make the formula refutable via Unit-Clause Propagation (UCP).

RUP Proof

A sequence of clauses C1,C2, . . . , where each Ci is a RUP Inference from the formula:

Fj = Fj−1 ∪ {Cj}, j ≥ 1.

If a clause is a RUP Inference, its negation will lead to a contradiction via UCP.

RUP Refutation

A RUP Proof in which some clause Cj = ∅. This indicates that F0 is unsatisfiable.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 12 / 29

Reverse Unit Propagation (RUP)

RUP Inference

A clause C = {x1, x2, . . . , xk} is a RUP Inference from a formula F if:
The unit clauses {¬x1}, {¬x2}, . . . , {¬xk}, when added to F ,
make the formula refutable via Unit-Clause Propagation (UCP).

RUP Proof

A sequence of clauses C1,C2, . . . , where each Ci is a RUP Inference from the formula:

Fj = Fj−1 ∪ {Cj}, j ≥ 1.

If a clause is a RUP Inference, its negation will lead to a contradiction via UCP.

RUP Refutation

A RUP Proof in which some clause Cj = ∅. This indicates that F0 is unsatisfiable.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 12 / 29

Reverse Unit Propagation (RUP)

RUP Inference

A clause C = {x1, x2, . . . , xk} is a RUP Inference from a formula F if:
The unit clauses {¬x1}, {¬x2}, . . . , {¬xk}, when added to F ,
make the formula refutable via Unit-Clause Propagation (UCP).

RUP Proof

A sequence of clauses C1,C2, . . . , where each Ci is a RUP Inference from the formula:

Fj = Fj−1 ∪ {Cj}, j ≥ 1.

If a clause is a RUP Inference, its negation will lead to a contradiction via UCP.

RUP Refutation

A RUP Proof in which some clause Cj = ∅. This indicates that F0 is unsatisfiable.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 12 / 29

Connection to Resolution

Standard Resolution: Reverse Unit Propagation:

Resolution is replaced by RUP

{B ∨ D} is a Valid RUP Inference derived
from the clauses {A ∨ B} and {¬A ∨ D}
Clauses used to find the Inference are not
stored

Easier to verify via Unit Propagation than
finding the Clauses

From {B ∨ D}, derive clauses {¬B} and
{¬D} to be added to the formula

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 13 / 29

Validating RUP Inferences

Checking a RUP Inference:

{A ∨ B}
∧{¬A ∨ D}
∧¬B
∧¬D

Unit-Clause Propagation Applied

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 14 / 29

Validating RUP Inferences

Propagating Leads to a Contradiction:

A

∧¬A
∧¬B
∧¬D

∅ is derived, therefore, a valid Inference

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 14 / 29

Section 3

Proving the Rules to be Correct

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 15 / 29

Proof Checker Development Plan

Stage 1

Write Z3
SMT Proof

Rules in Rocq

Prove Rules are
Correct in Rocq

Extract Rocq
Functions into OCaml

(and later C++)

Stage 2

Translate Z3
Proofs into

Checker Format

For each Proof
step is the result

derivable?

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 16 / 29

TreeProofs for Unit Propagation

Unit Propagation applies a series of Unit Resolutions to derive a contradiction

A Unit Resolution Proof can be represented as a tree

{}

B

{A ∨ B}¬A

¬B

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 17 / 29

Proving RUP in Rocq

RUP relies on Unit-Clause Propagation, which applies Unit Resolution:
Therefore, for every step in Unit-Clause Propagation, we can create a TreeProof

Valid RUP Inference:

1 Unit-Clause Propagation returns {}?
2 For all TreeProofs produced in doing so, are they correct?

Application to Unit Resolution:

Acquiring a complete proof rather than generating TreeProofs is ongoing.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 18 / 29

Proving Unit Resolution in Rocq

Goal:

Prove that if a Unit Resolution Proof is Correct, then it can be modelled as a Unit Resolution
in Rocq, and then it will be Entailed

Inductive unitres : formula −> clause −> Prop
:=

| subsumption : forall (c c2 : clause) (f :
formula) ,
In c f −>
subset c c2 −>
unitres f c2

| resolution : forall (c : clause) (l : literal)
(f : formula) ,

unitres f c −>
is literal in clause l c −>

unitres f (cons (opposite l) []) −>
unitres f (remove literal from clause l c) .

Definition entails (f : formula) (c : clause) :
Prop :=

(forall (m : model),
Models formula m f −> Models clause m c).

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 19 / 29

Proving Unit Resolution in Rocq

Proving each Unit Resolution will remove a literal from a clause while preserving satisfiability:

TreeProof Correctness ⇒
Unit Resolution

Lemma treeproof implies unitres :
forall (t : TreeProof) (ass : Assumption),
correct ass t = true −>
unitres ass (conclusion ass t) .

Proof.

Unit Resolution ⇒
Entailment

Lemma URes implies Entailment :
forall (f : formula) (c : clause) ,
unitres f c −>
entails f c.

Proof.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 20 / 29

Proving Unit Resolution in Rocq

Entailment of Falsity (Single Literal)

Lemma entailsFalsity1 :
forall (A : formula) (c : clause) (x :

literal) ,
entails ([[opposite x]] ++ A) [] −>
entails A [x].

Proof.

Entailment of Falsity (Multiple Literals)

Lemma entailsFalsity2 :
forall (A : formula) (c : clause)

(x : literal) (xs : list literal) ,
entails ([[opposite x]] ++ A) xs −>
entails A (x :: xs) .

Proof.

General Entailment of Falsity

Lemma entailsFalsity :
forall (A : formula) (xs : list literal) ,
entails (negate clause xs ++ A) [] −>
entails A xs.

Proof.

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 21 / 29

Section 4

Z3 Proof Checker Prototype

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 22 / 29

Proof Checker Status

Overview:

A Proof-of-Concept SAT proof checker built and extracted in Rocq

Designed for integration with an industrial verification tool

Focus:

RUP is the new basis for the checker

Other rules, such as the Tseitin Transformation, have been implemented

Current Status:

A full SAT Proof Checker is now operational

Tested on small examples to verify correctness

Verification of SAT Proof Checker is nearing completion

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 23 / 29

Checking a Railway Example

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 24 / 29

Checking a Railway Example

We do not want opposing signals being green simultaneously

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 24 / 29

Checking a Railway Example

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 24 / 29

Checking a Railway Example

Signal Conditions:
Signals depend on track segments and points
S0 & S1, and S2 & S3 cannot both be green

Train Movement Conditions:
Trains enter tracks if signals are green
No two trains on the same track simultaneously

Track Occupation:
Track Segments are occupied if:

There is a train in the segment before
The corresponding signal is green

Contradiction Creation: Assumes S0 & S1, S2 & S3 are green

Satisfiability Check: Unsatisfiable, signals are safe

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 24 / 29

Checking a Railway Example

Checker Output:

Summary:

Checker returns true for the list of steps

Therefore, we have trust in Z3’s response

Therefore, opposing signals cannot both
be green

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 24 / 29

Section 5

Future Work

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 25 / 29

The Next Steps

Continue testing the SAT Checker on Industrial Scale Examples

Formalise and Prove further Z3 Proof Rules for SMT Examples in Rocq

How to deal with SMT decision procedures

Enable us to perform proof checking on all our Industrial Partner’s tools

Perform Industrial Testing of the final checker

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 26 / 29

Summary

The Proof Checker will independently verify formal Z3 proofs

The Checker will be extracted from proven code to assure that it is also correct

Proof Checking provides further assurance to the verification process

This further increases trust in the Railway Interlockings

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 27 / 29

Thank You for Listening

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 28 / 29

References

[1] Clark W. Barrett (2008)

SMT Solvers: Theory and Practice

[2] Leonardo de Moura, Nikolaj Bjørner (2008)

Z3: An Efficient SMT Solver

Tools and Algorithms for the Construction and Analysis of Systems

Springer Berlin Heidelberg

https://doi.org/10.1007/978-3-540-78800-3

[3] Madhusree Banerjee, Victor Cai, Sunitha Lakshmanappa, Andrew Lawrence, Markus Roggenbach,
Monika Seisenberger, Thomas Werner (2023)

A Tool-Chain for the Verification of Geographic Scheme Data

Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification

Springer Nature Switzerland

https://doi.org/10.1007/978-3-031-43366-5

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 29 / 29

https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-031-43366-5

References

[4] Simon Chadwick, Phillip James, Markus Roggenbach, Tom Werner (2018)

Formal Methods for Industrial Interlocking Verification

2018 International Conference on Intelligent Rail Transportation (ICIRT)

https://doi.org/10.1109/ICIRT.2018.8641579

[5] Simon Chadwick, Tom Werner and Siemens Mobility (2020)

Formal Methods From Theory towards Practice

[6] Jean-Christophe Filliâtre, Pierre Letouzey (2020)

Extraction of programs in OCaml and Haskell

https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html

[7] Yannick Forster, Matthieu Sozeau, Nicolas Tabareau (2024)

Verified Extraction from Coq to OCaml

Proceedings of the ACM on Programming Languages, 8, PLDI, 52–75

https://inria.hal.science/hal-04329663/file/main.pdf

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 29 / 29

https://doi.org/10.1109/ICIRT.2018.8641579
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://inria.hal.science/hal-04329663/file/main.pdf

References

[8] Allen Van Gelder (2008)

Verifying RUP Proofs of Propositional Unsatisfiability

International Symposium on Artificial Intelligence and Mathematics

https://api.semanticscholar.org/CorpusID:17252954

[9] Phillip James, Andy Lawrence, Faron Moller, Markus Roggenbach, Monika Seisenberger, Anton Setzer,
Karim Kanso, Simon Chadwick and Swansea Railway Verification Group (2014)

Verification of Solid State Interlocking Programs

253 – 268.

[10] Phillip James (2010)

SAT- Based Model Checking and Its Applications to Train Control Systems

Swansea University

https://books.google.co.uk/books?id=rPWozQEACAAJ

[11] Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, Yu Li (2020)

Clause vivification by unit propagation in CDCL SAT solvers

Artificial Intelligence, 279, 103197

https://www.sciencedirect.com/science/article/pii/S0004370219301961

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 29 / 29

https://api.semanticscholar.org/CorpusID:17252954
https://books.google.co.uk/books?id=rPWozQEACAAJ
https://www.sciencedirect.com/science/article/pii/S0004370219301961

References

[12] Pierre Letouzey (2008)

Extraction in Coq: An Overview

Logic and Theory of Algorithms, Proceedings of the 4th Conference on Computability in Europe (CiE
2008)

https://doi.org/10.1007/978-3-540-69407-6 39

[13] Marius Minea (2024)

Conjunctive Normal Form: Tseitin Transform

H250: Honors Colloquium – Introduction to Computation

[14] Vincent Derkinderen (2024)

Pruning Boolean d-DNNF Circuits Through Tseitin-Awareness

arXiv preprint arXiv:2407.17951

https://arxiv.org/pdf/2407.17951

Harry Bryant (Swansea University) Proof Checking for SMT-Solving Monday 14th April 2025 29 / 29

https://doi.org/10.1007/978-3-540-69407-6_39
https://arxiv.org/pdf/2407.17951

	Railway Verification and Proof Checkers
	The Z3 Proof Rules
	Proving the Rules to be Correct
	Z3 Proof Checker Prototype
	Future Work

