Alec Critten

Swansea University

BCTCS 2025
University of Strathclyde, Glasgow, Scotland

(supervisors: Dr. Monika Seisenberger, Dr. Anton Setzer)

15 April 2025

«O> «Fr « =>»

<

DA

@ Background

© A tale of two solvers
e Introducing the propagator
@ Propagation for graphs

© Conclusion

«AO> 4F > «=)r «=)»

DA

Project Aims

@ Improve the formal verification process of geographic scheme data for railways

@ Develop a custom graph theory for the Satisfiability Modulo Theories (SMT)
solver Z3

o Integrate graph theory support into a tool-chain for scheme plan verification [1]

u]

8

I

i
it
S
o
i)

Two key definitions

the scheme plan.

@ Scheme plans are formal geographic representations of railway systems.

@ Design rules specify safety-critical constraints which must be verified to hold in

DA

H

T

T

ez}

=

e

T

iy

3

T

A sample design rule

The BG-03 design rule® states that design placement of balises should avoid points and
crossings. Designed spacing shall be constrained by:

1. > 1.0m between balise and point toes.
2. > 1.0m between balise and point frog.

3. > 1.4m lateral separation between a balise on one path and the centre line of the
other path.

4. No balises between the toe and frog of set of points.

u]
8
I
i
it
5
£
Pl

The verification tool-chain [1]
< Scheme Plan Data O >
Model
Metadata

Encode scheme plan in SMT-Lib2
Design
Rule

v

Instantiate design rule
Check instances with Z3

v

Add counter example

\4

Write check results

Report

DA

What is SMT?
Satisfiability Modulo Theories (SMT):

@ generalises propositional satisfiability (SAT) to first-order logic

@ uses decision procedures to check satisfiability with respect to background theories

DA

@ Industry demand

@ Fully automated theorem proving

@ A vision for an expressive language w.r.t. scheme plan verification

«O> «Fr « =>»

<

DA

On to the modelling!

F = E E DA

Approach 1: Modelling with MonoSAT

We started with the MonoSAT SMT solver [2] (with some customisation) because of
structures

@ its status as the only known SMT solver which inherently supports graph

@ its Python interface which allows graph construction in the naive sense

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 0@000000 00000000 000000000000 00000 0000

“Small-Happy” encoding in MonoSAT

RBCN11 = small_ happy.addNode("SimpleNode™, 53486, "RBCN11™)
RBC N111 = small happy.addNode("SimpleNode”, 5342, "RBC N111")
RBC N2 = small happy.addNode("SimpleNode™, 5962, "RBC N2")

simpleNodes = [RBC_S2, RBC_S1, EN_3635, RBC_N1, RBCN11, RBC_N111, RBC_N2]

points nodes
PN_Extra = small_happy.addNode("PointsNode”, 488, "PN_Extra")

points nodes = [PN_Extra]

balises

balise 16 @ = small happy.addNode("Balise", 4348, "balise 16 8")
balise 15 @ = small_happy.addMode("Balise", 4386, "balise_15 8")
balise 14 @ = small_happy.addiode("Balise”, 4438, "balise_14 8")

186 # Translaoting BG-85 into MONOSAT #
187 o ¢4

168
109 #Designed minimum spacing between adjacent balise groups shall be constrained by:

110 #1. > MIN BG SEPARATION between adjacent end balises, one at each end of the two groups.
111 MIN_BG_SEPARATION = 28

112

113 # sort the list of balises

114 balises_sorted = small_happy.sort_nodes(balise set)

115 print(balises_sorted)

116

117 # adjacency approach

118 for 1 in range(len(balises sorted)):
119 # check if two end-balises are adjacent

120 if (small_happy.get_adjacent_balises(balises sorted[i]) != None):

121 if Solve([Not(small_happy.distance_lt(balises_sorted[i], small_happy.get adjacent balises(balises_sorted[i]), MIN BG_SEPARATION))]) == False:
122 print("BG-85 not satisfied")

123

124 Assert(Not(small_happy.distance_lt(balises_sorted[i], small_happy.get_adjacent_balises(balises_sorted[i]), MIN_BG_SEPARATION)))

125

126 print("BG-85 checked")

Results from MonoSAT

@ Encoded a scheme plan with approx. 50 nodes (“Small-Happy”)
@ Encoded and instantiated several design rules
@ Performed design rule verification in MonoSAT, specifically for balise spacing

@ Automated the translation process from scheme plan to graph for MonoSAT

u]
8

I
i
it
S
o
i)

Why pivot away from MonoSAT?

@ Bespoke solver not compatible with Z3/general SMT
@ Black-box functionality below API

o Difficult to ensure correctness of verification for large scheme plans

DA

| Native text | | C
Simplifier
|

\
|

Z3 is a deeply complicated system... [3]
[sMTLB | [Simplity |
| |
}
I

| [ner]
Theory Solvers
| Linear arithmetic |
Compiler ‘
l | Bit-vectors |
Congruence closure core
equalities | Arrays
assignments
new atoms | Tuples
literal assignments

SAT solver

equalities

clauses

E-matching engine

DA

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 00000080 00000000 00000000000000000 0000

...only well-known by a few experts...

Commits over time

Introducing: user propagators!

DA

What is a user propagator?

A user propagator (Eisenhofer et. al. 2023) [4]:
@ is an interface for customised decision procedures
@ uses the EUF (equality with uninterpreted functions) theory

@ operates in an external code-base, exposing callbacks to override Z3 behaviour

it
S
o
i)

User propagators with Z3 architecture [4]
Internal to Z3 User-Propagator

ftiime]

Quantifier Reasoning

DA

User propagator callbacks

Some callbacks of interest:

@ Created - instantiate expressions to be eventually assigned to true/false

@ Push/Pop - save/revert the state of the SAT solver when it branches on a
decision, particularly so we can backtrack

@ Fixed - when the solver decides an expression is true/false

@ Final - when the solver has assigned all expressions to true/false

The EUF theory

e Always included in SMT

@ Everything is uninterpreted - just symbols

@ Congruence closure to determine satisfiability
@ Only = comes preloaded with meaning!

@ edge is a user-function

o «F = = T 9Dace

The interplay between SAT and theory solvers

deduces this way:

Suppose we have ¢ = (x < 3) A (x > 4). Obviously there is no such x, but the solver
propositional logic, so

@ Boolean abstraction: First, the solver abstracts the first-order formula into

(x <3)A(x>4)
N N —
A B

B—T.

@ Boolean assignment: The SAT solver makes a decision to set A — T and

DA

The interplay between SAT and theory solvers, cont.

© Theory symbols: SMT solver observes x < 3 and x > 4 on a purely symbolic

level, then determines they belong to the theory of integer arithmetic (LIA).

DA

unsat.

@ SAT modulo LIA: Solver checks satisfiability of AA B w.r.t. LIA and returns

DA

G ={n1,np,n3,n4}):

A simple propagator enforcing the transitive closure relation over a graph

«AO> 4F > «=)r «=)»

DA

Visualising a graph propagation, cont.
We instantiate all possible edges as predicates which the solver will definitively assign
later:

DA

If, for example, we are given that n; — n...

(=)

«O> «Fr « =>»

<

DA

..and m — ng...

(O <Fr <=

<

Da

...then the solver will propagate that ny — ny:

«O> «Fr « =>»

<

DA

A comment on transitivity

Constructing the propagator for even a simple relation like TC is not trivial!

Merely programming (a — b) A (b — ¢) = (a — ¢) doesn't work.

The key to transitivity is handling the permutations of the order of the edges!

Antireflexivity and symmetry

Unlike transitivity, these are easy to model:
o Antireflexivity: for any propagation, check first that the two nodes are distinct
@ Symmetry: given a propagating edge a — b:
o Check if b — a is assigned.

e If not, propagate b — a with the single justification a — b.

Background A tale of two solvers

0000000 00000000

.smt2 input (non-sym TC)

1
2
3
4
5
6
7
8
9

=
(o)

Introducing the propagator
00000000

(declare-const
(declare-const
(declare-const
(declare-const

Propagation for graphs
00000008000000000

nl Node)
n2 Node)
n3 Node)
n4 Node)

(assert (edge nl1 n2))
(assert (edge n2 n3))
(assert (edge n3 n4))

(check-sat)

Conclusion
0000

Background A tale of two solvers
0000000 00000000

Introducing the propagator
00000000

Custom model generation for graphs...

model (16

nl
nl
nl
nl
n2
n2
n2

nl)
n2)
n3)
n4)
nl)
n2)
n3)

->
->
=2
->
->
->
->

assignments in total):

false
true
true
true
false
false
true

Propagation for graphs
000000008000 00000

Conclusion
0000

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 00000000 00000000 00000000080000000 0000

...instead of the default Z3 model

MODEL FROM Z3:
55 universe for Node:
Node!val!® Node!val!l Node!val!3 Node!val!2

;; definitions for universe elements:
(declare-fun Node!val!e () Node)
(declare-fun Node!val!l () Node)
(declare-fun Node!val!3 () Node)
(declare-fun Node!val!2 () Node)
;5 cardinality constraint:
(forall ((x Node))
(or (= x Nodel!val!®) (= x Node!valll) (= x Nodelval!3) (= x Node!vall!2)))

(define-fun n4 () Node
Node!vall3)

(define-fun n1 () Node
Node!val!e)

(define-fun n2 () Node
Node!val!1l)

(define-fun n3 () Node
Node!val!2)

END OF MODEL

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 00000000 00000000 00000000008000000 0000

Logging propagation steps

List of unique propagations:

1: (edge nl n2) = true, derived from input assumption
2: (edge n2 n3) = true, derived from input assumption
3: (edge nl1 n3) = true, derived from (ast-vector

(edge n2 n3)
(edge nl1 n2))

Weighted edges
We can also model weighted edges as well!

@ Similar propagation process to before

o Extend the edge predicate to also take an integer-sort argument

DA

A path predicate (path nl n2 1) is defined inductively:

o (edge nl n2 1) — (path nl n2 1)

o (path n1 n2 1) A (edge n2 n3 1’) — (path n1 n3 (1 + 17))

«4O> «Fr «=)>r <

DA

Background A tale of two solvers

0000000 00000000

Introducing the propagator Propagation for graphs
00000000 00000000000008000

The path propagator: input

1
2
3
4
5
6
7
8
9

(declare-const nl Node)
(declare-const n2 Node)
(declare-const n3 Node)
(declare-const n4 Node)

(assert (edge nl n2 190))
(assert (edge n2 n3 5))
(assert (edge n3 n4 4))

(check-sat)
(get-model)

Conclusion
0000

Background A tale of two solvers
0000000 00000000

The path propagator: output

Graph model

[
(edge
(edge
(edge
(path

(path
(path
(path
(path
(path

]

nl
n2
]
nl
nl
nl
n2
n2
n3

n2
n3
n4
n2
n3
n4
n3
n4
n4

Introducing the propagator Propagation for graphs
00000000 000000000000 00e00

(9 assignments in total):

10) -> true
5) -> true
4) -> true
10) -> true
15) -> true
19) -> true
5) -> true
9) -> true
4) -> true

Conclusion
0000

@ Current work

@ Naive approach: generate all paths and take shortest at Final

«AO> 4F > «=)r «=)»

DA

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 00000000 00000000 0000000000000000e 0000

Naive shortest path: input/output

Graph model (10 assignments in total):

[

(edge n1 n2 1) -> true

(edge n1 n3 10) -> true
(declare-const nl1 Node) J(edge n2 n3 2) -> true

(declare-const n2 Node) J(path nln2 1) -> true

(path n1 n3 10) -> true
(path n1 n3 3) -> true
(path n2 n3 2) -> true

(assert (edge nl n3 10)) J(shortest-path nl n2 1) -> true

hortest-path n3 3) -> true
r nl n2 1 S
(assert (edge) (shortest-path n3 2) -> true

(assert (edge n2 n3 2)) [

(declare-const n3 Node)

Next steps

Currently working on a graph user propagator for Z3 with verified algorithms. Current
and future work planned for this year:

e Optimising path-generation over graphs

o Applying the path propagator to larger, realistic graphs
o Integrating the propagator with our partner’s graph tools

e Verifying scheme plans with the railway-oriented propagator

Summary

@ Develop graph theory for scheme plan verification
e User propagators to customise Z3

@ Program decision procedures for graph traversal
°

Groundwork for expressing design rule constraints in SMT

u]
8

I
i
it
S
o
i)

References

Il

Banerjee, M., Cai, V., Lakshmanappa, S., Lawrence, A., Roggenbach, M., Seisenberger, M.,
Werner, T.: A Tool-Chain for the Verification of Geographic Scheme Data.
RSSRail 2023. LNCS 14198. Springer (2023).

Il

Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT Modulo Monotonic Theories.
AAAI Conference on Artificial Intelligence, 29(1), (2015).

i

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver.
TACAS 2008, LNCS 4963. Springer (2008).

i

Bjgrner, N., Eisenhofer, C., Kovécs, L.: Satisfiability Modulo Custom Theories in Z3.
VMCAI 2023. LNCS 13881. Springer (2023).

o «F = = T 9Dace

Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion
0000000 00000000 00000000 00000000000000000 oooe

Thanks for listening!

	Background
	A tale of two solvers
	Introducing the propagator
	Propagation for graphs
	Conclusion

