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Project Aims

Improve the formal verification process of geographic scheme data for railways

Develop a custom graph theory for the Satisfiability Modulo Theories (SMT)
solver Z3

Integrate graph theory support into a tool-chain for scheme plan verification [1]
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Two key definitions

Scheme plans are formal geographic representations of railway systems.

Design rules specify safety-critical constraints which must be verified to hold in
the scheme plan.
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A scheme plan visualisation
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A sample design rule
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The verification tool-chain [1]
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What is SMT?

Satisfiability Modulo Theories (SMT):

generalises propositional satisfiability (SAT) to first-order logic

uses decision procedures to check satisfiability with respect to background theories
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Why SMT?

Industry demand

Fully automated theorem proving

A vision for an expressive language w.r.t. scheme plan verification
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On to the modelling!
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Approach 1: Modelling with MonoSAT

We started with the MonoSAT SMT solver [2] (with some customisation) because of

its status as the only known SMT solver which inherently supports graph
structures

its Python interface which allows graph construction in the näıve sense
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“Small-Happy” encoding in MonoSAT
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Results from MonoSAT

Encoded a scheme plan with approx. 50 nodes (“Small-Happy”)

Encoded and instantiated several design rules

Performed design rule verification in MonoSAT, specifically for balise spacing

Automated the translation process from scheme plan to graph for MonoSAT
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Why pivot away from MonoSAT?

Bespoke solver not compatible with Z3/general SMT

Black-box functionality below API

Difficult to ensure correctness of verification for large scheme plans
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Z3 is a deeply complicated system... [3]



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

...only well-known by a few experts...

Figure: Z3’s commit history on GitHub
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...but there is a solution!

Introducing: user propagators!
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What is a user propagator?

A user propagator (Eisenhofer et. al. 2023) [4]:

is an interface for customised decision procedures

uses the EUF (equality with uninterpreted functions) theory

operates in an external code-base, exposing callbacks to override Z3 behaviour
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User propagators with Z3 architecture [4]
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User propagator callbacks

Some callbacks of interest:

Created - instantiate expressions to be eventually assigned to true/false

Push/Pop - save/revert the state of the SAT solver when it branches on a
decision, particularly so we can backtrack

Fixed - when the solver decides an expression is true/false

Final - when the solver has assigned all expressions to true/false
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The EUF theory

Always included in SMT

Everything is uninterpreted - just symbols

Congruence closure to determine satisfiability

Only = comes preloaded with meaning!

edge is a user-function
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The interplay between SAT and theory solvers

Suppose we have ϕ = (x < 3) ∧ (x > 4). Obviously there is no such x , but the solver
deduces this way:

1 Boolean abstraction: First, the solver abstracts the first-order formula into
propositional logic, so

(x < 3)︸ ︷︷ ︸
A

∧ (x > 4)︸ ︷︷ ︸
B
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The interplay between SAT and theory solvers, cont.

2 Boolean assignment: The SAT solver makes a decision to set A → ⊤ and
B → ⊤.
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The interplay between SAT and theory solvers, cont.

3 Theory symbols: SMT solver observes x < 3 and x > 4 on a purely symbolic
level, then determines they belong to the theory of integer arithmetic (LIA).
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The interplay between SAT and theory solvers, cont.

4 SAT modulo LIA: Solver checks satisfiability of A ∧ B w.r.t. LIA and returns
unsat.
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Visualising a graph propagation

A simple propagator enforcing the transitive closure relation over a graph
G = {n1, n2, n3, n4}):

n1 n2

n3 n4
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Visualising a graph propagation, cont.

We instantiate all possible edges as predicates which the solver will definitively assign
later:

n1 n2

n3 n4
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Visualising a graph propagation, cont.

If, for example, we are given that n1 → n2...

n1 n2

n3 n4
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Visualising a graph propagation, cont.

...and n2 → n4...

n1 n2

n3 n4
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Visualising a graph propagation, cont.

...then the solver will propagate that n1 → n4:

n1 n2

n3 n4
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A comment on transitivity

Constructing the propagator for even a simple relation like TC is not trivial!

Merely programming (a → b) ∧ (b → c) ⇒ (a → c) doesn’t work.

The key to transitivity is handling the permutations of the order of the edges!
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Antireflexivity and symmetry

Unlike transitivity, these are easy to model:

Antireflexivity: for any propagation, check first that the two nodes are distinct

Symmetry: given a propagating edge a → b:

Check if b → a is assigned.
If not, propagate b → a with the single justification a → b.
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.smt2 input (non-sym TC)
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Custom model generation for graphs...
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...instead of the default Z3 model
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Logging propagation steps
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Weighted edges

We can also model weighted edges as well!

Similar propagation process to before

Extend the edge predicate to also take an integer-sort argument
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Building paths

A path predicate (path n1 n2 l) is defined inductively:

(edge n1 n2 l) → (path n1 n2 l)

(path n1 n2 l) ∧ (edge n2 n3 l’) → (path n1 n3 (l + l’))
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The path propagator: input
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The path propagator: output
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Näıve shortest path

Current work

Näıve approach: generate all paths and take shortest at Final
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Näıve shortest path: input/output
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Next steps

Currently working on a graph user propagator for Z3 with verified algorithms. Current
and future work planned for this year:

Optimising path-generation over graphs

Applying the path propagator to larger, realistic graphs

Integrating the propagator with our partner’s graph tools

Verifying scheme plans with the railway-oriented propagator
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Summary

Develop graph theory for scheme plan verification

User propagators to customise Z3

Program decision procedures for graph traversal

Groundwork for expressing design rule constraints in SMT
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Thanks for listening!
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