
Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Developing user propagators for graph-based SMT reasoning

Alec Critten
Swansea University

(supervisors: Dr. Monika Seisenberger, Dr. Anton Setzer)

BCTCS 2025
University of Strathclyde, Glasgow, Scotland

15 April 2025



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Overview

1 Background

2 A tale of two solvers

3 Introducing the propagator

4 Propagation for graphs

5 Conclusion



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Project Aims

Improve the formal verification process of geographic scheme data for railways

Develop a custom graph theory for the Satisfiability Modulo Theories (SMT)
solver Z3

Integrate graph theory support into a tool-chain for scheme plan verification [1]



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Two key definitions

Scheme plans are formal geographic representations of railway systems.

Design rules specify safety-critical constraints which must be verified to hold in
the scheme plan.



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

A scheme plan visualisation



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

A sample design rule



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The verification tool-chain [1]



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

What is SMT?

Satisfiability Modulo Theories (SMT):

generalises propositional satisfiability (SAT) to first-order logic

uses decision procedures to check satisfiability with respect to background theories



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Why SMT?

Industry demand

Fully automated theorem proving

A vision for an expressive language w.r.t. scheme plan verification



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

On to the modelling!



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Approach 1: Modelling with MonoSAT

We started with the MonoSAT SMT solver [2] (with some customisation) because of

its status as the only known SMT solver which inherently supports graph
structures

its Python interface which allows graph construction in the näıve sense



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

“Small-Happy” encoding in MonoSAT





Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Results from MonoSAT

Encoded a scheme plan with approx. 50 nodes (“Small-Happy”)

Encoded and instantiated several design rules

Performed design rule verification in MonoSAT, specifically for balise spacing

Automated the translation process from scheme plan to graph for MonoSAT



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Why pivot away from MonoSAT?

Bespoke solver not compatible with Z3/general SMT

Black-box functionality below API

Difficult to ensure correctness of verification for large scheme plans



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Z3 is a deeply complicated system... [3]



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

...only well-known by a few experts...

Figure: Z3’s commit history on GitHub



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

...but there is a solution!

Introducing: user propagators!



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

What is a user propagator?

A user propagator (Eisenhofer et. al. 2023) [4]:

is an interface for customised decision procedures

uses the EUF (equality with uninterpreted functions) theory

operates in an external code-base, exposing callbacks to override Z3 behaviour



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

User propagators with Z3 architecture [4]



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

User propagator callbacks

Some callbacks of interest:

Created - instantiate expressions to be eventually assigned to true/false

Push/Pop - save/revert the state of the SAT solver when it branches on a
decision, particularly so we can backtrack

Fixed - when the solver decides an expression is true/false

Final - when the solver has assigned all expressions to true/false



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The EUF theory

Always included in SMT

Everything is uninterpreted - just symbols

Congruence closure to determine satisfiability

Only = comes preloaded with meaning!

edge is a user-function



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The interplay between SAT and theory solvers

Suppose we have ϕ = (x < 3) ∧ (x > 4). Obviously there is no such x , but the solver
deduces this way:

1 Boolean abstraction: First, the solver abstracts the first-order formula into
propositional logic, so

(x < 3)︸ ︷︷ ︸
A

∧ (x > 4)︸ ︷︷ ︸
B



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The interplay between SAT and theory solvers, cont.

2 Boolean assignment: The SAT solver makes a decision to set A → ⊤ and
B → ⊤.



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The interplay between SAT and theory solvers, cont.

3 Theory symbols: SMT solver observes x < 3 and x > 4 on a purely symbolic
level, then determines they belong to the theory of integer arithmetic (LIA).



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The interplay between SAT and theory solvers, cont.

4 SAT modulo LIA: Solver checks satisfiability of A ∧ B w.r.t. LIA and returns
unsat.



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Visualising a graph propagation

A simple propagator enforcing the transitive closure relation over a graph
G = {n1, n2, n3, n4}):

n1 n2

n3 n4



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Visualising a graph propagation, cont.

We instantiate all possible edges as predicates which the solver will definitively assign
later:

n1 n2

n3 n4



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Visualising a graph propagation, cont.

If, for example, we are given that n1 → n2...

n1 n2

n3 n4



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Visualising a graph propagation, cont.

...and n2 → n4...

n1 n2

n3 n4



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Visualising a graph propagation, cont.

...then the solver will propagate that n1 → n4:

n1 n2

n3 n4



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

A comment on transitivity

Constructing the propagator for even a simple relation like TC is not trivial!

Merely programming (a → b) ∧ (b → c) ⇒ (a → c) doesn’t work.

The key to transitivity is handling the permutations of the order of the edges!



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Antireflexivity and symmetry

Unlike transitivity, these are easy to model:

Antireflexivity: for any propagation, check first that the two nodes are distinct

Symmetry: given a propagating edge a → b:

Check if b → a is assigned.
If not, propagate b → a with the single justification a → b.



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

.smt2 input (non-sym TC)



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Custom model generation for graphs...



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

...instead of the default Z3 model



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Logging propagation steps



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Weighted edges

We can also model weighted edges as well!

Similar propagation process to before

Extend the edge predicate to also take an integer-sort argument



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Building paths

A path predicate (path n1 n2 l) is defined inductively:

(edge n1 n2 l) → (path n1 n2 l)

(path n1 n2 l) ∧ (edge n2 n3 l’) → (path n1 n3 (l + l’))



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The path propagator: input



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

The path propagator: output



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Näıve shortest path

Current work

Näıve approach: generate all paths and take shortest at Final



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Näıve shortest path: input/output



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Next steps

Currently working on a graph user propagator for Z3 with verified algorithms. Current
and future work planned for this year:

Optimising path-generation over graphs

Applying the path propagator to larger, realistic graphs

Integrating the propagator with our partner’s graph tools

Verifying scheme plans with the railway-oriented propagator



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Summary

Develop graph theory for scheme plan verification

User propagators to customise Z3

Program decision procedures for graph traversal

Groundwork for expressing design rule constraints in SMT



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

References

Banerjee, M., Cai, V., Lakshmanappa, S., Lawrence, A., Roggenbach, M., Seisenberger, M.,
Werner, T.: A Tool-Chain for the Verification of Geographic Scheme Data.
RSSRail 2023. LNCS 14198. Springer (2023).

Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT Modulo Monotonic Theories.
AAAI Conference on Artificial Intelligence, 29(1), (2015).

de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver.
TACAS 2008, LNCS 4963. Springer (2008).

Bjørner, N., Eisenhofer, C., Kovács, L.: Satisfiability Modulo Custom Theories in Z3.
VMCAI 2023. LNCS 13881. Springer (2023).



Background A tale of two solvers Introducing the propagator Propagation for graphs Conclusion

Thanks for listening!


	Background
	A tale of two solvers
	Introducing the propagator
	Propagation for graphs
	Conclusion

