
>>> Bounded Henkin quantifiers and the exponential time hierarchy

Name: Abhishek De (University of Birmingham, UK)

Date: April 14, 2025

BCTCS, Glasgow

[~]$ [1/22]

>>> Plan of talk

Henkin quantifiers

+ Bounded quantifiers = Bounded Henkin quantifiers

[~]$ [2/22]

>>> Plan of talk

Henkin quantifiers + Bounded quantifiers

= Bounded Henkin quantifiers

[~]$ [2/22]

>>> Plan of talk

Henkin quantifiers + Bounded quantifiers = Bounded Henkin quantifiers

[~]$ [2/22]

Henkin quantifiers

>>> Hintikka’s sentence

‘‘Some relative of each villager and some relative of each townsman hate

each other.’’

(
∀x1∃y1
∀x2∃y2

)

(V (x1) ∧ T (x2)) → (R(x1, y1) ∧R(x2, y2) ∧H(y1, y2))

[1. Henkin quantifiers]$ [4/22]

>>> Hintikka’s sentence

‘‘Some relative of each villager and some relative of each townsman hate

each other.’’(
∀x1∃y1
∀x2∃y2

)
(V (x1) ∧ T (x2)) → (R(x1, y1) ∧R(x2, y2) ∧H(y1, y2))

[1. Henkin quantifiers]$ [4/22]

>>> Definition by examples

H2
2 =

(
∀x1∃y1
∀x2∃y2

)
=

∀x1 ∀x2

∃y1 ∃y2

H2
2H

2
2 =

∀x1 ∀x2 ∀x1 ∀x2

∃y1 ∃y2 ∃y1 ∃y2

Henkin quantifier

A triple Q = (A,E, d) such that d ⊆ A× E. A Hekin quantifier is called

standard if it can be written like a matrix.

[1. Henkin quantifiers]$ [5/22]

>>> Definition by examples

H2
2 =

(
∀x1∃y1
∀x2∃y2

)
=

∀x1 ∀x2

∃y1 ∃y2

H2
2H

2
2 =

∀x1 ∀x2 ∀x1 ∀x2

∃y1 ∃y2 ∃y1 ∃y2

Henkin quantifier

A triple Q = (A,E, d) such that d ⊆ A× E. A Hekin quantifier is called

standard if it can be written like a matrix.

[1. Henkin quantifiers]$ [5/22]

>>> Definition by examples

H2
2 =

(
∀x1∃y1
∀x2∃y2

)
=

∀x1 ∀x2

∃y1 ∃y2

H2
2H

2
2 =

∀x1 ∀x2 ∀x1 ∀x2

∃y1 ∃y2 ∃y1 ∃y2

Henkin quantifier

A triple Q = (A,E, d) such that d ⊆ A× E. A Hekin quantifier is called

standard if it can be written like a matrix.

[1. Henkin quantifiers]$ [5/22]

>>> Interpreting Henkin quantifiers

Interpret by Skolemisation:

∃f∃g∀x1∀x2 (V (x1) ∧ T (x2)) → (R(x1, f(x1)) ∧R(x2, g(x2)) ∧H(f(x1), g(x2))

L(H)

Language of first-order logic extended by Henkin quantifiers

* L(H) cannot be recursively axiomatised (Erhenfeucht)

* L(H) equivalent to existential second-order logic (Enderton-Walkoe)

* Over finite structures, L(H) can express exactly NP predicates

(Blass-Gurevich)

[1. Henkin quantifiers]$ [6/22]

>>> Prenexing and standardisation

Positive formula

An L(H) formula where Henkin quantifiers occur under an even number of

negations.

Proposition

Let ϕ be a positive L(H) formula. There exists an H-formula Qψ such

that (i) Q is standard (ii) ψ is a quantifier-free, and (iii) ϕ and Qψ
are equivalent.

Proposition

Every L(H) formula is equivalent to an L(H) formula of the form

R¬Q0¬Q1 . . .¬Qnϕ where R is either ¬Q or Q, and Q,Q0, . . . , Qn are

standard Henkin quantifiers.

[1. Henkin quantifiers]$ [7/22]

Bounded Quantifiers and Computational Complexity

>>> Is this descriptive complexity?

Descriptive complexity

* Fixed vocabulary and class of

formulas F
* A property P is definable if

there is a formula ϕ ∈ F in this

syntax such that the set of

finite models satisfying ϕ is

exactly the set of models with

property P

* F captures a complexity class C
if the properties checkable in C
are exactly the ones definable

in F
* Model theoretic approach

Bounded arithmetic

* Fixed vocabulary, class of

formulas F, and an infinite

model N
* A predicate R ⊆ N2 is definable

if there is a formula ϕ(x, y) ∈ F
in this syntax such that

R = {(a, b) | N |= ϕ(a, b)}
* F captures a complexity class C
if R ∈ C iff R is definable in

F
* Proof-theoretic approach: want

to study theories

[2. Bounded quantifiers and complexity]$ [9/22]

>>> Language

Terms

t, t′ ::= x ∈ V ar | 0 | S(t) | t+ t′ | t · t′ | |t| | t♯t′ | ⌊t/2⌋

where |t| is intended to be interpreted as the number of digits in the

binary representation of t and t♯t′ as 2|t||t
′|.

Formulas

ϕ, ψ ::= s ≤ t | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃x ≤ s ϕ | ∀x ≤ s ϕ

Quantifiers of the form Qx ≤ |s| ϕ are said to be sharply bounded. A

formula is sharply bounded if all its quantifiers are sharply bounded.

[2. Bounded quantifiers and complexity]$ [10/22]

>>> The Bounded Arithmetic Hierarchy

* Σb
0 = Πb

0 are the set of sharply

bounded formulas.

* Σb
i+1 = {∃x ≤ s.ϕ | ϕ ∈ Πb

i} modulo

prenex operations.

* Πb
i+1 = {∀x ≤ s.ϕ | ϕ ∈ Σb

i} modulo

prenex operations.

[Arbitrary sharply bounded

quantifiers allowed in the 2nd and

3rd case]

Σb
0 = Πb

0

Σb
1 Πb

1

Σb
2 Πb

2

...
...

[2. Bounded quantifiers and complexity]$ [11/22]

>>> Capturing complexity classes

Proposition

Predicate R ⊆ Nk definable by a Σb
0 formula =⇒ R ∈ P.

Theorem (Kent-Hodgson’82)

Predicate R ⊆ Nk definable by a Σb
1 formula ⇐⇒ R ∈ NP.

Corollary

Bounded Arithmetic Hierarchy corresponds to PH.

* Starting point of uniform proof complexity

* Consider weak sub-theories of PA in this language

* Characterise complexity classes in the sense that a function is

provably total in a theory iff it belongs to a given complexity

class.

[2. Bounded quantifiers and complexity]$ [12/22]

>>> Second-order Bounded Arithmetic

* Language with second-order bounded quantification

* Captures the exponential hierarchy

* In particular, Σ1,b
1 (N) = NEXP

[2. Bounded quantifiers and complexity]$ [13/22]

Bounded Henkin Quantifiers

>>> Bounded Henkin quantifiers

Pretty much does what it says on the tin:(
∀x1∃y1
∀x2∃y2

)

H-formulas

Formulas in the language of bounded arithmetic with bounded Henkin

quantifiers.

Main result

Predicate R ∈ Nk definable by a positive H-formula ⇐⇒ R ∈ NEXP

[3. Bounded Henkin quantifiers]$ [15/22]

>>> Bounded Henkin quantifiers

Pretty much does what it says on the tin:(
∀x1≤ s1 ∃y1≤ t1
∀x2≤ s2 ∃y2≤ t2

)
H-formulas

Formulas in the language of bounded arithmetic with bounded Henkin

quantifiers.

Main result

Predicate R ∈ Nk definable by a positive H-formula ⇐⇒ R ∈ NEXP

[3. Bounded Henkin quantifiers]$ [15/22]

>>> Proof technique

Hb
p := {R ⊆ Nk | R definable by a positive H-formula}

Hb
p Σ1,b

1

HP NEXP

Skolemisation

Folklore

DQBF completeness

Few points about Skolemisation

* There is polynomial bounded Gödel encoding of pairs:

⌜⟨m,n⟩⌝ := 2m3n
⌊m+ n

2

⌋
m+ n

* Bounded arithmetic can be bootstrapped with pairing function β.

β(i, ⌜⟨a1, . . . , ak⟩⌝) =

{
n if i = 0;

ai if 1 ≤ i ≤ k

* Therefore, Skolem functions can be replaced by polynomially bounded

predicates.

[3. Bounded Henkin quantifiers]$ [16/22]

>>> HP sauce

Hb
p Σ1,b

1

HP NEXP

Skolemisation

Folklore

DQBF completeness

NP := set of languages L such that there exists a polynomial p and a

poly time TM M such that

x ∈ L ⇐⇒ ∃u ≤ p(|x|)M(x, u) = 1.

H2
2P := set of languages L such that there exists polynomials p1, q1, p2, q2

and a poly time TM M such that

x ∈ L ⇐⇒
(
∀x1 ≤ p1(|x|) ∃y1 ≤ q1(|x|)
∀x2 ≤ p2(|x|) ∃y2 ≤ q2(|x|)

)
M(x, x1, y1, x2, y2) = 1.

HP :=
⋃

QQP [Q ranging over Henkin quantifiers]

Trivially, HP ⊆ Hb
p.

[3. Bounded Henkin quantifiers]$ [17/22]

>>> HP sauce

Hb
p Σ1,b

1

HP NEXP

Skolemisation

Folklore

DQBF completeness

NP := set of languages L such that there exists a polynomial p and a

poly time TM M such that

x ∈ L ⇐⇒ ∃u ≤ p(|x|)M(x, u) = 1.

H2
2P := set of languages L such that there exists polynomials p1, q1, p2, q2

and a poly time TM M such that

x ∈ L ⇐⇒
(
∀x1 ≤ p1(|x|) ∃y1 ≤ q1(|x|)
∀x2 ≤ p2(|x|) ∃y2 ≤ q2(|x|)

)
M(x, x1, y1, x2, y2) = 1.

HP :=
⋃

QQP [Q ranging over Henkin quantifiers]

Trivially, HP ⊆ Hb
p.

[3. Bounded Henkin quantifiers]$ [17/22]

>>> A NEXP-complete problem

Hb
p Σ1,b

1

HP NEXP

Skolemisation

Folklore

DQBF completeness

DQBF

A formula of the form Qψ where Q is a Henkin quantifier and ψ is a

quantifier-free Boolean formula

Theorem (Peterson-Reif’79)

DQBF satisfiability is NEXP-complete.

Clearly, DQBF satisfiability ∈ HP.

[3. Bounded Henkin quantifiers]$ [18/22]

Further Results

>>> Generalisation

H := {R ⊆ Nk | R definable by H-formula}

Proposition

H ⊆ ∆1,b
2

Proof Sketch.

Let R be defined by a H-formula ϕ. Then, ϕ = P¬Q1 . . .¬Qnϕ where P is

either ¬Q or Q, and ψ quantifier-free. Induct on n.

* Base case: previous result

* Induction case: use an encoding of the axiom of choice and the

following identity:

∃f∀x∀g∃yϕ(x, y, f(x), g(y)) ≡ ∀g∃f∀x∃yϕ(x, y, f(x), g(x, f(x), y))

[4. Further results]$ [20/22]

>>> Construing H as a complexity class

GDQBF

A formula of the form R¬Q0 . . .¬Qnϕ where R = Q or R = ¬Q, Q0, . . . , Qn

are Henkin quantifiers, and ψ is a quantifier-free Boolean formula.

Theorem

GDQBF satisfiability is H-complete.

[4. Further results]$ [21/22]

>>> Curtain call

Conclusion

* Defined bounded Henkin quantifiers in the language of bounded

arithmetic

* Positive formulas exactly capture NEXP

* Arbitrary formulas not much more expressive: collapses at ∆2 of

the exponential hierarchy

Future work

* Descriptive complexity conjecture: H ⊊ ∆EXP
2 (modulo some

complexity theory assumptions)

* Bounded arithmetic: consider theories with induction on positive

H-formulas. Can we formalise our result in this theory?

* Proof complexity: connections between (D)QBF solving algorithms and

such theories...

See ICLA 2025 paper for more details

Thanks!

[4. Further results]$ [22/22]

>>> Curtain call

Conclusion

* Defined bounded Henkin quantifiers in the language of bounded

arithmetic

* Positive formulas exactly capture NEXP

* Arbitrary formulas not much more expressive: collapses at ∆2 of

the exponential hierarchy

Future work

* Descriptive complexity conjecture: H ⊊ ∆EXP
2 (modulo some

complexity theory assumptions)

* Bounded arithmetic: consider theories with induction on positive

H-formulas. Can we formalise our result in this theory?

* Proof complexity: connections between (D)QBF solving algorithms and

such theories...

See ICLA 2025 paper for more details

Thanks!

[4. Further results]$ [22/22]

	Henkin quantifiers
	Bounded quantifiers and complexity
	Bounded Henkin quantifiers
	Further results

