>>> Bounded Henkin quantifiers and the exponential time hierarchy

Name: Abhishek De (University of Birmingham, UK) Date: April 14, 2025

BCTCS, Glasgow

>>> Plan of talk

Henkin quantifiers

Henkin quantifiers + Bounded quantifiers

Henkin quantifiers + Bounded quantifiers = Bounded Henkin quantifiers

Henkin quantifiers

''Some relative of each villager and some relative of $\ensuremath{\mathsf{each}}$ townsman hate each other.''

 $(V(x_1) \land T(x_2)) \to (R(x_1, y_1) \land R(x_2, y_2) \land H(y_1, y_2))$

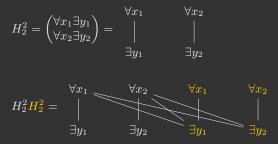
''Some relative of each villager and some relative of each townsman hate each other.'' $% \left({{{\boldsymbol{x}}_{i}}^{\prime }}\right) =\left({{{{\boldsymbol{x}}_{i}}^{\prime }}\right) =\left({{{{\boldsymbol{x}}}^{\prime }}}\right) =\left({{{{\boldsymbol{x}}}^{\prime }}\right) =\left({{{{\boldsymbol{x}}}^{\prime }}}\right) =\left({{{{\boldsymbol{x}}}^{\prime }}\right) =\left({{{{{\boldsymbol{x}}}}^{\prime }}\right) =\left({{$

$$\begin{pmatrix} \forall x_1 \exists y_1 \\ \forall x_2 \exists y_2 \end{pmatrix} (V(x_1) \land T(x_2)) \to (R(x_1, y_1) \land R(x_2, y_2) \land H(y_1, y_2))$$

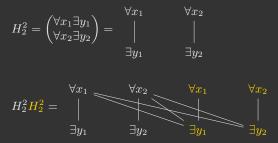
>>> Definition by examples

$$H_2^2 = \begin{pmatrix} \forall x_1 \exists y_1 \\ \forall x_2 \exists y_2 \end{pmatrix} = \begin{vmatrix} \forall x_1 & \forall x_2 \\ \\ \\ \end{vmatrix} \\ \exists y_1 & \exists y_2 \end{vmatrix}$$

>>> Definition by examples



>>> Definition by examples



Henkin quantifier

A triple Q = (A, E, d) such that $d \subseteq A \times E$. A Hekin quantifier is called standard if it can be written like a matrix.

>>> Interpreting Henkin quantifiers

Interpret by Skolemisation:

$\exists f \exists g \forall x_1 \forall x_2 \left(V(x_1) \land T(x_2) \right) \to \left(R(x_1, f(x_1)) \land R(x_2, g(x_2)) \land H(f(x_1), g(x_2)) \right)$

L(H)

Language of first-order logic extended by Henkin quantifiers

- * L(H) cannot be recursively axiomatised (Erhenfeucht)
- * L(H) equivalent to existential second-order logic (Enderton-Walkoe)
- * Over finite structures, ${\cal L}({\cal H})$ can express exactly NP predicates (Blass-Gurevich)

Positive formula

An L(H) formula where Henkin quantifiers occur under an even number of negations.

Proposition

Let ϕ be a positive L(H) formula. There exists an H-formula $Q\psi$ such that (i) Q is standard (ii) ψ is a quantifier-free, and (iii) ϕ and $Q\psi$ are equivalent.

Proposition

Every L(H) formula is equivalent to an L(H) formula of the form $R \neg Q_0 \neg Q_1 \dots \neg Q_n \phi$ where R is either $\neg Q$ or Q, and Q, Q_0, \dots, Q_n are standard Henkin quantifiers.

Bounded Quantifiers and Computational Complexity

Descriptive complexity

- * Fixed vocabulary and class of formulas ${\cal F}$
- * A property P is definable if there is a formula $\phi \in \mathcal{F}$ in this syntax such that the set of finite models satisfying ϕ is exactly the set of models with property P
- * F captures a complexity class C if the properties checkable in C are exactly the ones definable in F
- * Model theoretic approach

Bounded arithmetic

- * Fixed vocabulary, class of formulas \mathcal{F} , and an infinite model $\mathbb N$
- * A predicate $R \subseteq \mathbb{N}^2$ is definable if there is a formula $\phi(x, y) \in \mathcal{F}$ in this syntax such that $R = \{(a, b) \mid \mathbb{N} \models \phi(a, b)\}$
- * \mathcal{F} captures a complexity class \mathcal{C} if $R \in \mathcal{C}$ iff R is definable in \mathcal{F}
- * Proof-theoretic approach: want
 to study theories

>>> Language

Terms

$$t, t' ::= x \in Var \mid 0 \mid S(t) \mid t + t' \mid t \cdot t' \mid |t| \mid t \sharp t' \mid \lfloor t/2 \rfloor$$

where |t| is intended to be interpreted as the number of digits in the binary representation of t and $t \sharp t'$ as $2^{|t||t'|}$.

Formulas

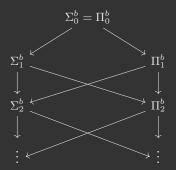
$$\phi, \psi ::= s \leq t \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x \leq s \ \phi \mid \forall x \leq s \ \phi$$

Quantifiers of the form $Qx \le |s| \phi$ are said to be sharply bounded. A formula is sharply bounded if all its quantifiers are sharply bounded.

>>> The Bounded Arithmetic Hierarchy

- * $\Sigma_0^b = \Pi_0^b$ are the set of sharply bounded formulas.
- * $\Sigma_{i+1}^b = \{ \exists x \leq s. \phi \mid \phi \in \Pi_i^b \}$ modulo prenex operations.
- * $\Pi_{i+1}^b = \{ \forall x \leq s. \phi \mid \phi \in \Sigma_i^b \}$ modulo prenex operations.

[Arbitrary sharply bounded quantifiers allowed in the 2nd and 3rd case]



>>> Capturing complexity classes

Proposition

```
Predicate R \subseteq \mathbb{N}^k definable by a \Sigma_0^b formula \implies R \in P.
```

```
Theorem (Kent-Hodgson'82)
Predicate R \subseteq \mathbb{N}^k definable by a \Sigma_1^b formula \iff R \in NP.
```

Corollary

Bounded Arithmetic Hierarchy corresponds to PH.

- * Starting point of uniform proof complexity
- * Consider weak sub-theories of PA in this language
- Characterise complexity classes in the sense that a function is provably total in a theory iff it belongs to a given complexity class.

- * Language with second-order bounded quantification
- * Captures the exponential hierarchy

* In particular,
$$\Sigma_1^{1,b}(\mathbb{N})=NEXP$$

Bounded Henkin Quantifiers

>>> Bounded Henkin quantifiers

Pretty much does what it says on the tin:

 $\begin{pmatrix} \forall x_1 \exists y_1 \\ \forall x_2 \exists y_2 \end{pmatrix}$

>>> Bounded Henkin quantifiers

Pretty much does what it says on the tin:

 $\begin{pmatrix} \forall x_1 \le s_1 \ \exists y_1 \le t_1 \\ \forall x_2 \le s_2 \ \exists y_2 \le t_2 \end{pmatrix}$

H-formulas

Formulas in the language of bounded arithmetic with bounded Henkin quantifiers.

Main result

Predicate $R \in \mathbb{N}^k$ definable by a positive *H*-formula $\iff R \in NEXP$

>>> Proof technique

 $H_p^b := \{R \subseteq \mathbb{N}^k \mid R \text{ definable by a positive } H\text{-formula}\}$

Few points about Skolemisation

* There is polynomial bounded Gödel encoding of pairs:

$$\lceil \langle m,n \rangle \rceil := 2^{\frac{m}{3}} \left\lfloor \frac{m+n}{2} \right\rfloor m + n$$

* Bounded arithmetic can be bootstrapped with pairing function β .

$$eta(i, \ulcorner\langle a_1, \dots, a_k
angle \urcorner) = egin{cases} n & ext{ if } i=0; \ a_i & ext{ if } 1\leq i\leq k \end{cases}$$

 Therefore, Skolem functions can be replaced by polynomially bounded predicates.

[3. Bounded Henkin quantifiers]\$ _

>>> HP sauce

 $NP:=\mbox{ set of languages }L$ such that there exists a polynomial p and a poly time TM M such that

 $x \in L \iff \exists u \leq p(|x|) \ M(x, u) = 1.$

>>> HP sauce

 $NP:=\mbox{ set of languages }L$ such that there exists a polynomial p and a poly time TM M such that

$$x \in L \iff \exists u \leq p(|x|) \ M(x,u) = 1.$$

 $H_2^2P:=$ set of languages L such that there exists polynomials p_1,q_1,p_2,q_2 and a poly time TM M such that

$$x \in L \iff \begin{pmatrix} \forall x_1 \leq p_1(|x|) & \exists y_1 \leq q_1(|x|) \\ \forall x_2 \leq p_2(|x|) & \exists y_2 \leq q_2(|x|) \end{pmatrix} M(x, x_1, y_1, x_2, y_2) = 1.$$

 $HP := \bigcup_Q QP \ [Q \text{ ranging over Henkin quantifiers}]$ Trivially, $HP \subseteq H_p^b$.

[3. Bounded Henkin quantifiers]\$ _

>>> A NEXP-complete problem

DQBF

A formula of the form $Q\psi$ where Q is a Henkin quantifier and ψ is a quantifier-free Boolean formula

Theorem (Peterson-Reif'79) DQBF satisfiability is NEXP-complete.

Clearly, DQBF satisfiability $\in HP$.

Further Results

>>> Generalisation

 $H := \{ R \subseteq \mathbb{N}^k \mid R \text{ definable by } H \text{-formula} \}$

Proposition

 $H \subseteq \Delta_2^{1,b}$

Proof Sketch.

Let R be defined by a H-formula ϕ . Then, $\phi = P \neg Q_1 \dots \neg Q_n \phi$ where P is either $\neg Q$ or Q, and ψ quantifier-free. Induct on n.

- * Base case: previous result
- * Induction case: use an encoding of the axiom of choice and the following identity:

 $\exists f \forall x \forall g \exists y \phi(x, y, f(x), g(y)) \equiv \forall g \exists f \forall x \exists y \phi(x, y, f(x), g(x, f(x), y))$

>>> Construing H as a complexity class

GDQBF

A formula of the form $R \neg Q_0 \dots \neg Q_n \phi$ where R = Q or $R = \neg Q$, Q_0, \dots, Q_n are Henkin quantifiers, and ψ is a quantifier-free Boolean formula.

Theorem

GDQBF satisfiability is H-complete.

>>> Curtain call

Conclusion

- Defined bounded Henkin quantifiers in the language of bounded arithmetic
- * Positive formulas exactly capture NEXP
- * Arbitrary formulas not much more expressive: collapses at Δ_2 of the exponential hierarchy

Future work

- * Descriptive complexity conjecture: $H \subsetneq \Delta_2^{EXP}$ (modulo some complexity theory assumptions)
- * Bounded arithmetic: consider theories with induction on positive *H*-formulas. Can we formalise our result in this theory?
- * Proof complexity: connections between (D)QBF solving algorithms and such theories...

See ICLA 2025 paper for more details

>>> Curtain call

Conclusion

- Defined bounded Henkin quantifiers in the language of bounded arithmetic
- * Positive formulas exactly capture NEXP
- * Arbitrary formulas not much more expressive: collapses at Δ_2 of the exponential hierarchy

Future work

- * Descriptive complexity conjecture: $H \subsetneq \Delta_2^{EXP}$ (modulo some complexity theory assumptions)
- * Bounded arithmetic: consider theories with induction on positive *H*-formulas. Can we formalise our result in this theory?
- * Proof complexity: connections between (D)QBF solving algorithms and such theories...

See ICLA 2025 paper for more details

<u>Thanks!</u>