
The similar connected partition problem
BCTCS 2025

Lewis Dyer

University of Glasgow

Some motivation

Aim to estimate disease risk over
a geographic area - naturally
represented as a graph
But many methods are
computationally intensive - need
to shrink down a graph to group
similar points together, while
respecting the graph structure.

1

SIMILAR-CONNECTED-PARTITION

Input: A graph G = (V, E), a number of parts p ∈ N, a maximum part
width δ ∈ Q, two part size bounds B1,B2 ∈ N and a vertex function
f : V→ Q.

Question: Is it possible to partition V into exactly p parts R1, . . . ,Rp
such that, for each i:

1. Ri induces a connected subgraph of G
2. B1 ≤ |Ri| ≤ B2
3. For all pairs of vertices x, y ∈ Ri, |f(x)− f(y)| ≤ δ

2

A quick example

Take p = 3, δ = 1, B1 = 2 and B2 = 3.

2

3 4

3 2

1

3

A quick example

Take p = 3, δ = 1, B1 = 2 and B2 = 3.

2

3 4

3 2

1

3

Some preliminaries

SIMILAR-CONNECTED-PARTITION is NP-hard, even for planar graphs or
for any fixed p - reduction from EQUITABLE-CONNECTED-PARTITION
which requires balanced part sizes.

When parts have exactly 2 vertices, solvable in polynomial time by
reduction from finding perfect matchings.

We conjecture SIMILAR-CONNECTED-PARTITION is NP-hard when
B1 = B2 = k for any fixed k ≥ 3.

4

Some more preliminaries

When B1 = 1, can relax ”exactly p parts” to ”at most p parts” - we can
”peel off” vertices from bigger parts.

When G is a complete graph, solvable in polynomial time using a
dynamic program (list vertex values in ascending order, and show a
valid partition exists iff a valid partition with contiguous blocks in
this order exists)

5

Maximum weight independent sets on trees

Given a graph G with vertex weights, find an independent set of G
with maximum weight

This is NP-hard in general, but polynomial time solvable on trees

Idea: for each node t in the tree, store the maximum weight
independent set of the subtree rooted at t, which we denote as D[t].

We have that

D[t] = max

w(t) + ∑
t′ a grandchild of t

D[t′],
∑

t′ a child of t

D[t′]



6

A different quick example

5

6

1

4

2

8

1 1 1

7

A different quick example

5

6

1

4

2

8

1 1 1

7

A different quick example

5

6

4

4

2

8

1 1 1

7

A different quick example

5

10

4

4

8

8

1 1 1

7

A different quick example

18

10

4

4

8

8

1 1 1

7

Dynamic programming with trees

This was easy on trees because subtrees rooted at the children of t
only communicate with each other through t (or rather, each vertex is
a separator)

For more general graphs, can we connect bags of vertices in a
tree-like structure, where each bag is a separator on this tree, and
bounding the size of these bags?

8

Tree decompositions

Given a graph G, define a tree T where each vertex t has a bag, Xt.
This is a tree decomposition of G if:

1. Every vertex of V is in at least one bag.
2. The set of nodes with v in their bag form a connected subtree in
T for every vertex v.

3. Every edge (v,w) has a bag containing both v and w.

The treewidth of a graph G is the smallest maximum bag size over all
tree decompositions of G, minus one. Trees and forests have
treewidth 1.

Computing treewidth is NP-hard, but plenty of decent approximation
algorithms and heuristics are available

9

Tree decomposition example

0 1

2

3 4

5

{2, 3}

{2, 4, 5}

{0, 1, 2}

10

Nice tree decompositions

Given a tree decomposition, can construct a nice tree decomposition
of the same width.

In a nice tree decomposition, the root bag is empty and each node
fits in one of four cases:

• Leaf nodes have no children and an empty bag.
• Forget nodes have one child and their bag is obtained by
”forgetting” a vertex from the child bag.

• Introduce nodes have one child and their bag is obtained by
”introducing” a vertex from the child bag.

• Join nodes have two children, each with the same bag.

For a dynamic program based on tree decompositions, just need to
consider these 4 cases.

11

Example: forget case

Two main possibilities here, depending on whether there’s other
vertices in the bag in the same part.

If not, we can never add anything to this part again - so need to
check it has at least B1 vertices

If so, we might still add things to the part, but we need to make sure
our forgotten vertex is connected to something else in the current
bag.

12

Treewidth for SCP

Store a table of DP entries of the form

D[t,p′,Y, (ℓy)y∈Y , ((µy,My)y∈Y , (∼y)y∈Y]

Key idea: Y partitions the current bag, describing how parts of the
partition of Vt intersect the current bag. ℓy stores the number of
vertices in this part, µy and My store the minimum/maximum vertex
values in the part, and ∼y is an equivalence relation storing which
vertices in y are connected within this part. p′ counts the number of
parts of the partition of Vt which do not intersect the current bag.

Then a given DP entry is true if there’s a valid partition in the
subgraph induced by vertices in Vt satisfying these properties.

13

Treewidth result

For each case in the nice tree decomposition, prove correctness and
compute the running time of checking all states for each node.

From this, you get that SIMILAR CONNECTED PARTITION is solvable in
XP-time parameterised by treewidth, with a fairly naive analysis
based on checking all pairs of states from parent and child nodes
and checking if they’re compatible.

Definitely room to refine the running time here! Mainly by bounding
how many states you need to consider for a node.

14

Future work

Implement this and assess its viability on real data

Extend to counting/sampling/enumeration

Consider removing limits on part size

Approximability for planar graphs

15

