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How We Recognize Languages

Machines Logic Algebra

Star-Free Reg. Counter-free DFAs FO(<) Aperiodic Fin. Mon.

Regular Lang. DFAs, NFAs MSO(<) Finite Monoids

TC0 … Maj(+,×)
cf. Krebs et al. 

(~2007)

NC1 ALogTime
cf. Barrington et al. 

(1990)
???

P poly-time DTMs FO(<,LFP) ???

NP poly-time NTMs ESO ???

PH p-time c-alt ATMs SO ???
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Recognition with Logic

● 𝐿 ⊆ Σ∗, 𝑤 = 𝑎𝑏𝑎𝑎 ∈ Σ∗

● 𝑤 = 1, 2, 3, 4 , <, 𝑃𝑎, 𝑃𝑏 where 𝑃𝑎 = 1, 3, 4 , 𝑃𝑏 = 2

● A sentence 𝜑 using predicates 𝑃𝑎, 𝑃𝑏 and the numerical relation < recognizes 

𝐿 iff for every u ∈ Σ∗, u ⊨ 𝜑 iff u ∈ 𝐿

● For example, 𝑤 ⊨ ∃𝑥∀𝑦(𝑦 ≥ 𝑥 → 𝑃𝑎𝑦) so 𝑤 is in the language of all strings 

ending with ‘𝑎’s
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NC1 via Logic

● Introduce 𝐹𝑂(+,×) with “monoid multiplication quantifiers”:

● Monoid, 𝑀, ⋅ :  a set 𝑀 and a binary operation ⋅ ∶ 𝑀 ×𝑀 → 𝑀 such that ⋅ is 

associative and has an identity

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝑚

:

Γ𝛾
𝑀,𝑚𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

where 𝑀 = 𝑀,⋅ is a monoid, 𝑚 ∈ 𝑀, and 𝛾: {0,1}𝑘 → 𝑀
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NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For a word 𝑤 = 𝑤1…𝑤𝑛,              

𝜑𝑖
𝑤 𝑎1, … , 𝑎𝑙 = 1, s.t. 𝑎𝑗 ∈ 1,… , 𝑛 ,

iff 𝑤 ⊨ 𝜑𝑖(𝑥1, … , 𝑥𝑙) when 𝑥𝑗 is assigned 𝑎𝑗,

and 0 otherwise
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NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
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NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For example, if 𝑙 = 1 and 𝑘 = 1
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NC1 via Logic

● 𝑈1 Multiplication Quantifier, Γ𝛾
𝑈1,{0}:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑈1,{0}𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ {0}
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NC1 via Logic

● 𝑈1 Multiplication Quantifier, Γ𝛾
𝑈1,{0}:

For example, if 𝑙 = 1 and 𝑘 = 1
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Say 𝑈1, ⋅ where 𝑈1 = 0,1
and

0 ⋅ 0 = 0 0 ⋅ 1 = 0
1 ⋅ 0 = 0 1 ⋅ 1 = 1

𝛾 ∶ {0,1} → 𝑈1
s.t. 𝛾 0 = 1 and 𝛾 1 = 0

Same as “∃”!



NC1 via Logic

● NC1 is equal to the languages recognized by FO(+,×) with multiplication 

quantifiers for finite monoids

○ Or simply multiplication quantifiers for a finite non-solvable group, e.g., 𝑆5

○ Result of Barrington, Immerman, and Straubing (1990)

● Their proof requires that we have multiplication quantifiers binding multiple 

variables

● Can this be done with only unary quantifiers? (i.e., 𝑙 = 1)

○ First asked in Lautemann et al. (2001)
20
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NC1 via Logic

● NC1 is equal to the languages recognized by FO(+,×) with multiplication 

quantifiers for finite monoids

○ Or simply multiplication quantifiers for a finite non-solvable group, e.g., 𝑆5

○ Result of Barrington, Immerman, and Straubing (1990)

● Their proof requires that we have multiplication quantifiers binding multiple 

variables

● Can this be done with only unary quantifiers? (i.e., 𝑙 = 1) Yes!

○ First asked in Lautemann et al. (2001)
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Recognition via Typed Monoids

● A typed monoid is a tuple (𝑀, 𝐺, 𝐸) where

○ 𝑀 is a monoid

○ 𝐺 ⊆ ℘(𝑀) is finite and closed under union, intersection, and complementation

○ 𝐸 ⊆ 𝑀 and is finite 

● Say we have a monoid 𝑇 = (𝑀, 𝐺, 𝐸) and a language 𝐿 ⊆ Σ∗.

● We say that 𝑇 recognizes 𝐿 if there exists a homomorphism ℎ: Σ∗ → 𝑀, where 

ℎ Σ ⊆ 𝐸, and an element 𝐴 ∈ 𝐺 such that 𝐿 = ℎ−1(𝐴), 

○ (N.B., ℎ−1 𝐴 = {𝑤 ∈ Σ∗ ∣ ℎ 𝑤 ∈ 𝐴})
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Recognition via Typed Monoids

● Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids

● Essentially:

○ Given the quantifiers of a “nice” logic characterizing TC0

○ Construct a class of typed monoids by taking a base set of typed monoids relating to these 

quantifiers and closing it under certain operations
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Recognition via Typed Monoids

● Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids

● Essentially:

○ Given the quantifiers of a “nice” logic characterizing TC0

○ Construct a class of typed monoids by taking a base set of typed monoids relating to these 

quantifiers and closing it under certain operations

● The catch: the “nice” logic has to contain only unary first-order quantifiers*

● Our logical characterization of NC1 contains non-unary quantifiers
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Simplifying NC1’s Logic

● Consider 𝑙 = 2 and 𝑤 = 𝑤1…𝑤𝑛

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦
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● Let 𝑚𝑖,𝑗 = 𝛾 𝜑1
𝑤 𝑖, 𝑗 ∘ ⋯ ∘ 𝜑𝑘

𝑤 𝑖, 𝑗
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Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝑚𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,𝑚𝑖𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝑚𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦
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Simplifying NC1’s Logic

● Therefore… finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply 
unary ones

● Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication 
quantifiers for 𝑆5. Call these unary Γ𝑆5 quantifiers.

● To apply the translation theorem of Krebs et al., we have one more small step:

○ Introduce a unary quantifier 𝑆𝑞 where 𝑤 ⊨ 𝑆𝑞 𝑥 𝜑(𝑥) iff
{𝑎 ∈ 𝑤 𝑤, 𝑥 ↦ 𝑎 ⊨ 𝜑 𝑥 } = 𝑞2 for some 𝑞 ∈ ℕ

○ Introduce a unary majority quantifier 𝑀𝑎𝑗

○ Replace +,× with just <

○ These two steps together does not change the expressive power
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unary ones

● Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication 
quantifiers for 𝑆5. Call these unary Γ𝑆5 quantifiers.

● To apply the translation theorem of Krebs et al., we have one more small step:
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A Small Detour: One Step Further

● We can, moreover, improve this to quantifiers which aren’t lexicographic!
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A Small Detour: One Step Further

● We can, moreover, improve this to quantifiers which aren’t lexicographic!

● Using the work of Bojanczyk et al. (2019, “String-to-string interpretations…”), 

every FO[<]-definable linear order has a lexicographic nature to it

● Once extracted, we can repeat the earlier techniques to decompose any finite 

multiplication quantifier using any FO[<]-definable linear order into a sentence 

using only unary finite multiplication quantifiers

42



NC1 via Algebra

● Step 1: We have our logical characterization: FO(<) with 𝑆𝑞, 𝑀𝑎𝑗, and unary 

Γ𝑆5 quantifiers. 

○ N.B., only unary quantifiers, and < is the only numerical predicate.

● Step 2: Find a typed monoid capturing the semantics of each quantifier
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𝑆𝑞 (ℕ, {∅, 𝕊, ℕ − 𝕊,ℕ}, {0,1})
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NC1 via Algebra

● Step 3: Closing

𝑈1, ℘ 𝑈1 , 𝑈1 , ℤ, ∅, ℤ+, ℤ − ℤ+, ℤ , ±1 , ℕ, ∅, 𝕊, ℕ − 𝕊, ℕ , 0,1 , 𝑆5, ℘ 𝑆5 , 𝑆5

under the “ordered strong block product”. Call this class of typed monoids N.
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NC1 via Algebra

● Step 3: Closing

𝑈1, ℘ 𝑈1 , 𝑈1 , ℤ, ∅, ℤ+, ℤ − ℤ+, ℤ , ±1 , ℕ, ∅, 𝕊, ℕ − 𝕊, ℕ , 0,1 , 𝑆5, ℘ 𝑆5 , 𝑆5

under the “ordered strong block product”. Call this class of typed monoids N.

Finally, we get a language 𝑳 is in NC1 iff 𝑳 is recognized by a typed monoid 

in N.
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Conclusion

In progress:

● Constructing algebraic characterizations of 

classes beyond NC1
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