An Algebraic Characterization of NC1

Aidan Evans

Anuj Dawar

University of Cambridge BCTCS, 14 April 2025

Outline

- 1. How We Recognize Languages
- 2. Recognition with Logic
- 3. NC1 via Logic
- 4. Recognition with Typed Monoids
- 5. Simplifying NC1's Logic
 - Going A Step Further
- 6. NC1 via Algebra
- 7. Conclusion

How We Recognize Languages

	Machines	Logic	Algebra
Star-Free Reg.	Counter-free DFAs	FO(<)	Aperiodic Fin. Mon.
Regular Lang.	DFAs, NFAs	MSO(<)	Finite Monoids
TC0		Maj(+,×)	cf. Krebs et al. (~2007)
NC1	ALogTime	cf. Barrington et al. (1990)	???
Р	poly-time DTMs	FO(<,LFP)	???
NP	poly-time NTMs	ESO	???
PH	p-time c-alt ATMs	SO	???

How We Recognize Languages

	Machines	Logic	Algebra
Star-Free Reg.	Counter-free DFAs	FO(<)	Aperiodic Fin. Mon.
Regular Lang.	DFAs, NFAs	MSO(<)	Finite Monoids
TC0		Maj(+,×)	cf. Krebs et al. (~2007)
NC1	ALogTime	cf. Barrington et al. (1990)	???
Р	poly-time DTMs	FO(<,LFP)	???
NP	poly-time NTMs	ESO	???
PH	p-time c-alt ATMs	SO	???

Proven to exist!

How We Recognize Languages

	Machines	Logic	Algebra
Star-Free Reg.	Counter-free DFAs	FO(<)	Aperiodic Fin. Mon.
Regular Lang.	DFAs, NFAs	MSO(<)	Finite Monoids
TC0		Maj(+,×)	cf. Krebs et al. (~2007)
NC1	ALogTime	cf. Barrington et al. (1990)	This presentation!
Р	poly-time DTMs	FO(<,LFP)	???
NP	poly-time NTMs	ESO	???
PH	p-time c-alt ATMs	SO	???

Proven to exist!

Recognition with Logic

- $L \subseteq \Sigma^*$, $w = abaa \in \Sigma^*$
- $w = (\{1, 2, 3, 4\}, <, P_a, P_b)$ where $P_a = \{1, 3, 4\}, P_b = \{2\}$

Recognition with Logic

- $L \subseteq \Sigma^*$, $w = abaa \in \Sigma^*$
- $w = (\{1, 2, 3, 4\}, <, P_a, P_b)$ where $P_a = \{1, 3, 4\}, P_b = \{2\}$
- A sentence φ using predicates P_a , P_b and the numerical relation < recognizes L iff for every $u \in \Sigma^*$, $u \models \varphi$ iff $u \in L$

Recognition with Logic

- $L \subseteq \Sigma^*$, $w = abaa \in \Sigma^*$
- $w = (\{1, 2, 3, 4\}, <, P_a, P_b)$ where $P_a = \{1, 3, 4\}, P_b = \{2\}$
- A sentence φ using predicates P_a , P_b and the numerical relation < recognizes L iff for every $u \in \Sigma^*$, $u \models \varphi$ iff $u \in L$
- For example, $w \models \exists x \forall y (y \ge x \rightarrow P_a y)$ so w is in the language of all strings ending with 'a's

• Introduce $FO(+,\times)$ with "monoid multiplication quantifiers":

- Introduce $FO(+,\times)$ with "monoid multiplication quantifiers":
- Monoid, (M, \cdot) : a set M and a binary operation $\cdot : M \times M \to M$ such that \cdot is associative and has an identity

- Introduce $FO(+,\times)$ with "monoid multiplication quantifiers":
- Monoid, (M, \cdot) : a set M and a binary operation $\cdot : M \times M \to M$ such that \cdot is associative and has an identity
- Monoid Multiplication Quantifier, $\Gamma_{\gamma}^{M,B}$:

$$\Gamma_{\gamma}^{M,B} x_1 \dots x_l (\varphi_1(x_1, \dots, x_l), \dots, \varphi_k(x_1, \dots, x_l))$$

where $M = (M, \cdot)$ is a monoid, $B \subseteq M$, and $\gamma : \{0,1\}^k \to M$

• Monoid Multiplication Quantifier, $\Gamma_{\gamma}^{M,B}$:

```
For a word w=w_1\dots w_n, \varphi_i^w[a_1,\dots,a_l]=1, \text{ s.t. } a_j\in\{1,\dots,n\}, iff w\models\varphi_i(x_1,\dots,x_l) when x_j is assigned a_j, and 0 otherwise
```

• Monoid Multiplication Quantifier, $\Gamma_{\gamma}^{M,B}$:

Then, for
$$w=w_1\dots w_n$$
,
$$w\models \Gamma_{\gamma}^{M,B}x_1\dots x_l\big(\varphi_1(x_1,\dots,x_l),\dots,\varphi_k(x_1,\dots,x_l)\big)$$

• Monoid Multiplication Quantifier, $\Gamma_{\nu}^{M,B}$:

Then, for
$$w=w_1\dots w_n$$
,
$$w\models \Gamma_\gamma^{M,B}x_1\dots x_l\Big(\varphi_1(x_1,\dots,x_l),\dots,\varphi_k(x_1,\dots,x_l)\Big)$$
 iff

$$\prod_{\substack{(a_1,\ldots,a_l)\in[n]^l}}^{\leq_{Lex}} \gamma(\varphi_1^w[a_1,\ldots,a_l]\circ\cdots\circ\varphi_k^w[a_1,\ldots,a_l])\in B$$

• Monoid Multiplication Quantifier, $\Gamma_{\gamma}^{M,B}$:

For example, if
$$l=1$$
 and $k=1$
$$w \vDash \Gamma_{\gamma}^{M,B} x \; \varphi_1(x)$$
 iff
$$\gamma(\varphi_1^w[1]) \cdot ... \cdot \gamma(\varphi_1^w[n]) \in B$$

• Monoid Multiplication Quantifier, $\Gamma_{\gamma}^{M,B}$:

For example, if
$$l = 1$$
 and $k = 1$

$$w \vDash \Gamma_{\gamma}^{M,B} x \, \varphi_1(x)$$

iff

$$\gamma(\varphi_1^w[1]) \cdot \dots \cdot \gamma(\varphi_1^w[n]) \in B$$

```
Say (U_1, \cdot) where U_1=\{0,1\} and 0\cdot 0=0 \qquad 0\cdot 1=0 \\ 1\cdot 0=0 \qquad 1\cdot 1=1
```

• Monoid Multiplication Quantifier, $\Gamma_{\nu}^{M,B}$:

For example, if
$$l=1$$
 and $k=1$
$$w \vDash \Gamma_{\gamma}^{M,B} x \; \varphi_1(x)$$
 iff
$$\gamma(\varphi_1^w[1]) \cdot ... \cdot \gamma(\varphi_1^w[n]) \in B$$

```
Say (U_1, \cdot) where U_1 = \{0,1\} and 0 \cdot 0 = 0 0 \cdot 1 = 0 1 \cdot 0 = 0 1 \cdot 1 = 1 \gamma: \{0,1\} \rightarrow U_1 s.t. \gamma(0) = 1 and \gamma(1) = 0
```

• \emph{U}_1 Multiplication Quantifier, $\Gamma_\gamma^{\emph{U}_1,\{0\}}$: For example, if l=1 and k=1 $w \vDash \Gamma_\gamma^{\emph{U}_1,\{0\}} x \ \varphi_1(x)$ iff

 $\gamma(\varphi_1^w[1]) \cdot ... \cdot \gamma(\varphi_1^w[n]) \in \{0\}$

```
Say (U_1, \cdot) where U_1 = \{0,1\} and 0 \cdot 0 = 0 0 \cdot 1 = 0 1 \cdot 0 = 0 1 \cdot 1 = 1 \gamma: \{0,1\} \rightarrow U_1 s.t. \gamma(0) = 1 and \gamma(1) = 0
```

• U_1 Multiplication Quantifier, $\Gamma_{\nu}^{U_1,\{0\}}$:

For example, if
$$l = 1$$
 and $k = 1$

$$w \vDash \Gamma_{\gamma}^{U_1,\{0\}} x \, \varphi_1(x)$$

iff

$$\gamma(\varphi_1^w[1]) \cdot \dots \cdot \gamma(\varphi_1^w[n]) \in \{0\}$$

Same as "∃"!

Say
$$(U_1, \cdot)$$
 where $U_1 = \{0,1\}$
and $0 \cdot 0 = 0$ $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$ $1 \cdot 1 = 1$
 $\gamma : \{0,1\} \rightarrow U_1$
s.t. $\gamma(0) = 1$ and $\gamma(1) = 0$

- NC1 is equal to the languages recognized by FO(+,×) with multiplication quantifiers for finite monoids
 - \circ Or simply multiplication quantifiers for a finite non-solvable group, e.g., S_5
 - Result of Barrington, Immerman, and Straubing (1990)

- NC1 is equal to the languages recognized by FO(+,×) with multiplication quantifiers for finite monoids
 - \circ Or simply multiplication quantifiers for a finite non-solvable group, e.g., S_5
 - Result of Barrington, Immerman, and Straubing (1990)

- Their proof requires that we have multiplication quantifiers binding multiple variables
- Can this be done with only unary quantifiers? (i.e., l = 1)
 - First asked in Lautemann et al. (2001)

- NC1 is equal to the languages recognized by FO(+,×) with multiplication quantifiers for finite monoids
 - \circ Or simply multiplication quantifiers for a finite non-solvable group, e.g., S_5
 - Result of Barrington, Immerman, and Straubing (1990)

- Their proof requires that we have multiplication quantifiers binding multiple variables
- Can this be done with only unary quantifiers? (i.e., l = 1) Yes!
 - First asked in Lautemann et al. (2001)

- A *typed monoid* is a tuple (M, G, E) where
 - M is a monoid
 - \circ $G \subseteq \wp(M)$ is finite and closed under union, intersection, and complementation
 - \circ $E \subseteq M$ and is finite

- A *typed monoid* is a tuple (M, G, E) where
 - o M is a monoid
 - $G \subseteq \wp(M)$ is finite and closed under union, intersection, and complementation
 - \circ $E \subseteq M$ and is finite
- Say we have a typed monoid T = (M, G, E) and a language $L \subseteq \Sigma^*$.

- A *typed monoid* is a tuple (M, G, E) where
 - M is a monoid
 - $G \subseteq \wp(M)$ is finite and closed under union, intersection, and complementation
 - \circ $E \subseteq M$ and is finite
- Say we have a typed monoid T = (M, G, E) and a language $L \subseteq \Sigma^*$.
- We say that T recognizes L if there exists a homomorphism $h: \Sigma^* \to M$, where $h(\Sigma) \subseteq E$, and an element $A \in G$ such that $L = h^{-1}(A)$,
 - $(N.B., h^{-1}(A) = \{ w \in \Sigma^* \mid h(w) \in A \})$

- Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids
- Essentially:
 - Given the quantifiers of a "nice" logic characterizing TC0
 - Construct a class of typed monoids by taking a base set of typed monoids relating to these quantifiers and closing it under certain operations

- Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids
- Essentially:
 - Given the quantifiers of a "nice" logic characterizing TC0
 - Construct a class of typed monoids by taking a base set of typed monoids relating to these quantifiers and closing it under certain operations
- The catch: the "nice" logic has to contain only unary first-order quantifiers*
- Our logical characterization of NC1 contains non-unary quantifiers

• Consider l = 2 and $w = w_1 \dots w_n$

$$w \vDash \Gamma_{\gamma}^{M,B} xy \big(\varphi_1(x,y), \dots, \varphi_k(x,y) \big)$$

• Consider l = 2 and $w = w_1 \dots w_n$

$$w \models \Gamma_{\gamma}^{M,B} xy (\varphi_1(x, y), ..., \varphi_k(x, y))$$

• Let $m_{i,j} = \gamma(\varphi_1^w[i,j] \circ \cdots \circ \varphi_k^w[i,j])$

• Consider l = 2 and $w = w_1 \dots w_n$

$$w \models \Gamma_{\gamma}^{M,B} xy (\varphi_1(x, y), ..., \varphi_k(x, y))$$

• Let $m_{i,j} = \gamma(\varphi_1^w[i,j] \circ \cdots \circ \varphi_k^w[i,j])$

$$m_{1,1} \dots m_{1,n} m_{2,1} \dots m_{2,n} \dots m_{n,1} \dots m_{n,n} \in B$$

• Consider l = 2 and $w = w_1 \dots w_n$

$$w \vDash \Gamma_{\gamma}^{M,B} xy (\varphi_1(x,y), ..., \varphi_k(x,y))$$

• Let $m_{i,j} = \gamma(\varphi_1^w[i,j] \circ \cdots \circ \varphi_k^w[i,j])$

$$m_{1,1} \dots m_{1,n} m_{2,1} \dots m_{2,n} \dots m_{n,1} \dots m_{n,n} \in B$$
 $b_1 \qquad b_2 \qquad \dots \qquad b_n$

$$m = b_1 \dots b_n$$

$$m = b_1 \dots b_n$$

Say
$$M = \{m_1, ..., m_c\}$$

$$m = b_1 \dots b_n$$

Say
$$M = \{m_1, ..., m_c\}$$

$$\Phi = \Gamma_{\sigma}^{M,B} x (\psi_1(x), ..., \psi_c(x))$$

$$m=b_1\dots b_n$$
 Say $M=\{m_1,\dots,m_c\}$
$$\Phi=\Gamma_\sigma^{M,B}x\big(\psi_1(x),\dots,\psi_c(x)\big)$$

$$\psi_i(x)=\Gamma_\sigma^{M,\{m_i\}}y(\lambda_1(x,y),\dots,\lambda_c(x,y))$$

$$m = b_1 \dots b_n$$

Say $M = \{m_1, ..., m_c \}$

$$\Phi = \Gamma_{\sigma}^{M,B} x (\psi_1(x), ..., \psi_c(x))$$

$$\psi_i(x) = \Gamma_{\sigma}^{M,\{m_i\}} y(\lambda_1(x, y), \dots, \lambda_c(x, y))$$

All together,

$$w \models \Phi \text{ iff } w \models \Gamma_{\gamma}^{M,B} xy (\varphi_1(x,y), ..., \varphi_k(x,y))$$

Simplifying NC1's Logic

 Therefore... finite non-unary multiplication quantifiers can be defined ("axiomatized") using simply unary ones

Simplifying NC1's Logic

- Therefore... finite non-unary multiplication quantifiers can be defined ("axiomatized") using simply unary ones
- Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication quantifiers for S_5 . Call these unary Γ^{S_5} quantifiers.

Simplifying NC1's Logic

- Therefore... finite non-unary multiplication quantifiers can be defined ("axiomatized") using simply unary ones
- Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication quantifiers for S_5 . Call these unary Γ^{S_5} quantifiers.

- To apply the translation theorem of Krebs et al., we have one more small step:
 - Introduce a unary quantifier Sq where $w \models Sq \ x \ \varphi(x)$ iff $|\{a \in [|w|] \mid w, x \mapsto a \models \varphi(x)\}| = q^2$ for some $q \in \mathbb{N}$
 - Introduce a unary majority quantifier Maj
 - Replace +,× with just <
 - These steps together do not change the expressive power

A Small Detour: One Step Further

• We can, moreover, improve this to quantifiers which aren't lexicographic!

A Small Detour: One Step Further

- We can, moreover, improve this to quantifiers which aren't lexicographic!
- Using the work of Bojanczyk et al. (2019, "String-to-string interpretations..."),
 every FO[<]-definable linear order has a lexicographic nature to it

A Small Detour: One Step Further

- We can, moreover, improve this to quantifiers which aren't lexicographic!
- Using the work of Bojanczyk et al. (2019, "String-to-string interpretations..."),
 every FO[<]-definable linear order has a lexicographic nature to it
- Once extracted, we can repeat the earlier techniques to decompose any finite multiplication quantifier using any FO[<]-definable linear order into a sentence using only unary finite multiplication quantifiers

- Step 1: We have our logical characterization: FO(<) with Sq, Maj, and unary Γ^{S_5} quantifiers.
 - N.B., only unary quantifiers, and < is the only numerical predicate.

- Step 1: We have our logical characterization: FO(<) with Sq, Maj, and unary Γ^{S_5} quantifiers.
 - N.B., only unary quantifiers, and < is the only numerical predicate.
- Step 2: Find a typed monoid capturing the semantics of each quantifier

∀ and ∃	$(U_1, \wp(U_1), U_1)$
Мај	$(\mathbb{Z}, \{\emptyset, \mathbb{Z}^+, \mathbb{Z} - \mathbb{Z}^+, \mathbb{Z}\}, \pm 1)$
Sq	$(\mathbb{N}, \{\emptyset, \mathbb{S}, \mathbb{N} - \mathbb{S}, \mathbb{N}\}, \{0,1\})$
All unary Γ ^{S₅}	$(S_5, \wp(S_5), S_5)$

Step 3: Closing

$$\{(U_1, \wp(U_1), U_1), (\mathbb{Z}, \{\emptyset, \mathbb{Z}^+, \mathbb{Z} - \mathbb{Z}^+, \mathbb{Z}\}, \pm 1), (\mathbb{N}, \{\emptyset, \mathbb{S}, \mathbb{N} - \mathbb{S}, \mathbb{N}\}, \{0, 1\}), (S_5, \wp(S_5), S_5)\}$$

under the "ordered strong block product". Call this class of typed monoids N.

Step 3: Closing

$$\{(U_1, \wp(U_1), U_1), (\mathbb{Z}, \{\emptyset, \mathbb{Z}^+, \mathbb{Z} - \mathbb{Z}^+, \mathbb{Z}\}, \pm 1), (\mathbb{N}, \{\emptyset, \mathbb{S}, \mathbb{N} - \mathbb{S}, \mathbb{N}\}, \{0,1\}), (S_5, \wp(S_5), S_5)\}$$

under the "ordered strong block product". Call this class of typed monoids N.

Finally, we get a language L is in NC1 iff L is recognized by a typed monoid in N.

Conclusion

In progress:

 Constructing algebraic characterizations of classes beyond NC1

Conclusion

In progress:

- Constructing algebraic characterizations of classes beyond NC1
- Exploring implications of quantifier definability with second-order quantifiers

Conclusion

In progress:

- Constructing algebraic characterizations of classes beyond NC1
- Exploring implications of quantifier definability with second-order quantifiers

Email: ate26@cam.ac.uk

Outline:

- 1. How We Recognize Languages
- 2. Recognition with Logic
- 3. NC1 via Logic
- 4. Recognition with Typed Monoids
- 5. Simplifying NC1's Logic
- 6. NC1 via Algebra
- 7. Conclusion