An Algebraic Characterization of NC1

Aidan Evans
Anuj Dawar

University of Cambridge
BCTCS, 14 April 2025

Outline

a bk b

o

How We Recognize Languages
Recognition with Logic
NC1 via Logic
Recognition with Typed Monoids
Simplifying NC1’s Logic
O Going A Step Further
NC1 via Algebra
Conclusion

How We Recognize Languages

Star-Free Reg.

Regular Lang.

TCO

NC1

P
NP

PH

Machines Logic Algebra
Counter-free DFAs FO(<) Aperiodic Fin. Mon.
DFAs, NFAs MSO(<) Finite Monoids

, cf. Krebs et al.
Maj(+) (~2007)
: cf. Barrington et al. 95
AlLogTime (1990) 2?7
poly-time DTMs FO(<,LFP) ??7?
poly-time NTMs ESO ??7?
p-time c-alt ATMs SO 2?7

How We Recognize Languages

Star-Free Reg.

Regular Lang.

TCO

NC1

P
NP

PH

Machines Logic Algebra
Counter-free DFAs FO(<) Aperiodic Fin. Mon.
DFAs, NFAs MSO(<) Finite Monoids

, cf. Krebs et al.
Maj(+) (~2007)
: cf. Barrington et al. 95
AlLogTime (1990) 2?7
poly-time DTMs FO(<,LFP) ??7?
poly-time NTMs ESO ??7?
p-time c-alt ATMs SO 2?7

Proven
to exist!

How We Recognize Languages

Star-Free Reg.

Regular Lang.

TCO

NC1

P
NP

PH

Machines Logic Algebra
Counter-free DFAs FO(<) Aperiodic Fin. Mon.
DFAs, NFAs MSO(<) Finite Monoids

: cf. Krebs et al.
Maj(+) (~2007)
: cf. Barrington et al. : -
ALogTime (1990) This presentation!
poly-time DTMs FO(<,LFP) ??7?
poly-time NTMs ESO ??7?
p-time c-alt ATMs SO 2?7

Proven
to exist!

Recognition with Logic

e LCX w=abaa€X*
e w=({1,23,4},< P,P,) where P, ={1,3,4}, P, = {2}

Recognition with Logic

e LCX w=abaa€X*
e w=({1,23,4},< P,P,) where P, ={1,3,4}, P, = {2}

e A sentence ¢ using predicates P,, P, and the numerical relation < recognizes
Liffforeveryu e, ukEg@iffuel

Recognition with Logic

e LCX w=abaa€X*
e w=({1,23,4},< P,P,) where P, ={1,3,4}, P, = {2}

e A sentence ¢ using predicates P,, P, and the numerical relation < recognizes
Liffforeveryu e, ukEg@iffuel

e For example, w E IxVy(y = x = P,y) so w is in the language of all strings
ending with ‘a’s

NC1 via Logic

e Introduce FO(+,%x) with “monoid multiplication quantifiers”:

NC1 via Logic

e Introduce FO(+,%x) with “monoid multiplication quantifiers”:

e Monoid, (M, -): aset M and a binary operation - : M Xx M - M such that - is
associative and has an identity

10

NC1 via Logic

e Introduce FO(+,%x) with “monoid multiplication quantifiers”:

e Monoid, (M, -): aset M and a binary operation - : M Xx M - M such that - is
associative and has an identity

e Monoid Multiplication Quantifier, T,"*:
[

M,B
v Xq X1 (0101, oo, X, o, (x4, oo, X1))

where M = (M,-) is amonoid, B € M, and y: {0,1}* - M

11

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":

Foraword w = wy ...w,,,
¢'lay, ...,aq;] =1,s.t.a; €{1,...,n},
iff w = @;(xq,...,x;) when x; is assigned a;,
and 0 otherwise

12

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":

Then, forw = w; ...wy,,

wE F)I/W'Bx1 ...xl(<p1(x1, s X)), e, P (X1, ...,xl))

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":

Then, forw = w; .

M,B
w E Fy

<L ex

(aq,...a;)€[n]

. Wy,

X1 '"xl((pl(xli ""xl); ey <Pk(x1» ""xl))
Iff

w

V((va[al; ey al] 00y [al; sy al]) €EB

14

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":
For example,ifl=1and k =1
wE F;VI'Bx @1 (x)
Iff

y(oV[1D) - ...-y(9YIn]) € B

15

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":

For example,ifl=1and k =1

wE F)I,W’Bx @1 (x)

Iff

y(oV[1D) - ...-y(9YIn]) € B

16

NC1 via Logic

e Monoid Multiplication Quantifier, T,"":

For example,ifl=1and k =1

wE F)I,W’Bx @1 (x)

Iff

y(oV[1D) - ...-y(9YIn]) € B

Y {0'1} - Ul
s.t.y(0) =1andy(1) =0

17

NC1 via Logic

e (J; Multiplication Quantifier, F}fjl’{o}:
For example,ifl=1and k =1
wE F]fll’{o}x @1 (x)
iff

y(@V[1]) - ...- y(@Y'[n]) € {0}

y: {01} > Uy
s.t.y(0) =1andy(1) =0

18

NC1 via Logic

e (J; Multiplication Quantifier,

U1,(0},
L,

For example,ifl=1and k =1

Same as “3’!

wE F]fll’{o}x @1 (x)
iff

y(@V[1]) - ...- y(@Y'[n]) € {0}

y: {01} > Uy
s.t.y(0) =1andy(1) =0

19

NC1 via Logic

e NC1 is equal to the languages recognized by FO(+,x) with multiplication
qguantifiers for finite monoids

o Or simply multiplication quantifiers for a finite non-solvable group, e.g., Ss

o Result of Barrington, Immerman, and Straubing (1990)

20

NC1 via Logic

e NC1 is equal to the languages recognized by FO(+,x) with multiplication
qguantifiers for finite monoids

o Or simply multiplication quantifiers for a finite non-solvable group, e.g., Ss

o Result of Barrington, Immerman, and Straubing (1990)

e Their proof requires that we have multiplication quantifiers binding multiple
variables

e Can this be done with only unary quantifiers? (i.e., [= 1)

o First asked in Lautemann et al. (2001)

21

NC1 via Logic

e NC1 is equal to the languages recognized by FO(+,x) with multiplication
qguantifiers for finite monoids

o Or simply multiplication quantifiers for a finite non-solvable group, e.g., Ss

o Result of Barrington, Immerman, and Straubing (1990)

e Their proof requires that we have multiplication quantifiers binding multiple
variables

e Can this be done with only unary quantifiers? (i.e., [= 1) Yes!

o First asked in Lautemann et al. (2001)
22

Recognition via Typed Monoids

e A typed monoid is a tuple (M, G, E) where
o M is a monoid
o G < (M) is finite and closed under union, intersection, and complementation

o E € M and is finite

23

Recognition via Typed Monoids

e A typed monoid is a tuple (M, G, E) where
o M is a monoid
o G < (M) is finite and closed under union, intersection, and complementation

o E € M and is finite

e Say we have a typed monoid T = (M, G,E) and a language L € X",

24

Recognition via Typed Monoids

e A typed monoid is a tuple (M, G, E) where

o M is a monoid

o G < (M) is finite and closed under union, intersection, and complementation

o E € M and is finite

e Say we have a typed monoid T = (M, G,E) and a language L € X",

e We say that T recognizes L if there exists a homomorphism h:X* - M, where
h(Z) € E, and an element 4 € G such that L = h™1(4),

o (N.B.,h 1(4A) ={wez*|h(w) €A}

25

Recognition via Typed Monoids

e Krebs et al. (2007) gave a characterization of TCO in terms of typed monoids

e Essentially:

o Given the quantifiers of a “nice” logic characterizing TCO

o Construct a class of typed monoids by taking a base set of typed monoids relating to these
guantifiers and closing it under certain operations

26

Recognition via Typed Monoids

e Krebs et al. (2007) gave a characterization of TCO in terms of typed monoids

e Essentially:

o Given the quantifiers of a “nice” logic characterizing TCO

o Construct a class of typed monoids by taking a base set of typed monoids relating to these
guantifiers and closing it under certain operations

e The catch: the “nice” logic has to contain only unary first-order quantifiers*

e Our logical characterization of NC1 contains non-unary quantifiers

27

Simplifying NC1’s Logic

e Considerl=2andw =w; ..w,

w E Fy’Bxy(gol(x, y), ---,QDR(X, y))

28

Simplifying NC1’s Logic

e Considerl=2andw =w; ..w,

w E Fy’Bxy(gol(x, y), ---,QDR(X, y))

o Let m;; =)/((p‘l/v[l,]] O -0 QDI‘év[l;]D

29

Simplifying NC1’s Logic

e Considerl=2andw =w; ..w,

w E Fy’Bxy(gol(x, y), ...,gok(x, y))

o Let m;; =)/((pll/v[l,]] O -0 QDI‘év[l;]D

m1,1 ...mllnmz’l ...mz’n ...mn,1

Myn €B

30

Simplifying NC1’s Logic

e Considerl=2andw =w; ..w,

w E Fy’Bxy(gol(x, y), ...,gok(x, y))

o Let m;; =)/((pll/v[l,]] O -0 QDI‘év[l;]D

31

Simplifying NC1’s Logic

m = b1 bn

32

Simplifying NC1’s Logic

Say M ={mq,...,m.}

m = b1 bn

33

Simplifying NC1’s Logic

m = b1 bn

Say M ={mq,...,m.}

@ = I x(h1(x), ., Pe(x))

34

Simplifying NC1’s Logic

Say M ={mq,...,m.}
@ = I x(h1(x), ., Pe(x))

Pi(x) = TPy (4, y), oo A (3,))

35

Simplifying NC1’s Logic
m = by ...by,
Say M ={mq,...,m.}
@ = I x(h1(x), ., Pe(x))

Pi(x) = TPy (4, y), oo A (3,))

All together,

weE®iffwE F)I,W'Bxy(<p1(x, V), ., r(x, y))

36

Simplifying NC1’s Logic

® Therefore... finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply
unary ones

37

Simplifying NC1’s Logic

® Therefore... finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply

unary ones

Permitting NC1 to be characterized by the languages expressible in FO(+,%) with unary multiplication
quantifiers for Ss. Call these unary I'’s quantifiers.

38

Simplifying NC1’s Logic

® Therefore... finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply
unary ones

® Permitting NC1 to be characterized by the languages expressible in FO(4,%) with unary multiplication
quantifiers for Ss. Call these unary I'’s quantifiers.

® To apply the translation theorem of Krebs et al., we have one more small step:

O Introduce a unary quantifier Sq where w = Sq x ¢ (x)
iff | {a € [Iwl] | w,x = a E p(x)}| = q* forsome q €N

O Introduce a unary majority quantifier Maj
O Replace +,x with just <

O These steps together do not change the expressive power

39

A Small Detour: One Step Further

e We can, moreover, improve this to quantifiers which aren’t lexicographic!

40

A Small Detour: One Step Further

e We can, moreover, improve this to quantifiers which aren’t lexicographic!

e Using the work of Bojanczyk et al. (2019, “String-to-string interpretations...”),
every FO[<]-definable linear order has a lexicographic nature to it

41

A Small Detour: One Step Further

e We can, moreover, improve this to quantifiers which aren’t lexicographic!

e Using the work of Bojanczyk et al. (2019, “String-to-string interpretations...”),
every FO[<]-definable linear order has a lexicographic nature to it

e Once extracted, we can repeat the earlier techniques to decompose any finite

multiplication quantifier using any FO[<]-definable linear order into a sentence
using only unary finite multiplication quantifiers

42

NC1 via Algebra

e Step 1. We have our logical characterization: FO(<) with Sq, Maj, and unary
I'>s quantifiers.

o N.B., only unary quantifiers, and < is the only numerical predicate.

43

NC1 via Algebra

e Step 1. We have our logical characterization: FO(<) with Sq, Maj, and unary
I'>s quantifiers.

o N.B., only unary quantifiers, and < is the only numerical predicate.

e Step 2: Find a typed monoid capturing the semantics of each quantifier

v and 3 (Uy, (U, Uy)
Maj (Z,{0,7*, 7 — T+, 7}, +1)
Sq (N, {®,S,N —S,N},{0,1})

All unary I'Ss (S5, §(Ss), Ss)

44

NC1 via Algebra

e Step 3: Closing

{(Uli SO(Ul)) Ul)l (Z; {Q): Z+; 4 — Z+; Z}: il); (N, {@; S, N — S, N}; {0,1}), (55' SO(SS)r SS)}

under the “ordered strong block product”. Call this class of typed monoids N.

45

NC1 via Algebra

e Step 3: Closing

{(U, (U,),U1), (2,40, 2", Z — 27,7}, £1), (N, {9, S,N — §,N},{0,1}), (S5, £(Ss), S5) }
under the “ordered strong block product”. Call this class of typed monoids N.

Finally, we geta language L is in NC1 iff L is recognized by a typed monoid
in N.

46

Conclusion

In progress:

e Constructing algebraic characterizations of
classes beyond NC1

47

Conclusion

In progress:

e Constructing algebraic characterizations of
classes beyond NC1

e Exploring implications of quantifier
definability with second-order quantifiers

48

Conclusion

In progress:

e Constructing algebraic characterizations of
classes beyond NC1

e Exploring implications of quantifier
definability with second-order quantifiers

Email: ate26 @cam.ac.uk

Thank You'

Outline;

No o~ PRE

How We Recognize Languages
Recognition with Logic

NC1 via Logic

Recognition with Typed Monoids
Simplifying NC1’s Logic

NC1 via Algebra

Conclusion

49

	Slide 1: An Algebraic Characterization of NC1
	Slide 2: Outline
	Slide 3: How We Recognize Languages
	Slide 4: How We Recognize Languages
	Slide 5: How We Recognize Languages
	Slide 6: Recognition with Logic
	Slide 7: Recognition with Logic
	Slide 8: Recognition with Logic
	Slide 9: NC1 via Logic
	Slide 10: NC1 via Logic
	Slide 11: NC1 via Logic
	Slide 12: NC1 via Logic
	Slide 13: NC1 via Logic
	Slide 14: NC1 via Logic
	Slide 15: NC1 via Logic
	Slide 16: NC1 via Logic
	Slide 17: NC1 via Logic
	Slide 18: NC1 via Logic
	Slide 19: NC1 via Logic
	Slide 20: NC1 via Logic
	Slide 21: NC1 via Logic
	Slide 22: NC1 via Logic
	Slide 23: Recognition via Typed Monoids
	Slide 24: Recognition via Typed Monoids
	Slide 25: Recognition via Typed Monoids
	Slide 26: Recognition via Typed Monoids
	Slide 27: Recognition via Typed Monoids
	Slide 28: Simplifying NC1’s Logic
	Slide 29: Simplifying NC1’s Logic
	Slide 30: Simplifying NC1’s Logic
	Slide 31: Simplifying NC1’s Logic
	Slide 32: Simplifying NC1’s Logic
	Slide 33: Simplifying NC1’s Logic
	Slide 34: Simplifying NC1’s Logic
	Slide 35: Simplifying NC1’s Logic
	Slide 36: Simplifying NC1’s Logic
	Slide 37: Simplifying NC1’s Logic
	Slide 38: Simplifying NC1’s Logic
	Slide 39: Simplifying NC1’s Logic
	Slide 40: A Small Detour: One Step Further
	Slide 41: A Small Detour: One Step Further
	Slide 42: A Small Detour: One Step Further
	Slide 43: NC1 via Algebra
	Slide 44: NC1 via Algebra
	Slide 45: NC1 via Algebra
	Slide 46: NC1 via Algebra
	Slide 47: Conclusion
	Slide 48: Conclusion
	Slide 49: Conclusion

