
An Algebraic Characterization of NC1
Aidan Evans

Anuj Dawar

University of Cambridge

BCTCS, 14 April 2025

Outline

1. How We Recognize Languages

2. Recognition with Logic

3. NC1 via Logic

4. Recognition with Typed Monoids

5. Simplifying NC1’s Logic
○ Going A Step Further

6. NC1 via Algebra

7. Conclusion

2

How We Recognize Languages

Machines Logic Algebra

Star-Free Reg. Counter-free DFAs FO(<) Aperiodic Fin. Mon.

Regular Lang. DFAs, NFAs MSO(<) Finite Monoids

TC0 … Maj(+,×)
cf. Krebs et al.

(~2007)

NC1 ALogTime
cf. Barrington et al.

(1990)
???

P poly-time DTMs FO(<,LFP) ???

NP poly-time NTMs ESO ???

PH p-time c-alt ATMs SO ???

3

How We Recognize Languages

Machines Logic Algebra

Star-Free Reg. Counter-free DFAs FO(<) Aperiodic Fin. Mon.

Regular Lang. DFAs, NFAs MSO(<) Finite Monoids

TC0 … Maj(+,×)
cf. Krebs et al.

(~2007)

NC1 ALogTime
cf. Barrington et al.

(1990)
???

P poly-time DTMs FO(<,LFP) ???

NP poly-time NTMs ESO ???

PH p-time c-alt ATMs SO ???

Proven

to exist!

4

How We Recognize Languages

Machines Logic Algebra

Star-Free Reg. Counter-free DFAs FO(<) Aperiodic Fin. Mon.

Regular Lang. DFAs, NFAs MSO(<) Finite Monoids

TC0 … Maj(+,×)
cf. Krebs et al.

(~2007)

NC1 ALogTime
cf. Barrington et al.

(1990)
This presentation!

P poly-time DTMs FO(<,LFP) ???

NP poly-time NTMs ESO ???

PH p-time c-alt ATMs SO ???

Proven

to exist!

5

Recognition with Logic

● 𝐿 ⊆ Σ∗, 𝑤 = 𝑎𝑏𝑎𝑎 ∈ Σ∗

● 𝑤 = 1, 2, 3, 4 , <, 𝑃𝑎, 𝑃𝑏 where 𝑃𝑎 = 1, 3, 4 , 𝑃𝑏 = 2

● A sentence 𝜑 using predicates 𝑃𝑎, 𝑃𝑏 and the numerical relation < recognizes

𝐿 iff for every u ∈ Σ∗, u ⊨ 𝜑 iff u ∈ 𝐿

● For example, 𝑤 ⊨ ∃𝑥∀𝑦(𝑦 ≥ 𝑥 → 𝑃𝑎𝑦) so 𝑤 is in the language of all strings

ending with ‘𝑎’s

6

Recognition with Logic

● 𝐿 ⊆ Σ∗, 𝑤 = 𝑎𝑏𝑎𝑎 ∈ Σ∗

● 𝑤 = 1, 2, 3, 4 , <, 𝑃𝑎, 𝑃𝑏 where 𝑃𝑎 = 1, 3, 4 , 𝑃𝑏 = 2

● A sentence 𝜑 using predicates 𝑃𝑎, 𝑃𝑏 and the numerical relation < recognizes

𝐿 iff for every u ∈ Σ∗, u ⊨ 𝜑 iff u ∈ 𝐿

7

Recognition with Logic

● 𝐿 ⊆ Σ∗, 𝑤 = 𝑎𝑏𝑎𝑎 ∈ Σ∗

● 𝑤 = 1, 2, 3, 4 , <, 𝑃𝑎, 𝑃𝑏 where 𝑃𝑎 = 1, 3, 4 , 𝑃𝑏 = 2

● A sentence 𝜑 using predicates 𝑃𝑎, 𝑃𝑏 and the numerical relation < recognizes

𝐿 iff for every u ∈ Σ∗, u ⊨ 𝜑 iff u ∈ 𝐿

● For example, 𝑤 ⊨ ∃𝑥∀𝑦(𝑦 ≥ 𝑥 → 𝑃𝑎𝑦) so 𝑤 is in the language of all strings

ending with ‘𝑎’s

8

NC1 via Logic

● Introduce 𝐹𝑂(+,×) with “monoid multiplication quantifiers”:

● Monoid, 𝑀, ⋅ : a set 𝑀 and a binary operation ⋅ ∶ 𝑀 ×𝑀 → 𝑀 such that ⋅ is

associative and has an identity

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝑚

:

Γ𝛾
𝑀,𝑚𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

where 𝑀 = 𝑀,⋅ is a monoid, 𝑚 ∈ 𝑀, and 𝛾: {0,1}𝑘 → 𝑀

9

NC1 via Logic

● Introduce 𝐹𝑂(+,×) with “monoid multiplication quantifiers”:

● Monoid, 𝑀, ⋅ : a set 𝑀 and a binary operation ⋅ ∶ 𝑀 ×𝑀 → 𝑀 such that ⋅ is

associative and has an identity

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝑚

:

Γ𝛾
𝑀,𝑚𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

where 𝑀 = 𝑀,⋅ is a monoid, 𝑚 ∈ 𝑀, and 𝛾: {0,1}𝑘 → 𝑀

10

NC1 via Logic

● Introduce 𝐹𝑂(+,×) with “monoid multiplication quantifiers”:

● Monoid, 𝑀, ⋅ : a set 𝑀 and a binary operation ⋅ ∶ 𝑀 ×𝑀 → 𝑀 such that ⋅ is

associative and has an identity

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

Γ𝛾
𝑀,𝐵𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

where 𝑀 = 𝑀,⋅ is a monoid, B ⊆ 𝑀, and 𝛾: {0,1}𝑘 → 𝑀

11

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For a word 𝑤 = 𝑤1…𝑤𝑛,

𝜑𝑖
𝑤 𝑎1, … , 𝑎𝑙 = 1, s.t. 𝑎𝑗 ∈ 1,… , 𝑛 ,

iff 𝑤 ⊨ 𝜑𝑖(𝑥1, … , 𝑥𝑙) when 𝑥𝑗 is assigned 𝑎𝑗,

and 0 otherwise

12

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

Then, for 𝑤 = 𝑤1…𝑤𝑛,

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

iff

𝑚 = ෑ

𝑎1,…,𝑎𝑙 ∈ 𝑛 𝑙

<𝐿𝑒𝑥

𝛾 𝜑1
𝑤 𝑎1, … , 𝑎𝑙 ∘ ⋯∘ 𝜑𝑘

𝑤 𝑎1, … , 𝑎𝑙

13

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

Then, for 𝑤 = 𝑤1…𝑤𝑛,

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥1…𝑥𝑙 𝜑1 𝑥1, … , 𝑥𝑙 , … , 𝜑𝑘 𝑥1, … , 𝑥𝑙

iff

ෑ

𝑎1,…,𝑎𝑙 ∈ 𝑛 𝑙

<𝐿𝑒𝑥

𝛾 𝜑1
𝑤 𝑎1, … , 𝑎𝑙 ∘ ⋯∘ 𝜑𝑘

𝑤 𝑎1, … , 𝑎𝑙 ∈ 𝐵

14

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ 𝐵

15

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ 𝐵

16

Say 𝑈1, ⋅ where 𝑈1 = 0,1
and

0 ⋅ 0 = 0 0 ⋅ 1 = 0
1 ⋅ 0 = 0 1 ⋅ 1 = 1

NC1 via Logic

● Monoid Multiplication Quantifier, Γ𝛾
𝑀,𝐵

:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ 𝐵

17

Say 𝑈1, ⋅ where 𝑈1 = 0,1
and

0 ⋅ 0 = 0 0 ⋅ 1 = 0
1 ⋅ 0 = 0 1 ⋅ 1 = 1

𝛾 ∶ {0,1} → 𝑈1
s.t. 𝛾 0 = 1 and 𝛾 1 = 0

NC1 via Logic

● 𝑈1 Multiplication Quantifier, Γ𝛾
𝑈1,{0}:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑈1,{0}𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ {0}

18

Say 𝑈1, ⋅ where 𝑈1 = 0,1
and

0 ⋅ 0 = 0 0 ⋅ 1 = 0
1 ⋅ 0 = 0 1 ⋅ 1 = 1

𝛾 ∶ {0,1} → 𝑈1
s.t. 𝛾 0 = 1 and 𝛾 1 = 0

NC1 via Logic

● 𝑈1 Multiplication Quantifier, Γ𝛾
𝑈1,{0}:

For example, if 𝑙 = 1 and 𝑘 = 1

𝑤 ⊨ Γ𝛾
𝑈1,{0}𝑥 𝜑1 𝑥

iff

𝛾 𝜑1
𝑤 1 ⋅ … ⋅ 𝛾 𝜑1

𝑤 𝑛 ∈ {0}

19

Say 𝑈1, ⋅ where 𝑈1 = 0,1
and

0 ⋅ 0 = 0 0 ⋅ 1 = 0
1 ⋅ 0 = 0 1 ⋅ 1 = 1

𝛾 ∶ {0,1} → 𝑈1
s.t. 𝛾 0 = 1 and 𝛾 1 = 0

Same as “∃”!

NC1 via Logic

● NC1 is equal to the languages recognized by FO(+,×) with multiplication

quantifiers for finite monoids

○ Or simply multiplication quantifiers for a finite non-solvable group, e.g., 𝑆5

○ Result of Barrington, Immerman, and Straubing (1990)

● Their proof requires that we have multiplication quantifiers binding multiple

variables

● Can this be done with only unary quantifiers? (i.e., 𝑙 = 1)

○ First asked in Lautemann et al. (2001)
20

NC1 via Logic

● NC1 is equal to the languages recognized by FO(+,×) with multiplication

quantifiers for finite monoids

○ Or simply multiplication quantifiers for a finite non-solvable group, e.g., 𝑆5

○ Result of Barrington, Immerman, and Straubing (1990)

● Their proof requires that we have multiplication quantifiers binding multiple

variables

● Can this be done with only unary quantifiers? (i.e., 𝑙 = 1)

○ First asked in Lautemann et al. (2001)
21

NC1 via Logic

● NC1 is equal to the languages recognized by FO(+,×) with multiplication

quantifiers for finite monoids

○ Or simply multiplication quantifiers for a finite non-solvable group, e.g., 𝑆5

○ Result of Barrington, Immerman, and Straubing (1990)

● Their proof requires that we have multiplication quantifiers binding multiple

variables

● Can this be done with only unary quantifiers? (i.e., 𝑙 = 1) Yes!

○ First asked in Lautemann et al. (2001)
22

Recognition via Typed Monoids

● A typed monoid is a tuple (𝑀, 𝐺, 𝐸) where

○ 𝑀 is a monoid

○ 𝐺 ⊆ ℘(𝑀) is finite and closed under union, intersection, and complementation

○ 𝐸 ⊆ 𝑀 and is finite

● Say we have a monoid 𝑇 = (𝑀, 𝐺, 𝐸) and a language 𝐿 ⊆ Σ∗.

● We say that 𝑇 recognizes 𝐿 if there exists a homomorphism ℎ: Σ∗ → 𝑀, where

ℎ Σ ⊆ 𝐸, and an element 𝐴 ∈ 𝐺 such that 𝐿 = ℎ−1(𝐴),

○ (N.B., ℎ−1 𝐴 = {𝑤 ∈ Σ∗ ∣ ℎ 𝑤 ∈ 𝐴})

23

Recognition via Typed Monoids

● A typed monoid is a tuple (𝑀, 𝐺, 𝐸) where

○ 𝑀 is a monoid

○ 𝐺 ⊆ ℘(𝑀) is finite and closed under union, intersection, and complementation

○ 𝐸 ⊆ 𝑀 and is finite

● Say we have a typed monoid 𝑇 = (𝑀, 𝐺, 𝐸) and a language 𝐿 ⊆ Σ∗.

● We say that 𝑇 recognizes 𝐿 if there exists a homomorphism ℎ: Σ∗ → 𝑀, where

ℎ Σ ⊆ 𝐸, and an element 𝐴 ∈ 𝐺 such that 𝐿 = ℎ−1(𝐴),

○ (N.B., ℎ−1 𝐴 = {𝑤 ∈ Σ∗ ∣ ℎ 𝑤 ∈ 𝐴})

24

Recognition via Typed Monoids

● A typed monoid is a tuple (𝑀, 𝐺, 𝐸) where

○ 𝑀 is a monoid

○ 𝐺 ⊆ ℘(𝑀) is finite and closed under union, intersection, and complementation

○ 𝐸 ⊆ 𝑀 and is finite

● Say we have a typed monoid 𝑇 = (𝑀, 𝐺, 𝐸) and a language 𝐿 ⊆ Σ∗.

● We say that 𝑇 recognizes 𝐿 if there exists a homomorphism ℎ: Σ∗ → 𝑀, where

ℎ Σ ⊆ 𝐸, and an element 𝐴 ∈ 𝐺 such that 𝐿 = ℎ−1(𝐴),

○ (N.B., ℎ−1 𝐴 = {𝑤 ∈ Σ∗ ∣ ℎ 𝑤 ∈ 𝐴})

25

Recognition via Typed Monoids

● Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids

● Essentially:

○ Given the quantifiers of a “nice” logic characterizing TC0

○ Construct a class of typed monoids by taking a base set of typed monoids relating to these

quantifiers and closing it under certain operations

26

Recognition via Typed Monoids

● Krebs et al. (2007) gave a characterization of TC0 in terms of typed monoids

● Essentially:

○ Given the quantifiers of a “nice” logic characterizing TC0

○ Construct a class of typed monoids by taking a base set of typed monoids relating to these

quantifiers and closing it under certain operations

● The catch: the “nice” logic has to contain only unary first-order quantifiers*

● Our logical characterization of NC1 contains non-unary quantifiers

27

Simplifying NC1’s Logic

● Consider 𝑙 = 2 and 𝑤 = 𝑤1…𝑤𝑛

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

28

Simplifying NC1’s Logic

● Consider 𝑙 = 2 and 𝑤 = 𝑤1…𝑤𝑛

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

● Let 𝑚𝑖,𝑗 = 𝛾 𝜑1
𝑤 𝑖, 𝑗 ∘ ⋯ ∘ 𝜑𝑘

𝑤 𝑖, 𝑗

29

Simplifying NC1’s Logic

● Consider 𝑙 = 2 and 𝑤 = 𝑤1…𝑤𝑛

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

● Let 𝑚𝑖,𝑗 = 𝛾 𝜑1
𝑤 𝑖, 𝑗 ∘ ⋯ ∘ 𝜑𝑘

𝑤 𝑖, 𝑗

𝑚1,1…𝑚1,𝑛𝑚2,1…𝑚2,𝑛…𝑚𝑛,1…𝑚𝑛,𝑛 ∈ 𝐵

30

Simplifying NC1’s Logic

● Consider 𝑙 = 2 and 𝑤 = 𝑤1…𝑤𝑛

𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

● Let 𝑚𝑖,𝑗 = 𝛾 𝜑1
𝑤 𝑖, 𝑗 ∘ ⋯ ∘ 𝜑𝑘

𝑤 𝑖, 𝑗

𝑚1,1…𝑚1,𝑛𝑚2,1…𝑚2,𝑛…𝑚𝑛,1…𝑚𝑛,𝑛 ∈ 𝐵

31

𝑏1 𝑏2 … 𝑏𝑛

Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝑚𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,𝑚𝑖𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝑚𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

32

Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝑚𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,𝑚𝑖𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝑚𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

33

Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝐵𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,𝑚𝑖𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝑚𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

34

Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝐵𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,{𝑚𝑖}𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝑚𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

35

Simplifying NC1’s Logic

𝑚 = 𝑏1…𝑏𝑛

Say 𝑀 = {𝑚1, … ,𝑚𝑐 }

Φ = Γ𝜎
𝑀,𝐵𝑥 𝜓1 𝑥 , … , 𝜓𝑐 𝑥

𝜓𝑖 𝑥 = Γ𝜎
𝑀,{𝑚𝑖}𝑦 𝜆1 𝑥, 𝑦 , … , 𝜆𝑐(𝑥, 𝑦)

All together,

𝑤 ⊨ Φ iff 𝑤 ⊨ Γ𝛾
𝑀,𝐵𝑥𝑦 𝜑1 𝑥, 𝑦 , … , 𝜑𝑘 𝑥, 𝑦

36

Simplifying NC1’s Logic

● Therefore… finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply
unary ones

● Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication
quantifiers for 𝑆5. Call these unary Γ𝑆5 quantifiers.

● To apply the translation theorem of Krebs et al., we have one more small step:

○ Introduce a unary quantifier 𝑆𝑞 where 𝑤 ⊨ 𝑆𝑞 𝑥 𝜑(𝑥) iff
{𝑎 ∈ 𝑤 𝑤, 𝑥 ↦ 𝑎 ⊨ 𝜑 𝑥 } = 𝑞2 for some 𝑞 ∈ ℕ

○ Introduce a unary majority quantifier 𝑀𝑎𝑗

○ Replace +,× with just <

○ These two steps together does not change the expressive power

37

Simplifying NC1’s Logic

● Therefore… finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply
unary ones

● Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication
quantifiers for 𝑆5. Call these unary Γ𝑆5 quantifiers.

● To apply the translation theorem of Krebs et al., we have one more small step:

○ Introduce a unary quantifier 𝑆𝑞 where 𝑤 ⊨ 𝑆𝑞 𝑥 𝜑(𝑥) iff
{𝑎 ∈ 𝑤 𝑤, 𝑥 ↦ 𝑎 ⊨ 𝜑 𝑥 } = 𝑞2 for some 𝑞 ∈ ℕ

○ Introduce a unary majority quantifier 𝑀𝑎𝑗

○ Replace +,× with just <

○ These two steps together does not change the expressive power

38

Simplifying NC1’s Logic

● Therefore… finite non-unary multiplication quantifiers can be defined (“axiomatized”) using simply
unary ones

● Permitting NC1 to be characterized by the languages expressible in FO(+,×) with unary multiplication
quantifiers for 𝑆5. Call these unary Γ𝑆5 quantifiers.

● To apply the translation theorem of Krebs et al., we have one more small step:

○ Introduce a unary quantifier 𝑆𝑞 where 𝑤 ⊨ 𝑆𝑞 𝑥 𝜑(𝑥)
iff {𝑎 ∈ 𝑤 𝑤, 𝑥 ↦ 𝑎 ⊨ 𝜑 𝑥 } = 𝑞2 for some 𝑞 ∈ ℕ

○ Introduce a unary majority quantifier 𝑀𝑎𝑗

○ Replace +,× with just <

○ These steps together do not change the expressive power

39

A Small Detour: One Step Further

● We can, moreover, improve this to quantifiers which aren’t lexicographic!

40

A Small Detour: One Step Further

● We can, moreover, improve this to quantifiers which aren’t lexicographic!

● Using the work of Bojanczyk et al. (2019, “String-to-string interpretations…”),

every FO[<]-definable linear order has a lexicographic nature to it

41

A Small Detour: One Step Further

● We can, moreover, improve this to quantifiers which aren’t lexicographic!

● Using the work of Bojanczyk et al. (2019, “String-to-string interpretations…”),

every FO[<]-definable linear order has a lexicographic nature to it

● Once extracted, we can repeat the earlier techniques to decompose any finite

multiplication quantifier using any FO[<]-definable linear order into a sentence

using only unary finite multiplication quantifiers

42

NC1 via Algebra

● Step 1: We have our logical characterization: FO(<) with 𝑆𝑞, 𝑀𝑎𝑗, and unary

Γ𝑆5 quantifiers.

○ N.B., only unary quantifiers, and < is the only numerical predicate.

● Step 2: Find a typed monoid capturing the semantics of each quantifier

43

∀ and ∃ 𝑈1, ℘ 𝑈1 , 𝑈1

𝑀𝑎𝑗 (ℤ, {∅, ℤ+, ℤ − ℤ+, ℤ}, ±1)

𝑆𝑞 (ℕ, {∅, 𝕊, ℕ − 𝕊,ℕ}, {0,1})

All unary Γ𝑆5 (𝑆5, ℘ 𝑆5 , 𝑆5)

NC1 via Algebra

● Step 1: We have our logical characterization: FO(<) with 𝑆𝑞, 𝑀𝑎𝑗, and unary

Γ𝑆5 quantifiers.

○ N.B., only unary quantifiers, and < is the only numerical predicate.

● Step 2: Find a typed monoid capturing the semantics of each quantifier

44

∀ and ∃ 𝑈1, ℘ 𝑈1 , 𝑈1

𝑀𝑎𝑗 (ℤ, {∅, ℤ+, ℤ − ℤ+, ℤ}, ±1)

𝑆𝑞 (ℕ, {∅, 𝕊, ℕ − 𝕊,ℕ}, {0,1})

All unary Γ𝑆5 (𝑆5, ℘ 𝑆5 , 𝑆5)

NC1 via Algebra

● Step 3: Closing

𝑈1, ℘ 𝑈1 , 𝑈1 , ℤ, ∅, ℤ+, ℤ − ℤ+, ℤ , ±1 , ℕ, ∅, 𝕊, ℕ − 𝕊, ℕ , 0,1 , 𝑆5, ℘ 𝑆5 , 𝑆5

under the “ordered strong block product”. Call this class of typed monoids N.

45

NC1 via Algebra

● Step 3: Closing

𝑈1, ℘ 𝑈1 , 𝑈1 , ℤ, ∅, ℤ+, ℤ − ℤ+, ℤ , ±1 , ℕ, ∅, 𝕊, ℕ − 𝕊, ℕ , 0,1 , 𝑆5, ℘ 𝑆5 , 𝑆5

under the “ordered strong block product”. Call this class of typed monoids N.

Finally, we get a language 𝑳 is in NC1 iff 𝑳 is recognized by a typed monoid

in N.

46

Conclusion

In progress:

● Constructing algebraic characterizations of

classes beyond NC1

47

Conclusion

In progress:

● Constructing algebraic characterizations of

classes beyond NC1

● Exploring implications of quantifier

definability with second-order quantifiers

48

Conclusion

In progress:

● Constructing algebraic characterizations of

classes beyond NC1

● Exploring implications of quantifier

definability with second-order quantifiers

Email: ate26@cam.ac.uk

Outline:

1. How We Recognize Languages

2. Recognition with Logic

3. NC1 via Logic

4. Recognition with Typed Monoids

5. Simplifying NC1’s Logic

6. NC1 via Algebra

7. Conclusion

49

	Slide 1: An Algebraic Characterization of NC1
	Slide 2: Outline
	Slide 3: How We Recognize Languages
	Slide 4: How We Recognize Languages
	Slide 5: How We Recognize Languages
	Slide 6: Recognition with Logic
	Slide 7: Recognition with Logic
	Slide 8: Recognition with Logic
	Slide 9: NC1 via Logic
	Slide 10: NC1 via Logic
	Slide 11: NC1 via Logic
	Slide 12: NC1 via Logic
	Slide 13: NC1 via Logic
	Slide 14: NC1 via Logic
	Slide 15: NC1 via Logic
	Slide 16: NC1 via Logic
	Slide 17: NC1 via Logic
	Slide 18: NC1 via Logic
	Slide 19: NC1 via Logic
	Slide 20: NC1 via Logic
	Slide 21: NC1 via Logic
	Slide 22: NC1 via Logic
	Slide 23: Recognition via Typed Monoids
	Slide 24: Recognition via Typed Monoids
	Slide 25: Recognition via Typed Monoids
	Slide 26: Recognition via Typed Monoids
	Slide 27: Recognition via Typed Monoids
	Slide 28: Simplifying NC1’s Logic
	Slide 29: Simplifying NC1’s Logic
	Slide 30: Simplifying NC1’s Logic
	Slide 31: Simplifying NC1’s Logic
	Slide 32: Simplifying NC1’s Logic
	Slide 33: Simplifying NC1’s Logic
	Slide 34: Simplifying NC1’s Logic
	Slide 35: Simplifying NC1’s Logic
	Slide 36: Simplifying NC1’s Logic
	Slide 37: Simplifying NC1’s Logic
	Slide 38: Simplifying NC1’s Logic
	Slide 39: Simplifying NC1’s Logic
	Slide 40: A Small Detour: One Step Further
	Slide 41: A Small Detour: One Step Further
	Slide 42: A Small Detour: One Step Further
	Slide 43: NC1 via Algebra
	Slide 44: NC1 via Algebra
	Slide 45: NC1 via Algebra
	Slide 46: NC1 via Algebra
	Slide 47: Conclusion
	Slide 48: Conclusion
	Slide 49: Conclusion

