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Motivation

• Many labs around the world
have mobile robots to
automate chemistry
experiments.

• We are interested in routing
these robots in order to
complete tasks based around
the lab as fast as possible.

• Our model can also be
relevant to manufacturing
and logistics.
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k-Robot Scheduling

The Setting:

• A graph G = (V ,E ), of n vertices, which represents a
discretisation of a lab space.

• k robots (agents) R1, ...,Rk starting on vertices sv1, ..., svk .
• Each edge takes 1 timestep to traverse

• A set, T , of m tasks, t1, ..., tm, where ti is a pair consisting of
a location v ∈ V and duration dti ∈ N.

• GOAL: Find a fastest1 task-completing2 collision-free3 set of
schedules4 for the k robots.

1One with a shortest time span5
2For each task t = (vt , dt) ∈ T some robot remains on vt for dt timesteps
3At no point in time do two robots share the same vertex or traverse the

same edge
4A sequence alternating between walks and tasks.
5Total number of time steps taken by all schedules in the set
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One robot on a path

1,1 2 3,1 4,1 5 6,2

• C1(P,T , sv) := min(|sv − vt1 |, |sv − vtm |)+ vtm − vt1 +
∑

i∈[m]

di .

• For the example above:

C1(P6, {(1, 1), (3, 1), (4, 1), (6, 2)}, 5) = min(5−1, 6−5)+6−1+5 = 11
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2-Partition Algorithm

• For two robots, RL and RR , starting on vertices svL and svR ,
we wish to split the tasks into two where RL completes
t1, ..., tq and RR does tq+1, ..., tm.

• We determine the value of q by finding the value which
minimises

max(C1(Pmax(svL,iq), (t1, , . . . , tq), svL),C1(P1,min(iq+1,svR ),m, (tq+1, . . . , tm), svR))

.
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Partition Example

1,1 2 3,1 4,1 5 6,2

5 7
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k-Partition Algorithm

Sketch of the O(kmn) dynamic programming algorithm:

• Let S [c , ℓ] be the time taken for the first c robots to complete
the first ℓ tasks.

• S [1, ℓ] = C1(P, (t1, . . . , tℓ), sv1).

• S [c , ℓ] := minr∈[1,ℓ]max(C1(P, (tr+1, . . . , tℓ), svc),S [c − 1, r ])

• When k = 2 this is the same as the 2-Partition Algorithm.
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Grid graphs

A näıve way of approximating k −Robot Scheduling on a grid
is by finding an Hamiltonian Path and executing the partition
algorithm on that path.

v4, 2

v1

v5, 5

v8v7

v6

v9

v2, 3 v3
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Algorithm for Cycles

We then adapt the partition algorithm for use on cycles by
“flattening” the cycle.

Lemma
Given an instance of k-Robot Scheduling on a cycle
G = (V ,E ) with a set of equal duration tasks T = {t1, . . . , tm}
and robots r1, . . . , rk , there exists a fastest collision-free
task-completing schedule C such that there exists some edge
e ∈ E that is not traversed by any robot in C .
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Sketch Proof

• We assume the contrary for contradiction.

• For all i ri and ri+1(mod k) must share some path
vx , ..., vy(mod n) for y ≥ x where vy(mod n) contains task tji+1

.
• If for all i , ri instead completes task tji the total travel time
would decrease.

• Therefore the solution we started with was not optimal - a
contradiction.

vx

vy
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Algorithm for Cycles

We then adapt the partition algorithm for use on cycles by
“flattening” the cycle.

Lemma
Given an instance of k-Robot Scheduling on a cycle
G = (V ,E ) with a set of equal duration tasks T = {t1, . . . , tm}
and robots r1, . . . , rk , there exists a fastest collision-free
task-completing schedule C such that there exists some edge
e ∈ E that is not traversed by any robot in C .

The idea of our algorithm on a cycle is to iterate through all e ∈ E
such that we minimise S [k ,m] when applying the partition
algorithm on P = (V ,E \ {e}), this takes time O(kmn2).
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Problem Formulation - Variables

• xr ,v ,t ∈ {0, 1} is 1 if robot r is at vertex v at timestep t

• TCi ,t ∈ {0, 1} is 1 if task i is complete by timestep t

• ACt ∈ {0, 1} is 1 on the smallest timestep t where all tasks
are complete.

Fast and Safe Scheduling of Robots Nathan Flaherty BCTCS 2025 13 / 22
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Problem Formulation

Maximise
∑
t∈[τ ]

ACt

Subject To:∑
v∈V

xr,v,t = 1 ∀r ∈ [k], t ∈ [τ ] (1)

xr,v,t ≤
∑

N(v)∪{v}
xr,v,t−1 ∀r ∈ [k], t ∈ [2, τ ] (2)

∑
r∈[k]

xr,v,t ≤ 1 ∀v ∈ V , t ∈ [τ ] (3)

xr,v,t + xr,v′,t−1 + xr′,v,t−1 + xr′,v′,t ≤ 3 ∀r ∈ [k], r′ ∈ [k] \ {r}, (v, v′) ∈ E , t ∈ [τ ] (4)

TCi,t ≤ TCi,t−1 + max
r∈[k]

 ∑
j∈[t−di ,t]

xr,vi ,j
/di

 ∀i ∈ [T ], t ∈ [τ ] (5)

TCi,t ≥ TCi,t−1 ∀i ∈ [T ], t ∈ [τ ] (6)

ACt ≤
∑

i∈[|T|]
TCi,t/|T | ∀t ∈ [τ ] (7)

Fast and Safe Scheduling of Robots Nathan Flaherty BCTCS 2025 14 / 22
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Integer Program Constraints

∑
v∈V

xr ,v ,t = 1 ∀r ∈ [k], t ∈ [τ ].

- Ensures each robot exists on every timestep

xr ,v ,t ≤
∑

N(v)∪{v}
xr ,v ,t−1 ∀r ∈ [k], t ∈ [2, τ ]

- Ensures robots only move to adjacent vertices

∑
r∈[k]

xr ,v ,t ≤ 1 ∀v ∈ V , t ∈ [τ ]

- Ensures no collisions on vertices

xr ,v ,t + xr ,v ′,t−1 + xr ′,v ,t−1 + xr ′,v ′,t ≤ 3 ∀(v , v ′) ∈ E ,∀r ,∀t.

- Ensures no collisions on edges
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Integer Programming Constraints

TCi,t ≤ TCi,t−1 +maxr∈[k]

( ∑
j∈[t−di ,t]

xr ,vi ,j/di

)
∀i ∈ [T ], t ∈ [τ ]

- Handles task completion.

TCi,t ≥ TCi,t−1 ∀i ∈ [T ], t ∈ [τ ]

- Ensures a task which is complete remains complete.

ACt ≤
∑

i∈[|T |]
TCi,t/|T | ∀t ∈ [τ ]

- Ensures AC is 1 iff all tasks have been completed
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Partition Algorithm vs Gurobi Optimizer

• We generated 12,767,374 instances of Robot Scheduling.

• For each we ran the Gurobi Optimizer on the integer
programming formulation as well as the partition algorithm.

• It produced an optimal solution in 11,061,661 cases (86.6%)
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Partition Algorithm vs Gurobi Optimizer

Figure 1: Comparison of the performance ratio of the Partition Algorithm
to the theoretical optimal results given by our integer programming
model. In this case, the tasks had a sum of durations of 7, while the
number of tasks varies across the x-axis.
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Experimental Results

Figure 2: Comparison of proportion of output from the partition
algorithm with optimal timespan, and timespan within the size of a single
task from optimal for fixed n = 7. The plot shows the proportion
decreasing as the number of robots increase
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Runtime

Figure 3: logplot showing average runtime of Gurobi solving the linear
program and the partition algorithm solving the same instances.

Fast and Safe Scheduling of Robots Nathan Flaherty BCTCS 2025 20 / 22



Introduction Partition Algorithm Other Graph Classes Integer Programming Experimental Results Conclusion

Gurobi vs Partition Algorithm for Grid Graphs

Figure 4: A plot showing the average performance ratio over all generated
instances increasing as the grid size increases for 2,3 and 4 robots. In
general Performance ratio is lower for fewer robots.

Overall - partitioning produced an optimal result 66% of the time.
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Thank You!
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