

The Leverhulme Research Centre for Functional Materials Design

Fast and Safe Scheduling of Robots Duncan Adamson, <u>Nathan Flaherty</u>, Igor Potapov and Paul G. Spirakis BCTCS 2025

Imperial College London

King Abdullah University of Science and Technology

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 0 / 22

Motivation

Motivation

 Many labs around the world have mobile robots to automate chemistry experiments.

Motivation

- Many labs around the world have mobile robots to automate chemistry experiments.
- We are interested in routing these robots in order to complete tasks based around the lab as fast as possible.
- Our model can also be relevant to manufacturing and logistics.

The Setting:

• A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, T, of m tasks, $t_1, ..., t_m$, where t_i is a pair consisting of a location $v \in V$ and duration $d_{t_i} \in \mathbb{N}$.

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

⁴A sequence alternating between walks and tasks.

Fast and Safe Scheduling of Robots

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

 $^{3}\mbox{At}$ no point in time do two robots share the same vertex or traverse the same edge

⁴A sequence alternating between walks and tasks.

Fast and Safe Scheduling of Robots

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

²For each task $t = (v_t, d_t) \in T$ some robot remains on v_t for d_t timesteps ³At no point in time do two robots share the same vertex or traverse the same edge

⁴A sequence alternating between walks and tasks.

Fast and Safe Scheduling of Robots

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

 ^{1}One with a shortest time span 5

²For each task $t = (v_t, d_t) \in T$ some robot remains on v_t for d_t timesteps

 $^{3}\mbox{At}$ no point in time do two robots share the same vertex or traverse the same edge

⁴A sequence alternating between walks and tasks.

Fast and Safe Scheduling of Robots

The Setting:

- A graph G = (V, E), of *n* vertices, which represents a discretisation of a lab space.
- k robots (agents) $R_1, ..., R_k$ starting on vertices $sv_1, ..., sv_k$.
 - Each edge takes 1 timestep to traverse
- A set, *T*, of *m* tasks, *t*₁, ..., *t_m*, where *t_i* is a pair consisting of a location *v* ∈ *V* and duration *d_{t_i}* ∈ ℕ.
- **GOAL:** Find a fastest¹ task-completing² collision-free³ set of schedules⁴ for the *k* robots.

 1 One with a shortest time span 5

²For each task $t = (v_t, d_t) \in T$ some robot remains on v_t for d_t timesteps

³At no point in time do two robots share the same vertex or traverse the same edge

⁴A sequence alternating between walks and tasks.

⁵Total number of time steps taken by all schedules in the set

Fast and Safe Scheduling of Robots

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 2 / 22

One robot on a path

One robot on a path

• $C_1(P, T, sv) := \min(|sv - v_{t_1}|, |sv - v_{t_m}|) + v_{t_m} - v_{t_1} + \sum_{i \in [m]} d_i.$

One robot on a path

•
$$C_1(P, T, sv) := \min(|sv - v_{t_1}|, |sv - v_{t_m}|) + v_{t_m} - v_{t_1} + \sum_{i \in [m]} d_i.$$

• For the example above:

 $C_1(P_6, \{(1,1), (3,1), (4,1), (6,2)\}, 5) = min(5-1, 6-5)+6-1+5 = 11$

• For two robots, R_L and R_R , starting on vertices sv_L and sv_R , we wish to split the tasks into two where R_L completes $t_1, ..., t_q$ and R_R does $t_{q+1}, ..., t_m$.

- For two robots, R_L and R_R , starting on vertices sv_L and sv_R , we wish to split the tasks into two where R_L completes $t_1, ..., t_q$ and R_R does $t_{q+1}, ..., t_m$.
- We determine the value of *q* by finding the value which minimises

 $\max(C_1(P_{\max(sv_L, i_q)}, (t_1, \dots, t_q), sv_L), C_1(P_{1,\min(i_{q+1}, sv_R), m}, (t_{q+1}, \dots, t_m), sv_R))$

Partition Example

Partition Example

Partition Example

Sketch of the O(kmn) dynamic programming algorithm:

 Let S[c, ℓ] be the time taken for the first c robots to complete the first ℓ tasks.

Sketch of the O(kmn) dynamic programming algorithm:

- Let $S[c, \ell]$ be the time taken for the first c robots to complete the first ℓ tasks.
- $S[1, \ell] = C_1(P, (t_1, \ldots, t_\ell), sv_1).$

Sketch of the O(kmn) dynamic programming algorithm:

- Let S[c, ℓ] be the time taken for the first c robots to complete the first ℓ tasks.
- $S[1, \ell] = C_1(P, (t_1, \ldots, t_\ell), sv_1).$
- $S[c, \ell] := \min_{r \in [1, \ell]} \max(C_1(P, (t_{r+1}, \dots, t_{\ell}), sv_c), S[c-1, r])$

Sketch of the O(kmn) dynamic programming algorithm:

- Let S[c, ℓ] be the time taken for the first c robots to complete the first ℓ tasks.
- $S[1, \ell] = C_1(P, (t_1, \ldots, t_\ell), sv_1).$
- $S[c, \ell] := \min_{r \in [1, \ell]} \max(C_1(P, (t_{r+1}, \dots, t_{\ell}), sv_c), S[c-1, r])$
- When k = 2 this is the same as the 2-Partition Algorithm.

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 8 / 22

A naïve way of approximating k - ROBOT SCHEDULING on a grid is by finding an Hamiltonian Path and executing the partition algorithm on that path.

Fast and Safe Scheduling of Robots

A naïve way of approximating k - ROBOT SCHEDULING on a grid is by finding an Hamiltonian Path and executing the partition algorithm on that path.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 9 / 22

A naïve way of approximating k - ROBOT SCHEDULING on a grid is by finding an Hamiltonian Path and executing the partition algorithm on that path.

Fast and Safe Scheduling of Robots

A naïve way of approximating k - ROBOT SCHEDULING on a grid is by finding an Hamiltonian Path and executing the partition algorithm on that path.

Fast and Safe Scheduling of Robots

A naïve way of approximating k - ROBOT SCHEDULING on a grid is by finding an Hamiltonian Path and executing the partition algorithm on that path.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 9 / 22

Algorithm for Cycles

We then adapt the partition algorithm for use on cycles by *"flattening"* the cycle.

Algorithm for Cycles

We then adapt the partition algorithm for use on cycles by *"flattening"* the cycle.

Lemma

Given an instance of k-ROBOT SCHEDULING on a cycle G = (V, E) with a set of equal duration tasks $T = \{t_1, \ldots, t_m\}$ and robots r_1, \ldots, r_k , there exists a fastest collision-free task-completing schedule C such that there exists some edge $e \in E$ that is not traversed by any robot in C.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 10 / 22

• We assume the contrary for contradiction.

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod \ k)}$ must share some path $v_x, ..., v_{y(mod \ n)}$ for $y \ge x$ where $v_{y(mod \ n)}$ contains task $t_{j_{i+1}}$.

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod \ k)}$ must share some path $v_x, ..., v_{y(mod \ n)}$ for $y \ge x$ where $v_{y(mod \ n)}$ contains task $t_{j_{i+1}}$.
- If for all *i*, *r_i* instead completes task *t_{ji}* the total travel time would decrease.

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod \ k)}$ must share some path $v_x, ..., v_{y(mod \ n)}$ for $y \ge x$ where $v_{y(mod \ n)}$ contains task $t_{j_{i+1}}$.
- If for all *i*, *r_i* instead completes task *t_{ji}* the total travel time would decrease.
- Therefore the solution we started with was not optimal a contradiction.

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod \ k)}$ must share some path $v_x, ..., v_{y(mod \ n)}$ for $y \ge x$ where $v_{y(mod \ n)}$ contains task $t_{j_{i+1}}$.
- If for all *i*, *r_i* instead completes task *t_{ji}* the total travel time would decrease.
- Therefore the solution we started with was not optimal a contradiction.

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod \ k)}$ must share some path $v_x, ..., v_{y(mod \ n)}$ for $y \ge x$ where $v_{y(mod \ n)}$ contains task $t_{j_{i+1}}$.
- If for all *i*, *r_i* instead completes task *t_{ji}* the total travel time would decrease.
- Therefore the solution we started with was not optimal a contradiction.

11 / 22

- We assume the contrary for contradiction.
- For all *i* r_i and $r_{i+1(mod k)}$ must share some path $v_x, ..., v_{y(mod n)}$ for $y \ge x$ where $v_{y(mod n)}$ contains task $t_{j_{i+1}}$.
- If for all *i*, r_i instead completes task t_i , the total travel time would decrease.
- Therefore the solution we started with was not optimal a contradiction.

Fast and Safe Scheduling of Robots

Algorithm for Cycles

We then adapt the partition algorithm for use on cycles by *"flattening"* the cycle.

Lemma

Given an instance of k-ROBOT SCHEDULING on a cycle G = (V, E) with a set of equal duration tasks $T = \{t_1, \ldots, t_m\}$ and robots r_1, \ldots, r_k , there exists a fastest collision-free task-completing schedule C such that there exists some edge $e \in E$ that is not traversed by any robot in C.

The idea of our algorithm on a cycle is to iterate through all $e \in E$ such that we minimise S[k, m] when applying the partition algorithm on $P = (V, E \setminus \{e\})$, this takes time $O(kmn^2)$.

Fast and Safe Scheduling of Robots

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 12 / 22

Problem Formulation - Variables

- $x_{r,v,t} \in \{0,1\}$ is 1 if robot r is at vertex v at timestep t
- $TC_{i,t} \in \{0,1\}$ is 1 if task *i* is complete by timestep *t*
- AC_t ∈ {0,1} is 1 on the smallest timestep t where all tasks are complete.

Problem Formulation

$$\begin{split} & \text{Maximise} \sum_{t \in [\tau]} AC_t \\ & \text{Subject To:} \\ & \sum_{v \in V} x_{r,v,t} = 1 & \forall r \in [k], t \in [\tau] & (1) \\ & x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} & \forall r \in [k], t \in [2, \tau] & (2) \\ & \sum_{r \in [k]} x_{r,v,t} \leq 1 & \forall v \in V, t \in [\tau] & (3) \\ & x_{r,v,t} + x_{r,v',t-1} + x_{r',v,t-1} + x_{r',v',t} \leq 3 & \forall r \in [k], r' \in [k] \setminus \{r\}, (v, v') \in E, t \in [\tau] & (4) \\ & TC_{i,t} \leq TC_{i,t-1} + \max_{r \in [k]} \left(\sum_{j \in [t-d_j,t]} x_{r,v_i,j}/d_i \right) & \forall i \in [T], t \in [\tau] & (5) \\ & TC_{i,t} \geq TC_{i,t-1} & \forall i \in [T], t \in [\tau] & (6) \\ & AC_t \leq \sum_{i \in [[T]]} TC_{i,t}/|T| & \forall t \in [\tau] & (7) \end{split}$$

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 14 / 22

$$\sum_{v \in V} x_{r,v,t} = 1$$

 $\forall r \in [k], t \in [\tau].$

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$\sum_{v \in V} x_{r,v,t} = 1$$
 $\forall r \in [k], t \in [\tau].$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \le \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

- Ensures robots only move to adjacent vertices

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

- Ensures robots only move to adjacent vertices

 $\sum_{r \in [k]} x_{r,v,t} \le 1 \qquad \qquad \forall v \in V, t \in [\tau]$

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

- Ensures robots only move to adjacent vertices

$$\sum_{r \in [k]} x_{r,v,t} \le 1 \qquad \qquad \forall v \in V, t \in [\tau]$$

- Ensures no collisions on vertices

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

- Ensures robots only move to adjacent vertices

$$\sum_{r \in [k]} x_{r,v,t} \le 1 \qquad \qquad \forall v \in V, t \in [\tau]$$

- Ensures no collisions on vertices

$$x_{r,v,t} + x_{r,v',t-1} + x_{r',v,t-1} + x_{r',v',t} \leq 3 \qquad \forall (v,v') \in E, \forall r, \forall t.$$

Fast and Safe Scheduling of Robots

$$\sum_{v \in V} x_{r,v,t} = 1 \qquad \qquad \forall r \in [k], t \in [\tau].$$

- Ensures each robot exists on every timestep

$$x_{r,v,t} \leq \sum_{N(v) \cup \{v\}} x_{r,v,t-1} \qquad \forall r \in [k], t \in [2,\tau]$$

- Ensures robots only move to adjacent vertices

$$\sum_{r \in [k]} x_{r,v,t} \le 1 \qquad \qquad \forall v \in V, t \in [\tau]$$

- Ensures no collisions on vertices

$$x_{r,v,t} + x_{r,v',t-1} + x_{r',v,t-1} + x_{r',v',t} \leq 3 \qquad \forall (v,v') \in E, \forall r, \forall t.$$

- Ensures no collisions on edges

Fast and Safe Scheduling of Robots

$$TC_{i,t} \leq TC_{i,t-1} + \max_{r \in [k]} \left(\sum_{j \in [t-d_i,t]} x_{r,v_i,j}/d_i \right) \quad \forall i \in [T], t \in [\tau]$$

- Handles task completion.

$$TC_{i,t} \ge TC_{i,t-1}$$
 $\forall i \in [T], t \in [\tau]$

- Ensures a task which is complete remains complete.

$$AC_t \leq \sum_{i \in [|\mathcal{T}|]} \mathcal{T}C_{i,t} / |\mathcal{T}| \qquad \forall t \in [\tau]$$

- Ensures AC is 1 iff all tasks have been completed

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 16 / 22

• We generated 12,767,374 instances of Robot Scheduling.

- We generated 12,767,374 instances of Robot Scheduling.
- For each we ran the Gurobi Optimizer on the integer programming formulation as well as the partition algorithm.

- We generated 12,767,374 instances of Robot Scheduling.
- For each we ran the Gurobi Optimizer on the integer programming formulation as well as the partition algorithm.
- It produced an optimal solution in 11,061,661 cases (86.6%)

Figure 1: Comparison of the performance ratio of the Partition Algorithm to the theoretical optimal results given by our integer programming model. In this case, the tasks had a sum of durations of 7, while the number of tasks varies across the *x*-axis.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 18 / 22

Experimental Results

Figure 2: Comparison of proportion of output from the partition algorithm with optimal timespan, and timespan within the size of a single task from optimal for fixed n = 7. The plot shows the proportion decreasing as the number of robots increase

Fast and Safe Scheduling of Robots

Runtime

Figure 3: logplot showing average runtime of Gurobi solving the linear program and the partition algorithm solving the same instances.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 20 / 22

Gurobi vs Partition Algorithm for Grid Graphs

Gurobi vs Partition Algorithm for Grid Graphs

Figure 4: A plot showing the average performance ratio over all generated instances increasing as the grid size increases for 2,3 and 4 robots. In general Performance ratio is lower for fewer robots.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 21 / 22

Gurobi vs Partition Algorithm for Grid Graphs

Figure 4: A plot showing the average performance ratio over all generated instances increasing as the grid size increases for 2,3 and 4 robots. In general Performance ratio is lower for fewer robots.

Overall - partitioning produced an optimal result 66% of the time.

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 21 / 22

Contents

Introduction

Partition Algorithm

Other Graph Classes

Integer Programming

Experimental Results

Conclusion

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 21 / 22

Introduction Partition Algorithm Other Graph Classes Integer Programming Experimental Results Conclusion

Thank You!

Fast and Safe Scheduling of Robots

Nathan Flaherty

BCTCS 2025 22 / 22