
1/13

A shallow arithmetisation of first-order validity

Murdoch J. Gabbay

BCTCS

14 April 2025

http://www.gabbay.org.uk
https://msp.cis.strath.ac.uk/bctcs2025/programme.html

2/13

Arithmetisation of first-order logic

To arithmetise a computational task is to convert it into a task of
finding roots of some polynomial. Arithmetisation is the essential
first step for cryptographic treatments of logic and computation —
as required e.g. for verifiable and zero-knowledge computation,
motivated by modern distributed systems including blockchain
(‘weak’ verifier verifies ‘strong’ prover; shielded transactions).

Arithmetisation is now a billion-dollar industry.

In a recent draft paper “Arithmetisation of computation via
polynomial semantics for first-order logic”
(https://eprint.iacr.org/2024/954) I arithmetise first-order
logic via a compositional shallow translation to assertions about
roots of polynomials.

We will need two elementary Lemmas:

https://eprint.iacr.org/2024/954
https://eprint.iacr.org/2024/954

3/13

Lemma 1 (a standard result)

Write 1..n for the set {x ∈ N | 1 ≤ x ≤ n}.

Lemma 1. Suppose v⃗ ∈ Qlen is a tuple of length len ∈ N. Then
there exists a (unique) interpolating polynomial

ip(v⃗) ∈ Q[X]<len

(meaning that ip(v⃗) is a polynomial over X with rational
coefficients and degree strictly less than len) such that

∀x ∈ 1..len. ip(v⃗)(x) = v⃗ [x]

where v⃗ [x] is the xth element of v⃗ .

Example. ip(1.5, 2, 2.5, 3) = 1 + 0.5 ∗ X .

See diagram on Wikipedia.

https://en.wikipedia.org/wiki/File:Interpolation_example_polynomial.svg

4/13

Lemma 2 (an easy arithmetic fact)

Lemma 2. Suppose x , y ∈ Q≥0. Then:

1. x + y = 0 iff x = 0 ∧ y = 0.
2. x ∗ y = 0 iff x = 0 ∨ y = 0.
3. (x − y)2 = 0 iff x = y .

Proof. Facts of arithmetic.

This Lemma, easy as it is, suggests that we can treat Q≥0 as a
domain of truth-values, such that zero represents ‘true’ and
non-zero values represent ‘false’.

5/13

A FOL syntax

Fix some data:

▶ An index variable symbol X .
▶ A set of polynomial function symbols F ∈ PolyFunc, each with

arity arity(F) ∈ N≥1.

Write F : n for “F ∈ PolyFunc and arity(F) = n”.

Then define terms and predicates by:

t ::= X | q ∈ Q | t + t | t ∗ t | Fi (t) | len(F) | reify(ϕ)

ϕ ::= t===t | ϕ∧∧∧ϕ | ϕ∨∨∨ϕ | ∀∀∀FX .ϕ

Above, i∈1..arity(F).

6/13

Valuations (we’ll use them in the next slide)
A valuation ς maps each F : n to an n × l matrix ς(F) ∈ Qn×l .
Write length(ς(F)) for l (number of columns).

Think of ς(F) as a finite sample from a function graph, possibly
with auxiliary information.

Example: Assume Sqr : 2 (length 3) and Fact (length 5) and set:

ς(Sqr) =
(

1 2 -3
1 4 9

)
ς(Fact) =

0 1 2 3 4
1 1 2 6 24
0 1 2 3 4


1. Row 2 is the square/factorial of row 1.
2. For factorial, row 3 uses a ‘pointer trick’: each entry points to

a column with the relevant inductive step, if required. E.g.
4! = 4 ∗ 3! and ς(Fact)[3, 5] = 4.

3. By Lemma 1, each matrix is representable as a tuple of
two/three interpolating polynomials of degree at most 2/4.

7/13

Let’s characterise these matrices in our logic

ς(Sqr) =
(

1 2 -3
1 4 9

)
ς(Fact) =

0 1 2 3 4
1 1 2 6 24
0 1 2 3 4


satisfy the following predicates, for every value of X in
1..len(ς(Sqr)) and 1..len(ς(Fact)) respectively:

Sqr2(X) === Sqr1(X) ∗ Sqr1(X)

(Fact1(X) === 0 ∧∧∧ Fact2(X) === 1) ∨∨∨
(Fact2(X) === Fact1(X) ∗ Fact2(Fact3(X)))

8/13

Denotation [[t]]ς , [[ϕ]]ς ∈ Q[X]

[[X]]ς = X [[q]]ς = q (q ∈ Q)

[[t + t ′]]ς = [[t]]ς + [[t ′]]ς [[t ∗ t ′]]ς = [[t]]ς ∗ [[t ′]]ς
[[Fi (t)]]ς = ip(ς(Fi))([[t]]ς) [[len(F)]]ς = length(ς(Fi))

[[reify(ϕ)]]ς = [[ϕ]]ς

[[t===t ′]]ς = ([[t]]ς − [[t ′]]ς)
2

[[ϕ∧∧∧ϕ′]]ς = [[ϕ]]ς + [[ϕ′]]ς [[ϕ∨∨∨ϕ′]]ς = [[ϕ]]ς ∗ [[ϕ′]]ς
[[∀∀∀FX .ϕ]]ς =

∑
x∈1..length(ς(F)) [[ϕ]]ς

ς ⊨ ϕ when [[ϕ]]ς = 0 (ϕ closed)

t ::= X | q ∈ Q | t + t | t ∗ t | Fi (t) | len(F) | reify(ϕ)

ϕ ::= t===t | ϕ∧∧∧ϕ | ϕ∨∨∨ϕ | ∀∀∀FX .ϕ

9/13

Soundness and completeness

Proposition 3:

1. ⊨ς t===t ′ iff [[t]]ς = [[t ′]]ς .
2. ⊨ς ϕ∧∧∧ϕ′ iff ⊨ς ϕ ∧ ⊨ς ϕ′.
3. ⊨ς ϕ∨∨∨ϕ′ iff ⊨ς ϕ ∨ ⊨ς ϕ′.
4. ⊨ς ∀∀∀FX .ϕ iff ⊨ς ϕ[X :=x] for every x ∈ 1..length(ς(F)).

Proof. Just from Lemma 2.

Now we can express that ς(Sqr) represents a partial graph for
squaring, and ς(Fact) for factorial, by asserting:

⊨ς ∀∀∀SqrX .
(
Sqr2(X)===Sqr1(X) ∗ Sqr1(X)

)
⊨ς ∀∀∀FactX .

(
(Fact1(X)===0 ∧∧∧ Fact2(X)===1) ∨∨∨
(Fact2(X)===Fact1(X) ∗ Fact2(Fact3(X)))

)

10/13

A flavour of how this can be cryptographically applied

(There’s much more to it than what’s on this slide.)

Suppose a prover wants to convince a verifier that ⊨ς ∀∀∀FX .ϕ for
some ς(F) it has computed, with 109 columns (approx 1 terabyte).

On the face of it we would have to evaluate ϕ on 109 claimed roots.

Alternatively, a prover could compute polynomials
zeroes =

∏
x∈1..109(X -x) and h = [[ϕ]]ς/zeroes.

The verifier picks a random q ∈ Q and forces the prover to produce
a cryptographically assured proof that h(q) ∗ zeroes(q) = [[ϕ]]ς(q).

That’s one polynomial evaluation, instead of 109.

By the Schwartz-Zippel lemma, for low-degree polynomials P and
Q, equality P − Q = 0 is (to a high degree of certainty) the same
as equality of their evaluation at a random point P(x)− Q(x) = 0,
since for low-degree polynomials, P(x)− Q(x) is zero nearly
nowhere in the ambient field.

11/13

What’s going on? How expressive is the logic?

What’s going on is that the matrices pack derivation trees. Each
node in the tree gets a column, and the ‘pointer trick’ allows us to
reassemble the tree structure. Thus we can encode arbitrary
inductive definitions.

We can specify computationally significant functions like
Ackermann’s Function, Gödel encodings, and SK-combinator
reduction.

With more fiddling, we can express general recursion, negation, and
arbitrarily nested function-definitions. Using reify, which reifies
predicates as terms, we can express arbitrary Skolem functions.

This logic is very expressive; surprisingly so.

12/13

Future work: application to concrete schemes

This work is impractical as presented, but the ideas could be
operationalised. They’d look different: practical cryptographic
schemes use Fp[X] for a prime p, instead of Q[X].1 I’m working on
that now.

Many companies offer cryptographic virtual machines. All the ones I
know of are essentially deep embeddings of VMs in polynomials:
programming on ‘virtual chips’ built in finite fields instead of silicon.

To my knowledge, nobody’s thought of doing a shallow embedding
of FOL-style validity. This would permit all the goodness of logic in
computer science — inductive definitions, high-level programming,
correctness-by-construction, etc — directly in a compilation target,
which is logical validity encoded in polynomials.

1I’m not entirely convinced this is necessary, but it’s where the industry is.

13/13

Future work

In this talk, I fixed a univariate logic based on the expressivity
required to specify functions of interest, and arithmetised it.
Obvious generalisation is the multivariate case: admit X , X ′, and Y .

Also, other direction: what logics naturally correspond to validity
assertions on roots of polynomials? I used [[ϕ]]ς = 0 in this talk. An
obvious thing is to set ϕ ⊨ς ψ when [[ϕ]]ς | [[ψ]]ς . This would lead to a
resource-conscious logic.

Other flavours and variations are possible.

There’s an interesting design space of logics here!

https://eprint.iacr.org/2024/954

Much to do. Thank you for listening.

https://eprint.iacr.org/2024/954

