
1/20

A declarative approach to specifying distributed
algorithms using three-valued modal logic,

Murdoch J. Gabbay

BCTCS, 16 April 2025

http://www.gabbay.org.uk
https://msp.cis.strath.ac.uk/bctcs2025/programme.html


2/20

Decentralised algorithms as axiom-systems

Decentralised algorithms are algorithms that run across a system of
participants, without central control.

I may use ‘decentralised’ and ‘distributed’ synonymously, but they’re
not: distributed algorithms may still be centrally controlled.

Either way, decentralised/distributed algorithms are hard: hard to
design; hard to understand; and hard to verify.

Blockchain consensus algorithms are decentralised. Academic
examples include Paxos and Bracha Broadcast.

I’ve been studying how to represent these algorithms declaratively as
axiomatic theories, thus capturing their logical structure in a new,
high-level way.

I have found this personally helpful for understanding decentralised
algorithms. It has also been applied to detect two errors in the
proposed Heterogeneous Paxos protocol.



3/20

Bracha Broadcast

By the end of this talk, I hope you’ll have a flavour of what
declarative Bracha Broadcast looks like.

An axiomatisation of Paxos is submitted for publication:
A declarative approach to specifying distributed algorithms
using three-valued modal logic
https://arxiv.org/abs/2502.00892.

I present Bracha Broadcast here for brevity; the treatment of Paxos
is just a matter of scaling up.

https://arxiv.org/abs/2502.00892
https://arxiv.org/abs/2502.00892
https://arxiv.org/abs/2502.00892


4/20

A toy protocol

Fix a pair (P,Open) of a set of participants P and a set of quorums
Open ⊆ powerset(P). Secretly, this is a semitopology — we’ll come
back to that.

Toy is as follows:

1. Propose. Any participant p may broadcast a propose
message to all participants.

2. Accept. If a participant receives a propose message, then
it responds with accept.

3. Decide. If the participant p, having broadcast its propose
message, receives an accept message, then it declares
decide.

(I made this up; it’s loosely based on a 1-value version of Paxos.)

https://doi.org/10.1093/logcom/exae050


5/20

Background 1. Modal logic

We will model Toy using a modal logic, meaning that the
truth-value of a predicate depends on a possible world, which
consists of a time and/or a place. For example:

“It’s raining” is a predicate.

“It’s raining now” and “It’s raining here” are modal predicates,
because validity depends on the time and place.

“It’s raining somewhere” is modal: this is typically written as
♢raining.

“It’s raining everywhere” is modal: this is typically written as
□raining.

For Toy, the possible worlds are participants p ∈ P (no time; just
places).

More formally: the truth-value [[ϕ]]w is a function of ϕ and w . Write
w ⊨ ϕ for ‘[[ϕ]]w is a valid truth-value’.



6/20

Background 2. Three-valued (modal) logic

We will use three truth-values:

1. t (‘true’). If [[ϕ]]w = t then call ϕ true at w .
2. f (‘false’). If [[ϕ]]w = f then call ϕ false at w .
3. b (‘byzantine’). If [[ϕ]]w = b then call ϕ byzantine at w .

Call x ∈ {t} true, x ∈ {t, f} correct, and x ∈ {t,b} valid.

For x a truth-value, define modalities T , TF , and TB by:

▶ Tx = t when x ∈ {t} and Tx = f otherwise;
▶ TFx = t when x ∈ {t, f} and TFx = f otherwise; and
▶ TBx = t when x ∈ {t,b} and TBx = f otherwise.

Write w ⊨ ϕ to mean [[ϕ]]w ∈ {t,b}. Write ⊨ ϕ to mean ∀w .w ⊨ ϕ.



7/20

Recall Toy

We have participants P and a quorums Open ⊆ powerset(P).

1. Propose. Any participant p may broadcast a propose
message to all participants.

2. Accept. If a participant receives a propose message, then
it responds with accept.

3. Decide. If the participant p, having broadcast its propose
message, receives an accept message, then it declares
decide.

Let’s make this declarative. We propose three theories (= set of
axioms), corresponding to failure assumptions as follows:

1. all participants honest (non-byzantine) and live (uncrashed),
2. all participants honest & a quorum of live participants,
3. a contraquorum (defined in later slide) of live honest

participants.



8/20

Theory 1. Honest & live
Assume atomic propositions propose, accept, and decide.

Backward rules
(SimpAccept?) accept →→ ♢propose
(SimpDecide?) decide →→ (propose∧∧∧ ♢accept)
Forward rules
(SimpAccept!) (♢propose) →→ accept
(SimpDecide!) (propose∧∧∧ ♢accept) →→ decide
Other rules
(Correct) TF [propose,accept,decide]

p ⊨ ϕ→→ ϕ′ means p ⊨ Tϕ⇒ p ⊨ Tϕ′

(if ϕ is true then ϕ′ is true; material implication).

p ⊨ ♢ϕ means ∃p′.p′ ⊨ ϕ. (ϕ is valid somewhere).

A model (= assignment of truth-values to atomic propositions)
satisfies a theory T when ⊨ (Ax) in that model, for every (Ax) ∈ T .



9/20

Theory 2. Quorum of live participants

Backward rules
(SimpAccept?) accept →→ ♢propose
(SimpDecide?) decide →→ (propose∧∧∧ ♢accept)
Forward rules
(SimpAccept!) (♢propose) → accept
(SimpDecide!) (propose∧∧∧ ♢accept) → decide
Other rules
(Correct) □· TF [propose,accept,decide]

p ⊨ ϕ→→ ϕ′ means p ⊨ Tϕ⇒ p ⊨ Tϕ′

p ⊨ ϕ→ ϕ′ means p ⊨ Tϕ⇒ p ⊨ TBϕ′

p ⊨ ♢ϕ means ∃p′.p′ ⊨ ϕ.

p ⊨ □· ϕ means ∃O ∈ Open.∀p′ ∈ O.p′ ⊨ ϕ.
(ϕ valid on some quorum).



10/20

Theory 3. Contraquorum of honest participants

Backward rules
(SimpAccept?) accept → ♢propose
(SimpDecide?) decide → (propose∧∧∧ ♢accept)
Forward rules
(SimpAccept!) (♢propose) → accept
(SimpDecide!) (propose∧∧∧ ♢accept) → decide
Other rules
(Correct) ♢· TF [propose,accept,decide]

p ⊨ ϕ→ ϕ′ means p ⊨ Tϕ⇒ p ⊨ TBϕ′

p ⊨ ♢ϕ means ∃p′.p′ ⊨ ϕ.

p ⊨ □· ϕ means ∃O ∈ Open.∀p′ ∈ O.p′ ⊨ ϕ.



11/20

Background: quorums, coquorums, & contraquorums

Recall the semitopology (P,Open) (≈ quorum system) .

▶ Call O ∈ Open an open or a quorum.
▶ Call C ⊆ P closed or a coquorum when C = P \ O for some

O ∈ Open.
▶ Call D ⊆ P dense or a contraquorum when D ∩ O ̸= ∅ for

every nonempty O ∈ Open (also called a blocking set).
This is exactly the notion of dense set from topology.

In the case that #P = 3f + 1 and O ∈ Open when O is empty or
#O ≥ 2f + 1,

▶ C ⊆ P is closed precisely when C = P or #C ≤ f , and
▶ D ⊆ P is dense precisely when #D ≥ f + 1.



12/20

Background: quorums, coquorums, & contraquorums

Have you seen the papers on distributed systems that talk about

▶ taking a set of participants having size 3f + 1; and then
▶ quorums are sets of size at least 2f + 1;
▶ failure sets have size at most f ; and
▶ blocking sets have size at least f + 1, and so on?

These are topological notions, corresponding to open sets, closed
sets, and dense sets respectively.

They’re doing (semi)topology.



13/20

Bracha Broadcast (high-level view)

1. A designated sender participant broadcasts v to all processes.
(We assume all messages arrive.)

2. If a participant receives a broadcast v message from the sender
— we assume the sender’s signature can’t be forged — it sends
an echo v to all processes.
Each participant will echo at most once, so if it receives two
broadcast messages with different values from a (byzantine)
sender, it will only echo one of them.

3. If a participant receives a quorum of echo messages for a value
v , or a contraquorum of ready messages for a value v , then it
sends messages to all processes declaring itself ready with v .

4. If a process receives a quorum of ready messages for a value v ,
then the participant delivers v .



14/20

Declarative Bracha Broadcast

Backward rules
(BrDeliver?) dlvr(v) → □· ready(v)
(BrReady?) ready(v) → □· echo(v)
(BrEcho?) echo(v) → brdcst(v)
Forward rules
(BrDeliver!) □· ready(v) → dlvr(v)
(BrReady!) □· echo(v) → ready(v)
(BrEcho!) ♢brdcst(v) → echo(v)
(BrReady!!) ♢· ready(v) → ready(v)
Other rules
(BrEcho01) ∃01∃01∃01v .echo(v)
(BrBroadcast1) ∃1∃1∃1v .♢brdcst(v)
(BrCorrect) □· TF [ready,echo,brdcst]
(BrCorrect′) TF [P]∨∨∨ B [P] (P ∈ {ready,echo})
(BrCorrect′′) □TF [brdcst]∨∨∨□B [brdcst]



15/20

Some notation

∃01∃01∃01v .ϕ(v) is shorthand for ∀∀∀v , v ′.ϕ(v) → ϕ(v ′) → v = v ′.

▶ This means ϕ(v) is t for at most one v .
▶ ϕ(v) can be f or b for as many v as it wants!
▶ In particular, ∃01∃01∃01v .b is valid.

∃1∃1∃1v .ϕ(v) is shorthand for ∃01∃01∃01v .ϕ(v)∧∧∧ ∃∃∃v .ϕ.

▶ This means ϕ(v) is t for at most one v , and is TB for at least
one v .

▶ In particular, ∃1∃1∃1v .b is valid (specifically, [[∃1∃1∃1v .b]]w = b always).



16/20

Correctness properties (informal; from literature)

These correctness properties for Bracha Broadcast are from
pages 112 and 117 of Introduction to reliable and secure distributed
programming (2nd ed):

1. Validity: If a correct process broadcasts some value v , then
every correct process delivers v .
The meaning of ‘Correct’ is not made immediately formal in
the source citation.

2. No duplication: Every correct process delivers at most one
value.

3. Integrity: If some process delivers a message v with sender p,
and p is correct, then v was broadcast by p.

4. Consistency: If one correct process delivers v and another
correct process delivers v ′, then v = v ′.

5. Totality: If some correct process delivers v , then every correct
process delivers v .



17/20

3-twined, axiomatically

Recall that a semitopology consists of a pair (P,Open) of a set of
points P and a set of open sets Open ⊆ pow(P).

Call a semitoplogy 3-twined when any three nonempty open sets
intersect (also called Q3; see e.g. Definition 2 here).

Lemma: The following are equivalent [Lemma 5.3.1(2)]:

1. (P,Open) is 3-twined.
2. ⊨ (□· ϕ∧∧∧□· ψ ∧∧∧□· χ)⇒⇒⇒♢(ϕ∧∧∧ ψ ∧∧∧ χ) (for any ϕ, ψ, and χ).
3. ⊨ (□· ϕ∧∧∧□· ψ)⇒⇒⇒♢· (ϕ∧∧∧ ψ).
4. ⊨ (□· TFϕ∧∧∧□· ϕ)⇒⇒⇒T♢· ϕ. Correct on a quorum and valid on a

quorum implies true on a contraquorum!

p ⊨ □· ϕ means ∃O ∈ Open.∀p′ ∈ O.p′ ⊨ ϕ.

p ⊨ ϕ⇒⇒⇒ϕ′ means p ⊨ TBϕ⇒ p ⊨ TBϕ′

(if ϕ is valid then ϕ′ is valid).

https://arxiv.org/pdf/1906.09314
https://arxiv.org/pdf/2502.00892v1#subsection.5.3


18/20

Correctness properties (in the logic)

Theorem: Any model of Declarative Bracha Broadcast over a
3-twined semitopology satisfies:

Validity: ⊨ ♢brdcst(v) → □dlvr(v)
No duplication: ⊨ ∃01∃01∃01v .dlvr(v)
Integrity: ⊨ dlvr(v) → ♢brdcst(v)
Consistency: ⊨ ∃01∃01∃01v .♢dlvr(v)
Totality: ⊨ ♢dlvr(v) → □dlvr(v)

Note: I don’t explicitly represent messages! There are modal
predicates evaluating to truth-values. Note: p in the informal
integrity property corresponds to ♢ in (Integrity) above. Note:
asymmetry between (Validity) and (Integrity). Note:
(BrBroadcast01).



19/20

Conclusions

We can present decentralised algorithms as axiomatic theories.

Paragraphs of English text get distilled down to precise axiomatic
assertions. Difficult reasoning gets reduced to, or at least formalised
as, formal logical reasoning.

It’s a powerful technique. Axiomatic reasoning is not new, but
nobody’s thought of doing it in this way for consensus.

. . . and it works! I find it indispensable for my own understanding,
and it’s already helped to catch real bugs.



20/20

References

1. Declarative Paxos journal paper (submitted):
https://arxiv.org/abs/2502.00892.

2. Semitopologies journal paper (published, open access):
https://doi.org/10.1093/logcom/exae050.

3. Semitopologies book (published): https://www.
collegepublications.co.uk/logic/?00056.

https://arxiv.org/abs/2502.00892
https://doi.org/10.1093/logcom/exae050
https://www.collegepublications.co.uk/logic/?00056
https://www.collegepublications.co.uk/logic/?00056

